Amazonian Dark Earths: Wim Sombroek's Vision

William I. Woods • Wenceslau G. Teixeira,Johannes Lehmann • Christoph Steiner,Antoinette WinklerPrins • Lilian RebellatoEditors

Amazonian Dark Earths: Wim Sombroek's Vision

Editors William I. Woods Department of Geography University of Kansas KS, USA wwoods@ku.edu

Wenceslau G. Teixeira Embrapa Amazônia Ocidental Rodovia, Brazil lau@cpaa.embrapa.br

Johannes Lehmann Department of Crop and Soil Sciences Cornell University, Ithaca NY, USA cl273@cornell.edu

Christoph Steiner Biorefining and Carbon Cycling Program Department of Biological and Agricultural Engineering GA, USA csteiner@engr.uga.edu

Lilian Rebellato Department of Geography University of Kansas Lawrence, KS, USA rebellat@ku.edu

ISBN 978-1-4020-9030-1

e-ISBN 978-1-4020-9031-8

Library of Congress Control Number: 2008933381

© 2009 Springer Science + Business Media B.V.

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Logo on back cover: Symbol of the Terra Preta Nova group designed by Wim Sombroek. Picture on front cover: Wim examining a house garden on the Rio Negro, July 2002.

Printed on acid-free paper

987654321

springer.com

Dr Wim G. Sombroek

He had a passion for land as we know Fueled by the Amazon where jungles grow A flame that didn't flicker or even go out His last endeavour Terra Preta still to shout¹

Wim Sombroek joined the International Soil Museum in Wageningen as a Director in 1978. Long before that, we knew him as a respected soil scientist, who obtained a Ph.D. in Wageningen for his thesis on the Amazon soils, and had carried out extensive soil surveys in Kenya. These illustrated his enthusiasm for field work and for building upon these primary data – the basis for the establishment of the International Soil Museum as a link with the Soil Map of the World project carried out at FAO in Rome.

We remember his many new ideas to make our institution more widely known under the new banner of International Soil Reference and Information Centre (ISRIC). He had an enormous drive to implement new projects. It was a wise decision to accept the task of Secretary-General of the then International Soil Science Society (ISSS), now International Union of Soil Sciences (IUSS). Through this combination of functions over twelve years, he was able to carry out innovative ISSS activities at ISRIC, and play a prominent role internationally, in particular directed to the needs of developing countries.

Wim initiated activities in the further development of a world soil classification system, which finally resulted in the *World Reference Base for Soil Resources* (WRB); the Laboratory Exchange project (LABEX) to improve the performance of soil laboratories in developing countries, in which more than 100 labs participated; the *National Soil Reference Collection* (NASREC) project to develop national soil profile collections in more than 30 countries; and not least the *Soil and Terrain digital database program* (SOTER), which started in 1986 and has carried the initiative of the FAO-Unesco Soil Map of the World through to the twenty-first century,

¹Excerpt from a poem entitled "Thanks, Wim!" by Richard W. Arnold.

and the framework of the *World Inventory of potential Soil Emissions* (WISE) a unique soil data set that is still used by many researchers.

Wim left ISRIC to become Director of the Land and Water Development Division of FAO, where he was also active in land use issues related to climate change in the framework of the International Panel of Climate Change. His ties with ISRIC were not severed and, after his tenure in Rome, he returned to the Amazon where his heart was, but one foot in an office at ISRIC. He worked on the economic zoning of the Brazilian Amazon, to safeguard parts of this huge but threatened forested region as protected reserves, and develop economical viable systems of sustainable land use.

Thirty years after his thesis, in which he discussed the importance of the *Terra Preta*, he showed the relevance of this pre-Colombian agricultural technique for the development of enhanced carbon sequestration in agricultural land – the *Terra Preta Nova*.

The Terra Preta network has developed enormously in recent years, and includes more than 100 scientists. Two books on the Terra Preta have been published in the meantime, and a symposium on these soils during the 18th World Congress of Soil Science in 2006 was dedicated to his memory.

We, at ISRIC and within the IUSS, are proud that Dr. Wim G. Sombroek has been our Director and friend, and that the work he initiated continues and develops – in the field, in laboratories, institutes and museums, carried out by dedicated researchers in so many disciplines.

On behalf of retired and present ISRIC staff members,

Hans van Baren

Thanks, Wim!

