Skip to main content

Part of the book series: Biometeorology ((BIOMET,volume 1))

The livestock sector is socially, culturally and politically very significant. It accounts for 40% of the world's agriculture Gross Domestic Product (GDP). It employs 1.3 billion people, and creates livelihoods for one billion of the world's population living in poverty. Climate change is seen as a major threat to the survival of many species, ecosystems and the financial sustainability of livestock production systems in many parts of the world. The potential problems are even greater in developing countries. Economic studies suggest severe losses if current management systems are not modified to reflect the shift in climate. In short, farmers/ managers need to adapt to the changes. There has been considerable interest in gaining an understanding how domestic livestock respond to climatic stressors. Studies have for the most part been undertaken in developed countries. These studies have provided a wealth of knowledge on differences between genotypes, the impact of climatic stress on production, reproduction and health. However little is known about adaptation of animals to rapid changes in climatic conditions. Furthermore, little is known about the impacts of climatic stressors on many indigenous breeds used throughout Africa, Asia and South America. The uncertainty of climate change, and how changes will impact on animal production on a global scale are largely unknown.

This chapter will discuss: what is understood about animal adaptation; the current knowledge of the impacts of climate stressors on domestic animals, in terms of production, health, and nutrition; housing and management methods which can be used to alleviate heat stress; techniques used to predict animal responses to heat; and, strategies required to ensure continued viability of livestock production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel Khalek TMM, Khalifa HH (2004) Thermoregulatory mechanisms in new born kids and lambs. Egyptian J Anim Prod 41:391–402

    Google Scholar 

  • Adams RM, Rosenweig C, Peart RM, Ritchie JT, McCarl BA, Glyer, JD, Curry RB, Jones JW, Boote KJ, Allen LH, Jr (1990) Global climate change and US agriculture. Nature 345: 219–224

    Article  Google Scholar 

  • Ahmed MMM, Elkheir IM (2004) Thermoregulation and water balance as affected by water and food restrictions in Sudanese Desert goats fed good-quality and poor-quality diets. Trop Animal Health Prod 36:191–204

    Article  Google Scholar 

  • Agyemang K, Little DA, Bah ML, Dwinger RH (1991) Effects of postpartum body weight changes on subsequent reproductive performance in N'dama cattle maintained under traditional husbandry systems. Anim Reprod Sci 26:51–59

    Article  Google Scholar 

  • Allen TE (1962) Responses of Zebu, Jersey and Zebu x Jersey crossbred heifers to rising temperature, with particular reference to sweating. Aust J Agric Res 13:165–179

    Article  Google Scholar 

  • Allen-Diaz B (1996) Rangelands in a changing climate: impacts, adaptation and mitigation. In: Watson RT, Zinyowera MC, Moss RH (eds.) Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Cambridge University Press, USA

    Google Scholar 

  • Ames D (1980) Thermal environment affects production efficiency of livestock. BioScience 30:457–460

    Article  Google Scholar 

  • AMS (1989) Glossary of Meteorology, 5th Edition. American Meteorological Society, Boston, MA

    Google Scholar 

  • Amundson JL, Mader TL, Rasby RY, Hu QS (2006) Environmental effects on pregnancy rate in beef cattle. J Anim Sci 84:3415–3420

    Article  CAS  Google Scholar 

  • Armsby HP, Kriss M (1921) Some fundamentals of stable ventilation. J Agric Res 21:343–368

    CAS  Google Scholar 

  • Armstrong DV (1994) Heat stress interaction with shade and cooling. J Dairy Sci 77:2044–2050

    CAS  Google Scholar 

  • Armstrong D, Wiersma F (1986) An update on cow cooling methods in the west. ASAE Paper No. 86–4034. ASAE, St. Joseph, MI

    Google Scholar 

  • Armstrong DV, Elchert WT, Wiersma F (1993) Environmental modification for dairy cattle housing in arid climates In: Livestock Environment I V. Proceedings of the 4th International Livestock Environment Symposium. ASAE St. Joseph, MO. pp. 1223–1231

    Google Scholar 

  • Armstrong DV, Hillman PE, Meyer MJ, Smith JF, Stokes SR, Harner JP (1999) Heat stress management in freestall barns in the western US. In: Proceedings of the Western Dairy Management Conference, Las Vegas, NV

    Google Scholar 

  • Auchtung TL, Salak-Johnson JL, Morin DE, Mallard CC, Dahl GE (2004) Effects of photoperiod during the dry period on cellular immune function of dairy cows. J Dairy Sci 87:3683–3689

    CAS  Google Scholar 

  • Arthur LM, Abizadeh F (1988) Potential effects of climate change on agriculture in the prairie region of Canada. Western J Agr Econ 13:216–224

