Skip to main content

Microbial Communities, Structure, and Function

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Microbial species. Microorganisms exhibiting a high degree of phenotypic and genetic similarity; a pragmatic approach to demarcating “microbial species” using molecular biology tools has been 97% 16S rRNA sequence identity or 70% genome identity based on DNA-DNA hybridization (Stackebrandt and Goebel, 1994); thus, microbial species are often defined by operational characteristics (operational taxonomic unit). The microbial species concept is still a matter of controversy.

Microbial population. Individual microorganisms (of the same “species”) form a population.

Guild. Metabolically related populations, e.g., sulfate-reducing microorganisms.

Microbial community. All microbial populations in a habitat.

Microbial community structure . The composition of a microbial community and the abundance of its members.

Microbial diversity. The number of different species in a habitat; sometimes (falsely) used as a synonym for community structure.

Habitat...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adamczyk, J., Hesselsoe, M., Iversen, N., Horn, M., Lehner, A., Nielsen, P. H., Schloter, M., Roslev, P., and Wagner, M., 2003. The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Applied  Environmental Microbiology, 69, 6875–6887.

    Article  Google Scholar 

  • Amann, R. I., Ludwig, W., and Schleifer, K. H., 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology Reviews, 59, 143–169.

    Google Scholar 

  • Boschker, H. T. S., Nold, S. C., Wellsbury, P., Bos, D., de Graaf, W., Pel, R., Parkes, R. J., and Cappenberg, T. E., 1998. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature, 392, 801–805.

    Article  Google Scholar 

  • Conrad, R., 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiology Reviews, 60, 609–640.

    Google Scholar 

  • Euzeby, J. P., 1997. List of bacterial names with standing in nomenclature: a folder available on the Internet. International Journal of Systematic Bacteriology, 47, 590–592.

    Article  Google Scholar 

  • Friedrich, M. W., 2005. Methyl-coenzyme M reductase genes – unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods Enzymology, 397, 428–442.

    Article  Google Scholar 

  • Huang, W. E., Stoecker, K., Griffiths, R., Newbold, L., Daims, H., Whiteley, A. S., and Wagner, M., 2007. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environmental Microbiology, 9, 1878–1889.

    Article  Google Scholar 

  • Lechene, C., Hillion, F., McMahon, G., et al., 2006. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. Journal of Biology, 5, 20.

    Google Scholar 

  • Lee, N., Nielsen, P. H., Andreasen, K. H., Juretschko, S., Nielsen, J. L., Schleifer, K. H., and Wagner, M., 1999. Combination of fluorescent in situ hybridization and micro autoradiography – a new tool for structure-function analyses in microbial ecology. Applied  Environmental Microbiology, 65, 1289–1297.

    Google Scholar 

  • Li, T., Wu, T. D., Mazeas, L., Toffin, L., Guerquin-Kern, J. L., Leblon, G., and Bouchez, T., 2008. Simultaneous analysis of microbial identity and function using NanoSIMS. Environmental Microbiology, 10, 580–588.

    Article  Google Scholar 

  • Liesack, W., Janssen, P. H., Rainey, F. A., Ward-Rainey, N. L., and Stackebrandt, E., 1997. Microbial diversity in soil: the need for a combined approach using molecular and cultivation techniques. In  van Elsas, J. D., Trevors, J. T., and Wellington, E. M. H. (eds.), Modern Soil Microbiology. New York: Marcel Dekker, pp. 375–439.

    Google Scholar 

  • Lozupone, C. A., and Knight, R., 2007. Global patterns in bacterial diversity. Proceedings of  National Academy of  Sciences United States of America, 104, 11436–11440.

    Article  Google Scholar 

  • Manefield, M., Whiteley, A. S., Griffiths, R. I., and Bailey, M. J., 2002. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Applied Environmental Microbiology, 68, 5367–5373.

    Article  Google Scholar 

  • Margulies, M., Egholm, M., Altman, W. E., et al., 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380.

    Google Scholar 

  • Neufeld, J. D., Wagner, M., and Murrell, J. C., 2007. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J, 1, 103–110.

    Article  Google Scholar 

  • Pace, N. R., Stahl, D. A., Lane, D. J., and Olsen, G. J., 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Advances in Microbial Ecology, 9, 1–55.

    Google Scholar 

  • Prosser, J. I., Bohannan, B. J. M., Curtis, T. P., et al., 2007. The role of ecological theory in microbial ecology. Nature Reviews Microbiology, 5, 384–392.

    Article  Google Scholar 

  • Radajewski, S., Ineson, P., Parekh, N. R., and Murrell, J. C., 2000. Stable-isotope probing as a tool in microbial ecology. Nature, 403, 646–649.

    Article  Google Scholar 

  • Roesch, L. F., Fulthorpe, R. R., Riva, A., et al., 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. Isme Journal, 1, 283–290.

    Google Scholar 

  • Schink, B., and Stams, A. J. M., 2006. Syntrophism among prokaryotes. In Dworkin, M. (ed.), The Prokaryotes, 3rd edn.  New York: Springer, Vol. 2, pp. 309–335.

    Chapter  Google Scholar 

  • Schloss, P. D., and Handelsman, J., 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied Environmental Microbiology, 71, 1501–1506.

    Article  Google Scholar 

  • Schloss, P. D., and Handelsman, J., 2006. Toward a census of bacteria in soil. Plos Computational Biology, 2, 786–793.

    Article  Google Scholar 

  • Stackebrandt, E., and Goebel, B. M., 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 44, 846–849.

    Article  Google Scholar 

  • Teske, A., Dhillon, A., and Sogin, M. L., 2003. Genomic markers of ancient anaerobic microbial pathways: sulfate reduction, methanogenesis, and methane oxidation. Biological Bulletin, 204, 186.

    Article  Google Scholar 

  • Torsvik, V., Goksoyr, J., and Daae, F. L., 1990. High diversity in DNA of soil bacteria. Applied  Environmental Microbiology, 56, 782–787.

    Google Scholar 

  • von Wintzingerode, F., Goebel, U. B., and Stackebrandt, E., 1997. Determination of microbial diversity in environmental samples – pitfalls of PCR-based rRNA analysis. FEMS Microbiology Review, 21, 213–229.

    Article  Google Scholar 

  • Wagner, M., Loy, A., Klein, M., Lee, N., Ramsing, N. B., Stahl, D. A., and Friedrich, M. W., 2005. Functional marker genes for identification of sulphate-reducing prokaryotes. Methods Enzymology, 397, 469–489.

    Article  Google Scholar 

  • Whitman, W. B., Coleman, D. C., and Wiebe, W. J., 1998. Prokaryotes: the unseen majority. Proceedings of  National Academy of  Sciences United States of America, 95, 6578–6583.

    Article  Google Scholar 

  • Woese, C. R., 1987. Bacterial evolution. Microbiology Reviews, 51, 221–271.

    Google Scholar 

  • Woese, C. R., and Fox, G. E., 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of  National Academy of  Sciences United States of America,  74, 5088–5090.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Friedrich, M.W. (2011). Microbial Communities, Structure, and Function. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_144

Download citation

Publish with us

Policies and ethics