Each of us has a story to tell this day Of meeting Wim Sombroek along the way He touched our lives in ways oft untold And helped us become 'champions with gold'

He had a passion for land as we know Fueled by the Amazon where jungles grow A flame that didn't flicker or even go out His last endeavour Terra Preta still to shout

What made this man a man to remember? Dedication from January to December? Ready zeal to impart his vast knowledge To those who never had seen a college?

Perhaps it was the breath of his interests keen Archaeology nearby, within, without – to be seen And wild orchids gardened in an exotic place In his green house always finding space

Was it not the pillars there at home? Wife Willemijn and four girls that led him roam Whose constancy supported his very being Welcomed his return late in the evening?

What do you recall when you hear his name? A towering presence with moustache and mane Blue eyes twinkling through gold-rimmed glasses A fat little notebook shock full of addresses

Or may be the pause as he 'rolled' his own Smoke rising gently as softly it was blown Or the patient way he slightly leaned over Catching our phrases like blossoms of clover I, too, have a special way to recall – Several clusters of Dutch bulbs one fall He planted along my garden maze Now each spring he brightens my gaze

I hear his laughter, feel his handshake I treasure the moments we dared to take To dream our dreams, to vision the future Returning to Pedology, our souls to nurture

Are we mourning – never; rejoicing – ah, yes, ever Along with insights, strength, and wisdom so clever There was gentleness, love, and tenderness, too Wim Sombroek, our hearts give thanks to you.

Richard W. Arnold 1-15-04

A Few Words About Wim Sombroek

The first time I met Wim Sombroek was actually the second time I met him, though I didn't realize it till later. I also didn't realize that in both cases Wim was doing something he had been doing his whole life: trying to attract the world's attention to soil, and to soil science. I am a journalist, and both times I was introduced to Wim I had a notebook and pen in my hand and wanted to talk to him about his research on *terra preta do índio* – anomalously rich, charcoal-thick soils, created by native peoples in the Amazon Basin. Eventually we became friendly and I learned how many and various his interests were. But it was only after he passed away that I fully grasped what he was trying to accomplish. He wanted to change and expand the discipline of soil science itself, with *terra preta* as a hortatory example.

This second time when I met Wim (or, as I thought, the first time) was at a *terra preta* conference at a hotel in Manaus. Someone I was talking to pointed at a silverhaired man with an impressive moustache who was nursing a beer at a table in the lobby bar. "That's Wim Sombroek," I was told. "You ought to talk to him." I went over and introduced myself. One thing led to another, and many hours later we were drinking beer with a large group in another part of Manaus. I asked how long he had been interested in *terra preta*. "A few years," he said, or something to that effect. The amused glint in his blue eyes suggested to me that he was understating the case, an impression that was confirmed when he told me about the soils at his parents' home in the rural Netherlands.

He was ten years old during the Hongerwinter — the Dutch famine of 1944–45, in which more than 10,000 people died. Sombroek's family survived on the harvest from a tiny plot of *plaggen* soil: land enriched by generations of careful fertilization. His parents further improved their land, he told me, by scattering the ash and cinders from their home fireplaces. In the 1950s, Wim went to Brazil and encountered more charcoal-filled earth: *terra preta*. Naturally, it reminded him of the *plaggen* in his parents' yard, and he paid attention. His book, *Amazon Soils*, included the first sustained study of *terra preta* and a map of its distribution along the lower Rio Tapajós.¹

¹Sombroek WG (1966) Amazon Soils: A Reconnaissance of the Soils of the Brazilian Amazon Region. Wageningen, the Netherlands: Center for Agricultural Publications and Documentation (map on p. 175).

As Wim told this story I suddenly realized that I had met him almost a decade before, in the early 1990s. At that time two groups of researchers were embroiled in a lengthy fight over the extent and cost of soil degradation. One side, led by entomologist David Pimentel, of Cornell University, charged that "nearly one-third of the world's arable land has been lost by erosion" since the 1950s. Soil loss, Pimentel and his collaborators said in 1995, already cost the world "\$400 billion per year, or more than \$70 per person per year."² The other side, often identified with economist Pierre R. Crosson of the Washington environmental-research group Resources for the Future, responded that Pimentel's figures had "such thin underpinnings that [they] cannot be taken seriously." The annual toll of erosion-induced on-farm productivity losses in the United States was, in Crosson's estimation, no more than \$600 million.³ (Off-farm costs might well be higher, he said, but neither Pimentel nor he had tried to assess them.)⁴ The debate spilled outside academia – Crosson, as I recall, once found himself on National Public Radio, trying to explain the Universal Soil Loss Equation to a bewildered interviewer.