    Google Scholar 

  • Barbari M, Sorbetti Guerri F (2005) Cooling systems for heat protection of farrowing sows. In: Livestock Environment VIII. Proceedings of the 7th International Symposium. ASAE, St. Joseph, MI, pp. 122–129

    Google Scholar 

  • Barbehenn RV, Chen Z, Karowe DN, Spickard A (2004) C3 grasses have a higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2 Glob Change Biol 10:1565–1575

    Article  Google Scholar 

  • Baxter S (1984) Intensive Pig Production: Environmental Management and Design. Granada, London

    Google Scholar 

  • Beard CW, Mitchell BW (1987) Influence of environmental temperatures on the serologic responses of broiler chickens to inactivated and viable Newcastle disease vaccines. Avian Dis 31:321–326

    Article  CAS  Google Scholar 

  • Beatty DT, Barnes A, Taylor E; Pethick D, McCarthy M, Maloney SK (2006) Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity. J Anim Sci 84:972–985

    CAS  Google Scholar 

  • Beaumont LJ, McAllan IAW, Hughes L (2006) A matter of timing: changes in the first date of arrival and last date of departure of Australian migratory birds. Glob Change Biol 12:1339–1354

    Article  Google Scholar 

  • Beede D (1993) Management of Dairy Cattle in Warm Climates. Information Series QI93009. Queensland DPI, Brisbane

    Google Scholar 

  • Beede DK, Collier RJ (1986) Potential nutritional strategies for intensively managed cattle during thermal stress. J Anim Sci 62:543–554

    CAS  Google Scholar 

  • Berman A, Folman Y, Karen M, Maman M, Herz Z, Wolfenson D, Arieli A, Graber Y (1985) Upper critical temperatures and forced ventilation effects for high yielding dairy cows in a sub-tropical climate. J Dairy Sci 68:1488–1495

    CAS  Google Scholar 

  • Bernabucci U, Ronchi B, Lacetera N, Nardone A (2002) Markers of oxidative status in plasma and erythrocytes of transition dairy cows during the hot season. J Dairy Sci 85:2173–2179

    CAS  Google Scholar 

  • Berry IL, Shanklin MD, Johnson HD (1964) Dairy shelter design based on milk production decline as affected by temperature and humidity. Trans. ASAE 7:329

    Google Scholar 

  • Bertipaglia ECA, Silva RG, Maia ASC (2005) Fertility and hair coat characteristics of Holstein cows in a tropical environment. Anim Reprod (Belo Horizonte) 2:187–194

    Google Scholar 

  • Biggers BG, Geisert RP, Wetteman RP, Buchanan DS (1987) Effect heat stress on early embryonic development in the beef cow. J Anim Sci 64: 1512–1518

    CAS  Google Scholar 

  • Bligh J, Johnson KG (1973) Glossary of terms for thermal physiology. J Appl Physiol 35:941–961 Bond TE, Kelly CF, Morrison SR, Pereira N (1967) Solar, atmosphere, and terrestrial radiation received by shaded and unshaded animals. Trans ASAE 10:622–629

    CAS  Google Scholar 

  • Bonnette ED, Kornegay ET, Lindemann MD, Hammerberg C (1990) Humoral and cell-mediated immune response and performance of weaned pigs fed four supplemental vitamin E levels and housed at two nursery temperatures. J Anim Sci 68:1337–1345

    CAS  Google Scholar 

  • Borut A, D'miel R, Shkolnik A (1979) Heat balance of resting and walking goats: comparison of climatic chamber and exposure in the desert. Physiol Zool 52:105–112

    Google Scholar 

  • Bottcher RW, Singletary IB, Baughman GR (1993) Humidity effects on evaporative efficiency of misting nozzles. In: Livestock Environment I V. Proceedings of the 4th International Livestock Environment Symposium. ASAE, St. Joseph, MO, pp. 375–383

    Google Scholar 

  • Bowes MD, Crosson P (1993) Consequences of climate change for the MINK economy: Impacts and responses. Climatic Change 24:131–158

    Article  Google Scholar 

  • Briske DD, Heitschmidt RK (1991) An ecological perspective. In: Heitschmidt RK, Stuth JW (eds.) Grazing Management: An Ecological Perspective. Timber Press, Portland, OR

    Google Scholar 

  • Brody S (1956) Climate physiology of cattle. J Dairy Sci 39:715–725

    CAS  Google Scholar 

  • Brouk MJ, Smith JF, Harner JP (2001) Efficacy of modified cooling in Midwest dairy freestall barns. In: Livestock Environment VI. Proceedings of the 4th International Livestock Environment Symposium. ASAE, St. Joseph, MO, pp. 412–418

    Google Scholar 

  • Brouk MJ, Smith JF, Harner JP (2003a) Effect of sprinkling frequency and airflow on respiration rate, body surface temperature and body temperature of heat stressed dairy cows. In: Fifth International Dairy Housing Proceedings. Fort Worth Texas, pp. 263–268

    Google Scholar 

  • Brouk MJ, Smith JF, Harner JP (2003b) Effect of utilizing evaporative cooling in tiestall dairy barns equipped with tunnel ventilation on respiration rate and body temperature of lactating dairy cattle. In: Fifth International Dairy Housing Proceedings, Fort Worth, TX, pp. 312–319

    Google Scholar 

  • Brown-Brandl TA, Eigenberg RA, Nienaber JA (2005) Heat stress risk factors for feedlot heifers. In: Proceedings of the 7th International Livestock Environment Symposium. ASAE, St. Joseph, MI, pp. 600–606

    Google Scholar 

  • Bucklin, RA, Turner LW, Beede DK, Bray DR, Hemken RW (1991) Methods to relieve heat stress for dairy cows in hot, humid climates. Appl Eng Agric 7:241–247

    Google Scholar 

  • Bucklin RA, Hahn GL, Beede DK, Bray DR (1992) Physical facilities for warm climates. In: Van Horn HH, Wilcox CJ (eds) Large Dairy Herd Management. American Dairy Science Association, Champaign, IL 61820

    Google Scholar 

  • Budyko MI, Borzenkova II, Menzhulin GV, Shilkomanov IA (1994) Cambios antropogénicos del clima en América del Sur. Academia Nacional de Agronomía y Veterinaria No. 19

    Google Scholar 

  • Buffington DE, Collier RJ, Canton GH (1983) Shade management systems to reduce heat stress for dairy cows. Trans ASAE 26:1798–1802

    Google Scholar 

  • Bull RP, Harrison PC, Riskowsi GL, Gonyou HW (1997) Preferences among cooling systems by gilts under heat stress. J Anim Sci 75:2078–2083

    CAS  Google Scholar 

  • Burrows HM, Prayaga KC (2004) Correlated responses in production and adaptive traits and temperament following selection for growth and heat resistance in tropical cattle. Livestock Prod Sci 86:143–161

    Article  Google Scholar 

  • Butswat IS, Mbap ST, Ayibatonye GA (2000) Heat tolerance of sheep in Bauchi Nigeria. Trop Ag. (Trin.) 77:265–268

    Google Scholar 

  • Calegari F, Frazzi E, Calamari L (2005) Productive response of dairy cows raised in a cooling barn located in the Po Valley (Italy). In: Livestock Environment VIII. Proceedings of the 7th International Symposium. ASAE, St. Joseph, MI, pp. 115–121.

    Google Scholar 

  • Campbell BD, McGeon GM, Gifford RM, Clark H, Stafford Smith DM, Newton PCD, Lutze JL (1995) Impacts of atmospheric composition and climate change on temperate and tropical pastoral agriculture. In: Pearman G, Manning M (eds.) Greenhouse 94. CSIRO, Canberra, Australia.

    Google Scholar 

  • Chaiyabutr N, Faulkner A, Peaker M (1980) Effects of starvation on the cardiovascular system, water balance and milk secretion in lactating goats. Res Vet Sci 28:291–295

    CAS  Google Scholar 

  • Champak Bhakat, Chaturvedi D, Raghavendra S, Nagpaul PK (2004) Studies on camel management under various microenvironment of shelter systems. Indian J Dairy Sci 57:347–353

    Google Scholar 

  • Chirico J, Jonsson P, Kjellberg S, Thomas G (1997) Summer mastitis experimentally induced by Hydrotaea irritans exposed to bacteria. Med Vet Entomol 11:187–192

    Article  CAS  Google Scholar 

  • Christin PA, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V, Salamin N (2008) Oligocene CO2 decline promoted C4 photosynthesis in grasses. Current Biology, 18:37–43

    Article  CAS  Google Scholar 

  • Collatz GJ, Berry JA, Clark JS (1998) Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: Present, past and future. Oecologia 114:441–454

    Article  Google Scholar 

  • Collier R J, Kobayashi Y, Gentry P (2002) The use of genomics in genetic selection programs for environmental stress tolerance in domestic animals. In: Proceedings of the AMS 15th Biometeorology and Aerobiology Conference, Kansas, Oct 27—Nov 1, pp. 54–58

    Google Scholar 

  • Cook NB, Bennett TB, Emery KM, Nordlund KV (2002) Monitoring nonlactating cow intramammary infection dynamics using DHI somatic cell count data. J Dairy Sci 85:1119–1126