For a long time, one of the more striking features of the debate was the nearabsence of soil scientists themselves from the discussion. Indeed, almost 20 years passed between the time soil-degradation fears first stirred alarm and the first published estimates of global soil degradation. In 1990, the International Soil Reference and Information Center (ISRIC) in Wageningen, the Netherlands, finally filled the gap, releasing the Global Assessment of Soil Degradation. This major effort was undertaken at the initiative of Wim Sombroek, then ISRIC's director (and, simultaneously, Secretary General of the International Society of Soil Science).⁵

When I learned about GLASOD, as the assessment was called, I contacted Wim. We met when he came to the United States for, I believe, a meeting in Washington, D.C. GLASOD, he told me, was a first step toward answering an urgent question in soil science — the size, location and character of degraded soils around the world. But the assessment also had a second purpose. All soil scientists know that, as Will Durant said, "Ultimately every civilization is based upon the soil."⁶ But all

²See, e.g., Pimentel D et al. (1976) Land degradation: effects on food and energy resources. Science 194:149–55. Pimentel D et al. (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 262:1117–1123 (quotes on 1117, 1120)

³See, e.g., Crosson PR (1986) Soil erosion and policy issues. In: Phipps TT, Crosson P and Price KA (eds) Agriculture and the Environment. Washington, DC: Resources for the Future.,pp. 35–73; Crosson PR (1995) Soil erosion estimates and costs. Science 269:461–64 (quote on 461)

⁴Crosson PR (2003) The Economics of Soil Erosion and Maintaining Soil Biodiversity. Discussion paper for OECD Expert Meeting on Soil Erosion and Soil Biodiversity Indicators, Rome (unpublished manuscript)

⁵Sombroek WG (1985) Establishment of an International Soil and Land Resources Information Base. Discussion Paper for the ISSS Working Group on Digital Mapping of Global Soil Resources. Wageningen: ISRIC (unpublished manuscript); Oldeman LR, Hakkeling RTA and Sombroek WG (1990) World Map of the Status of Human-Induced Soil Degradation. Wageningen: ISRIC/UNEP

⁶Quoted in Preston RJ (1939) Soil erosion. The significance of the problem and its attempted control. Journal of Geography 38:308. See also the widely cited Howard A 1940. An Agricultural Testament. London: Oxford

too often, Wim said, they act as handmaidens to agronomy and crop science, rather than environmental scientists who should use their specialized knowledge about a critically important resource to work with ecologists, economists, and political scientists to help humankind through these ecologically parlous times.⁷ GLASOD was an attempt to show "policy-makers and decision-makers" how soil science could inform the fight against "declining food productivity by conserving and restoring our natural resources."⁸

Ultimately, Wim told me in Washington, he had been disappointed by GLASOD's lack of larger impact, as well as ISRIC's failure to improve on it.⁹ But even as he was finishing GLASOD he was turning his attention to another means of elevating the profile of soil science: *terra preta* — or Amazonian Dark Earth,¹⁰ as it has been renamed. Found in patches along almost all of the major rivers in the Amazon basin, Amazonian Dark Earth is, unlike typical tropical soils, rich with phosphorus, nitrogen, zinc, and magnesium. More important, it is full of carbon – as much as 70 times the level of neighboring soils—in the form of "bio-char," a charcoal-like residue created when organic matter is burned at a low temperature.¹¹

As far back as the 1960s, Wim had wondered whether scientists could reconstruct the techniques by which Indians had made *terra preta* in the past. If so, he now argued, contemporary tropical farmers might create their own *terra preta* — *terra preta nova*, as he dubbed it — to help forestall soil degradation. Because soil degradation is an enormous limiting factor in tropical agriculture, *terra preta nova* could not only boost yields but also reduce the amount of tropical forest that had to be cleared for farms. Much as the Green Revolution dramatically improved the developing world's crops, resilient *terra preta nova* could unleash a "black revolution" for the developing world's soil.¹²

In addition, Wim argued, manufacturing large swathes of Amazonian dark earth would require so much biochar that these regions would act as enormous carbon

⁷This is not a new complaint. See, e.g., Kellogg CE (1961) A challenge to American soil scientists: On the occasion of the 25th anniversary of the soil science society of America. Soil Science Society of America Proceedings 25:419–23

⁸Oldeman LR, Hakkeling RTA, Sombroek WG (1991) World Map of the Status of Human-Induced Soil Degradation: An Explanatory Note. Den Haag: CIP-Gegevens Koninklijke Bibliotheek, 2nd ed.: 21

⁹GLASOD is not even mentioned in Pimentel et al. (1995), a widely publicized study in a major journal that appeared just 5 years afterward

¹⁰This term was coined by Woods and McCann to encompass the wide range of variability of dark anthropogenic soils in Amazonia [Woods WI, McCann JM (1999) The anthropogenic origin and persistence of Amazonian dark earths. The Yearbook of the Conference of Latin American Geographers 25:7–14]

¹¹Lehmann, J, Kern DC, Glaser B, Woods WI (eds). 2003. Amazonian Dark Earths: Origin, Properties, Management. Dordrecht: Kluwer; Glaser, B, and Woods WI (eds) 2004. Amazonian Dark Earths: Explorations in Space and Time. Berlin: Springer.

 $^{^{12}\}mathrm{I}$ take the phrase "black revolution" from Marris, E 2006. Black is the new green. Nature 442:624–26.

sinks, counteracting global warming.¹³ In theory, the potential for carbon storage is huge: according to a 2006 estimate in the journal *Mitigation and Adaptation Strategies for Global Change*, more carbon could be stored in *terra preta nova* every year than is released by the entire world's fossil-fuel use, at least at current levels of consumption.¹⁴

The possibilities of Amazonian dark earth obviously thrilled Wim. In Manaus, I was not the only person to be startled during the conference tour of *terra preta* sites when the former Secretary General of the International Society of Soil Science scrambled into archaeological trenches and began taking measurements with his soil-color chart. But what I only realized later, talking to Wim, is that he hoped that the *Terra Preta Nova* project would, even more than GLASOD, serve as an example of how soil science might reorient itself.

Between 1992 and 2004, enrollment in North American soil-science graduate programs fell by about 40%; Europe apparently experienced similar declines. The drop occurred despite "a continuous increase of the interest manifested by the scientific community in soils-related issues," at least as measured by scientific publications in the field.¹⁵ Amazingly, it occurred despite the enormous global boom in organic farming, with its emphasis on protecting the soil. One common explanation for the decline is the tendency of soil-science schools to treat soil science, in isolation, as a vehicle to increase crop production, even though students increasingly view soil through the lenses of environmental and social sciences. To Wim's way of thinking, the *Terra Preta Nova* project was an example of the way to go.

Wim's hopes will not be easy to fulfill. It has become increasingly clear that much of the resilience in Amazonian dark earth derives from its ability to support soil ecosystems; the microbiota of *terra preta* are both more numerous and more diverse than that of surrounding areas.¹⁶ Unfortunately, identifying precisely what is living in these soils will be difficult. As is well known, researchers can cultivate only a small fraction of rhizospheric species in petri dishes. Equally important, nobody knows how much carbon can be stored in soil. Preliminary studies suggest

¹³Sombroek WG 1992. Biomass and carbon storage in the Amazon ecosystems. Interciência 17:269–72; Sombroek

WG, Ruivo ML, Fearnside PM, Glaser B, Lehmann J (2003) Amazonian Dark Earths as carbon stores and sinks. In: Lehmann, J, Kern DC, Glaser B, Woods WI (eds). 2003. Amazonian Dark Earths: Origin, Properties, Management. Dordrecht: Kluwer, pp 125–139

¹⁴Lehmann J, Gaunt J, and Rondon M (2006) Bio-char sequestration in terrestrial ecosystems: A review. Mitigation and Adaptation Strategies for Global Change 11:403-27. Lehmann, Gaunt and Rondon predicate their estimates on a sharp rise in biofuel use, with the biofuels being produced by processes that generate bio-char.

¹⁵Baveye P, et al. (2006) Whither goes soil science in the United States and Canada? Soil Science 171:501–18 (quote on 506).

¹⁶Ruivo ML, Cunha ES, Kern DC (2004) Organic matter in archaeological black earths and yellow latosol in the Caxiuanã, Amazônia, Brasil. In: Amazonian Dark Earth: Explorations in Space and Time. Berlin: Springer, pp. 95–108.

that at least in some soils' soil-carbon content may not increase linearly with carbon inputs but reach some limiting value.¹⁷

But in another sense Wim's dream has already been realized. The *Terra Preta Nova* project, with its vision of the soil as a key element in our common future, has attracted enormous public attention to soil science. On a professional level, the scientific collaboration links soil scientists, archaeologists, geographers, microbiologists, engineers, ecologists, economists, and atmospheric scientists around the world in a common project that promises to reveal much about the workings of soil, may have an enormous impact on agriculture and could even play a role in climate change. This book, and all it represents, is more than a tribute to Wim Sombroek's legacy—it is a way forward.

Charles C. Mann

¹⁷Stewart CE, et al. (2007) Soil carbon saturation: Concept, evidence and evaluation. Biogeochemistry 86:19–31.

Contents

De	H von Baren, Dr. Wim G Sombroek, RW Arnold. Thanks, Wim	v
A	Few Words About Wim Sombroek	ix
1	Amazonian Dark Earths: The First Century of Reports	1
2	Pre-Columbian Settlement Dynamics in the Central Amazon L Rebellato, WI Woods, and EG Neves	15
3	Steps Towards an Ecology of Landscape: The Pedo-stratigraphyof Anthropogenic Dark EarthsM Arroyo-Kalin	33
4	Phytoliths and <i>Terra Preta</i> : The Hatahara Site Example SR Bozarth, K Price, WI Woods, EG Neves, and R Rebellato	85
5	Anthropogenic Dark Earths of the Central Amazon Region:Remarks on Their Evolution and Polygenetic CompositionM Arroyo-Kalin, EG Neves, and WI Woods	99
6	An Assessment of the Cultural Practices Behind the Formation (or Not) of Amazonian Dark Earths in Marajo Island Archaeological Sites DP Schaan, DC Kern, and FJL Frazão	127
7	Kayapó Savanna Management: Fire, Soils, and Forest Islands in a Threatened Biome SB Hecht	143

Contents

8	Amerindian Anthrosols: Amazonian Dark Earth Formation in the Upper Xingu	163
	MJ Schmidt and MJ Heckenberger	
9	Indigenous Knowledge About <i>Terra Preta</i> Formation C Steiner, WG Teixeira, WI Woods, and W Zech	193
10	Sweep and Char and the Creation of Amazonian Dark Earths in Homegardens AMGA Winklerprins	205
11	Pedology, Fertility, and Biology of Central Amazonian	
	Dark Earths	213
12	Historical Ecology and Dark Earths in Whitewater	
	and Blackwater Landscapes: Comparing the Middle Madeira and Lower Negro Rivers	229
13	Amazonian Dark Earths in Africa?	265
14	Locating Amazonian Dark Earths (ADE) Using Satellite Remote Sensing – A Possible Approach J Thayn, KP Price, and WI Woods	279
15	The Microbial World of <i>Terra Preta</i> SM Tsai, B O'Neill, FS Cannavan, D Saito, NPS Falcao, D Kern, J Grossman, and J Thies	299
16	Microbial Response to Charcoal Amendments and Fertilization of a Highly Weathered Tropical Soil JJ Birk, C Steiner, WC Teixiera, W Zech, and B Glaser	309
17	Effects of Charcoal as Slow Release Nutrient Carrier on N-P-K Dynamics and Soil Microbial Population: Pot Experiments with Ferralsol Substrate C Steiner, M Garcia, and W Zech	325
18	<i>Terra Preta Nova</i> : The Dream of Wim Sombroek DC Kern, M de LP Ruivo, and FJL Frazão	339

Microbial Population and Biodiversity in Amazonian Dark Earth Soils M de LP Ruivo, CB do Amarante, M de LS Oliveira, ICM Muniz, and DAM dos Santos	351
Spectroscopy Characterization of Humic Acids Isolated from Amazonian Dark Earth Soils (<i>Terra Preta De Índio</i>) TJF Cunha, EH Novotny, BE Madari, L Martin-Neto, MO de O Rezende, LP Canellas, and V de M Benites	363
Solid-State ¹³ C Nuclear Magnetic Resonance Characterisation of Humic Acids Extracted from Amazonian Dark Earths (<i>Terra Preta De Índio</i>) EH Novotny, TJ Bonagamba, ER de Azevedo, and MHB Hayes	373
Opening the Black Box: Deciphering Carbon and Nutrient	
Flows in <i>Terra Preta</i> G Van Hofwegen, TW Kuyper, E Hoffland, JA Van den Broek, and GA Becx	393
Charcoal Making in the Brazilian Amazon: Economic Aspects of Production and Carbon Conversion Efficiencies of Kilns SN Swami, C Steiner, WG Teixeira, and J Lehmann	411
The Effect of Charcoal in Banana (<i>Musa Sp.</i>) Planting Holes – An On-Farm Study in Central Amazonia, Brazil C Steiner, WG Teixeira, and W Zech	423
Characterization of Char for Agricultural Use in the Soils of the Southeastern United States JW Gaskin, KC Das, AS Tassistro, L Sonon, K Harris, and B Hawkins	433
Black Carbon (Biochar) in Rice-Based Systems: Characteristics and Opportunities SM Haefele, C Knoblauch, M Gummert, Y Konboon, and S Koyama	445
City to Soil: Returning Organics to Agriculture – A Circle of Sustainability G Gillespie	465
<i>Terra Preta</i> Nova – Where to from Here? J Lehmann	473
ех	487
or Plates	495
	Dark Earth Soils M de LP Ruivo, CB do Amarante, M de LS Oliveira, ICM Muniz, and DAM dos Santos Spectroscopy Characterization of Humic Acids Isolated from Amazonian Dark Earth Soils (<i>Terra Preta De Índio</i>) TJF Cunha, EH Novotny, BE Madari, L Martin-Neto, MO de O Rezende, LP Canellas, and V de M Benites Solid-State ¹³ C Nuclear Magnetic Resonance Characterisation of Humic Acids Extracted from Amazonian Dark Earths (<i>Terra Preta De Índio</i>) EH Novotny, TJ Bonagamba, ER de Azevedo, and MHB Hayes Opening the Black Box: Deciphering Carbon and Nutrient Flows in <i>Terra Preta</i> G Van Hofwegen, TW Kuyper, E Hoffland, JA Van den Broek, and GA Becx Charcoal Making in the Brazilian Amazon: Economic Aspects of Production and Carbon Conversion Efficiencies of Kilns SN Swami, C Steiner, WG Teixeira, and J Lehmann The Effect of Charcoal in Banana (<i>Musa Sp.</i>) Planting Holes – An On-Farm Study in Central Amazonia, Brazil. C Steiner, WG Teixeira, and W Zech Characterization of Char for Agricultural Use in the Soils of the Southeastern United States JW Gaskin, KC Das, AS Tassistro, L Sonon, K Harris, and B Hawkins Black Carbon (Biochar) in Rice-Based Systems: Characteristics and Opportunities SM Haefele, C Knoblauch, M Gummert, Y Konboon, and S Koyama City to Soil: Returning Organics to Agriculture – A Circle of Sustainability G Gillespie Terra Preta Nova – Where to from Here? J Lehmann

Contributors

Cristine Bastos do Amarante Museu Paraense Emilio Goeldi, Av. Perimetral n. 1901, CEP 66077-530, Campus de Pesquisa, Belém, Pará, Brazil

Richard W. Arnold 1145 Glenway St., West Lafayette, IN 47906-2203, CT9311@aol.com

Manuel Arroyo-Kalin McBurney Geoarchaeology Laboratory, Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK, maa27@cam.ac.uk

Eduardo Ribeiro de Azevedo Universidade de São Paulo, Instituto de Física de São Carlos, Av. Trabalhador São, Carlense, 400, Caixa Postal 369, São Carlos, Sp, Brazil

Hans von Baren IUSS/ISRIC, P.O. Box 353, 6700 AJ, Wageningen, The Netherlands, bassecour72@yahoo.com

Gertjan Becx Lawickse Allee 13 (kamer 109), 6701 AN, Wageningen, The Netherlands

Venicius de M Benites National Soil Research Center, Embrapa Solos, Rio de Janeiro, Rj, Brazil

Jago J. Birk Institute of Soil Science and Soil Geography, University of Bayreuth, D-95440 Bayreuth, Germany, jago.birk@uni-bayreuth.de

Tito José Bonagamba Universidade de São Paulo, Instituto de Física de São Carlos, Av. Trabalhador São, Carlense, 400, Caixa Postal 369, São Carlos, SP, Brazil

Steven R. Bozarth Department of Geography, University of Kansas, Lawrence, KS 66045, USA, sbozarth@ku.edu

Joep A. van den Broek Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands

Luciano Pasqualoto Canellas Laboratório de Solos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil

Fabiana S. Cannavan Microbiology and Molecular Biology Laboratory, Centro de Energia Nuclear na Agricultura, University of São Paulo, Av. Centenário – 303, Piracicaba-SP, CEP. 13.416-000, Brazil

Thiago Cardoso Instituto Nacional de Pesquisas da Amazônia, Laboratório de Etnoepidemiologia e Etnoecologia Indígena, Programa de Pós-Graduação em Ecologia, Brazil

Charles R. Clement Instituto Nacional de Pesquisas da Amazônia, Coordenação de Pesquisas em Ciências, Agronômicas, Av. André Araujo, Nºº 3936, Bairro Petrópolis, CEP. 69011-970, Caixa Postal 478, Manaus, Brazil

Nicholas B. Comerford Soil and Water Science Department, University of Florida, Gainesville, FL 32411, USA

Tony Jarbas Ferreira Cunha Embrapa Semi-Arido, BR 428, km 152, Postal 23, Cep: 56302, Petrolina, PE, Brazil, tony@cpatsa.embrapa.br

Keshav C. Das Department of Biological and Agricultural Engineering and Soil, Plant and Water Laboratory, University of Georgia, Athens, GA 30602, USA

William M. Denevan Department of Geography, University of Wisconsin-Madison, P.O. Box 853, Gualala, CA 95445, USA

James R. Fairhead Department of Anthropology, Arts C126, University of Sussex, Falmer, Brighton BN1 9SJ, UK, j.r.fairhead@sussex.ac.uk

Newton P. S. Falcão INPA/CPCA/Solos e Nutrição de Plantas, Av. André Araujo, N^{oo} 3936, Bairro Petrópolis, CEP. 69011-970, Caixa Postal 478, Manaus, Brazil, nfalcao@inpa.gov.br

James Fraser Department of Anthropology, Arts C126, University of Sussex, Falmer, Brighton BN1 9SJ, UK, j.a.fraser@sussex.ac.uk

Francisco J. L. Frazão Museu Paraense Emílio Goeldi, Belém, PA, Brazil

Marcos Garcia Embrapa Amazônia Ocidental, Rodovia AM-10 – Km 29, Caixa Postal 319 – Manaus – AM- 69010-970, Brazil **Julia W. Gaskin** Department of Biological and Agricultural Engineering, Soil, Plant and Water Laboratory, University of Georgia, Athens, GA 30602, USA, jgaskin@engr.uga.edu

Gerry Gillespie Zero Waste Australia, 45 The Crescent, Queanbeyan NSW 66220, Australia, Email: Gerry.gillespie@environment.nsw.gov.au

Bruno Glaser Institute of Soil Science and Soil Geography, University of Bayreuth, D-95440 Bayreuth, Germany

Julie Grossman Department of Crop and Soil Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA

Martin Gummert International Rice Research Institute, Los Banños, Philippines

Stephan M. Haefele International Rice Research Institute, Los Banños, Philippines, s.haefele@cgiar.org

Kerry Harris Department of Biological and Agricultural Engineering and Soil, Plant and Water Laboratory, University of Georgia, Athens, GA 30602, USA

Bob Hawkins Eprida, Inc, 1151 E. Whitehall Road, Athens, GA 30605, Athens, GA, USA

Michael H. B. Hayes Department of Chemistry, Foundation Building, University of Limerick, Limerick, Ireland

Susanna B. Hecht Center for Advanced Studies, Stanford University, 75 Alta Road, Stanford, CA 94305, USA, sbhecht@ucla.edu

Michael J. Heckenberger Department of Anthropology, University of Florida, Gainesville, FL 32611, USA

Ellis Hoffland Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands

Guido van Hofwegen Postbus 221, 6700AE, Wageningen, The Netherlands, guido.vanhofwegen@gmail.com

André Junqueira Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Botânica, Brazil

Dirse C. Kern Museu Paraense Emílio Goeldi, Setor de Ecologia, Caixa Postal 399, 66017-970, Belém-PA, Brazil, kern@museu-goeldi.br

Christian Knoblauch University of Hamburg, Hamburg, Germany

Yothin Konboon Ubon Ratchathani Rice Research Center, Ubon Ratchathani, Thailand

Shinichi Koyama Overseas Agricultural Development Association, Training Division, Tokyo, Japan

Thomas W. Kuyper Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands

Melissa Leach STEPS Centre, Institute of Development Studies, Department of Anthropology, University of Sussex, Falmer, Brighton BN1 9SJ, UK

Johannes Lehmann Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14853, USA, cl273@cornell.edu

Beáta Emöke Madari Embrapa Arroz e Feijão, P.O. Box 179, Rod. Goiania-Nova Veneza km 12, 5375-000 Santo Antonio de Goiás – Go, Brazil

Charles C. Mann PO Box 66, Amherst, MA 01004, USA, ccm@comcast.com

Ladislau Martin-Neto Embrapa Semi-Arido, BR 428, km 152, Postal 23, Cep: 56302, Petrolina, PE, Brazil

Vinicius Benites de Melo Embrapa Solos, Rua Jardim Botânico, 1024, CEP 22460-000, Rio de Janeiro-RJ, Brazil

Ivona Cristina Magalhães Muniz Museu Paraense Emilio Goeldi, Av. Perimetral n. 1901, CEP 66077-530, Campus de Pesquisa, Belém, Pará, Brazil

Eduardo Góes Neves Museu de Arqueologia e Etnologia, Universidade de São Paulo, 1466 Ave. Prof. Almeida, Prado, São Paulo 05508-900, Brazil

Etelvino Henrique Novotny Embrapa Solos, Rua Jardim Botânico, 1024, CEP 22460-000, Rio de Janeiro-RJ, Brazil, etelvino@cnps.embrapa.br

Maria de Lourdes Soares Oliveira Universidade Estadual do Pará, Belém/PA, Brazil

Brendan O'Neill Department of Crop and Soil Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA

Kevin P. Price Department of Agronomy, Kansas State University, Manhattan, KS 66056, USA

Lilian Rebellato Department of Geography, University of Kansas, Lawrence, KS 6604, USA, rebellat@ku.edu

Maria Olimpia Oliveira Rezende Embrapa Solos, Rua Jardim Botânico, 1024, CEP 22460-000, Rio de Janeiro-RJ, Brazil

Maria de Lourdes Pinheiro Ruivo Museu Paraense Emilio Goeldi, Av. Perimetral n. 1901, CEP 66077-530, Campus de Pesquisa, Belém, Pará, Brazil, ruivo@museu-goeldi.br

Daniel Saito Department of Microbiology and Immunology, Faculdade de Odontologia de Piracicaba, University of Campinas, Piracicaba-SP, Brazil

Daniela Andréa Monteireo dos Santos Museu Paraense Emilio Goeldi, Av. Perimetral n. 1901, CEP 66077-530, Campus de Pesquisa, Belém, Pará, Brazil

Denise P. Schaan Universidade Federal do Pará, CFCH-Departamento de Antropologia, Rua Augusto Correa, 1 – Campus Básico, 66075-110 – Belém/PA, Brazil, deniseschaan@marajoara.com

Morgan J. Schmidt Department of Geography, University of Florida, Gainesville, FL 32611, USA, morgans@ufl.edu

Leticia S. Sonon Department of Biological and Agricultural Engineering, Soil, Plant and Water Laboratory, University of Georgia, Athens GA 30602, USA

Christoph Steiner Biorefining and Carbon Cycling Program, Department of Biological and Agricultural Engineering, 620 Driftmier Engineering Center, University of Georgia, Athens GA 30602, USA, csteiner@engr.uga.edu

Sundari Narayan Swami Embrapa Amazônia Ocidental, Rodovia AM-10 – Km 29, Caixa Postal 319, Manaus – AM 69010-970, Brazil

Armando S. Tasistro Department of Biological and Agricultural Engineering, Soil, Plant and Water Laboratory, University of Georgia, Athens, GA 30602, USA

Wenceslau G. Teixeira Embrapa Amazônia Ocidental, Rodovia AM-10 – Km 29, Caixa Postal 319 – Manaus – AM- 69010-970, Brazil, lau@cpaa.embrapa.br

Jonathan Thayn Department of Geography, University of Kansas, Lawrence, KS 66045, USA, jonthayn@ku.edu

Janice Thies Department of Crop and Soil Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA

Siu Mui Tsai Microbiology and Molecular Biology Laboratory, Centro de Energia Nuclear na Agricultura, University of São Paulo, Av. Centenário – 303, Piracicaba-SP, CEP. 13.416-000, Brazil, tsai@cena.usp.br

Antoinette M. G. A. WinklerPrins Department of Geography, 207 Geography Building, Michigan State University, East Lansing, MI 48824-1117, USA, antoinet@msu.edu

William I. Woods Department of Geography, University of Kansas, Lawrence, KS 66045, USA, wwoods@ku.edu

Wolfgang Zech Institute of Soil Science and Soil Geography, University of Bayreuth, D-95440 Bayreuth, Germany