    CAS  Google Scholar 

  • Correa-Calderon A, Armstrong D, Ray D, DeNise S, Enns M, Howison C (2004) Thermoregulatory responses of Holstein and Brown Swiss heat stressed dairy cows to two different cooling systems. Int J Biometeorol 48:142–148

    Article  Google Scholar 

  • Curtis SE (1983) Environmental Management in Animal Agriculture. Iowa State University Press, Ames, IA

    Google Scholar 

  • Dahlanuddin, Thwaites CJ (1993) Feed-water intake relations in goats at high ambient temperatures. J Anim Physiol An N 69:169–174

    Google Scholar 

  • Darwin R, Tsigas M, Lewandrowski J, Raneses A (1995) World agriculture and climate changeeconomic adaptations. Agricultural Economic Report 703, ERS-NASS, Herndon, VA

    Google Scholar 

  • Davis MS, Mader TL, Holt SM, Parkhurst AM (2003) Strategies to reduce feedlot cattle heat stress: Effects on tympanic temperature. J Anim Sci 81:649–661

    CAS  Google Scholar 

  • Davison TM, Silver BA, Lisle AT, Orr WN (1988) The influence of shade on milk production of Holstein-Friesian cows in a tropical upland environment. Aust J Exper Agric 28:149–54

    Article  Google Scholar 

  • de la Casa AC, Ravelo AC (2003) Assessing temperature and humidity conditions for dairy cattle in Cordoba, Argentina. Int J Biometeorol 48:6–9

    Article  Google Scholar 

  • Devendra C (1987) Goats. In: Bioclimatology and the Adaptation of Livestock, Elsevier, Amsterdam, The Netherlands. Part II, Chapter 11.

    Google Scholar 

  • Diamond J (1999) Guns, Germs and Steel: The Fate of Human Societies. Norton W.W., New York.

    Google Scholar 

  • D'miel R, Robertshaw D, Choshniak J (1979) Sweat gland secretion in the Black Bedouin goat. Physiol Zool 52:558

    Google Scholar 

  • D'miel R, Prevolotzky A, Ashkolnik A (1980) Is a black coat in the desert means to save metabolic energy. Nature 283:761–767

    Article  Google Scholar 

  • Donker RA, Nieuwland MG, van der Zijpp AJ (1990) Heat-stress influences on antibody production in chicken lines selected for high and low immune responsiveness. Poult Sci 69:599–607

    CAS  Google Scholar 

  • Donovan GA, Badinga L, Collier RJ, Wilcox CJ, Braun RK (1986) Factors influencing passive transfer in dairy calves. J Dairy Sci 69:754–759

    CAS  Google Scholar 

  • Duckworth J, Rattray GB (1946) Studies of diurnal variation in the body temperature of the tropical threequarter bred (Holstien-Zebu) dairy calf. Trop Agric 23:94–100

    Google Scholar 

  • Du Preez JH, Hattingh JP, Giesecke WH, Eisenberg BE (1990) Heat stress in dairy cattle under southern African conditions. III. Monthly temperature-humidity index mean values and their significance in the performance of dairy cattle. Onderstepoort J Vet Res 57:243–248

    CAS  Google Scholar 

  • Easterling WE, Crosson PR, Rosenberg NJ, McKenney M, Katz LA, Lemon K (1993) Agricultural impacts of and responses to climate change in the Missouri-Iowa-Nebraska-Kansas (MINK) region. Climatic Change 24:23–61

    Article  Google Scholar 

  • Eigenberg RA, Hahn GL, Nienaber JA, Brown-Brandl T, Spiers D (2000) Development of a new respiration rate monitor for cattle. Trans ASAE 43:723–728

    Google Scholar 

  • Eigenberg RA, Brown-Brandl TM, Nienaber JA, Hahn GL (2005) Dynamic response indicators of heat stress in shaded and non-shaded feedlot cattle — part 2. Predictive relationships. Biosyst Eng 91:111–118

    Article  Google Scholar 

  • El-Fouley MA, Kotby EA, El-Sobhy HE (1976) The functional reproductive peak in Egyptian buffalo cow is related to day length and ambient temperature. Archivo Veterinaria Italiano 27:123–129

    Google Scholar 

  • El-Nouty FD, Al-Haidary AA, Basmaeil SM (1990) Physiological responses feed intake, urine volume and serum osmolality of Aaradi Goats deprived of water during spring and summer. Asian-Aust J Anim Sci 3:331–336

    Google Scholar 

  • El-Sherbiny AA, Yousef MK, Salem MH, Khalifa HH, Abd-El-Bary HM, Khalil MH (1983) Thermoregulatory responses of a desert and a non-desert goat breeds. Al-Azhar Agric Res Bull 89:1–11

    Google Scholar 

  • Elvinger F, Hansen PJ, Natzke RP (1991) Modulation of function of bovine polimorphonuclear leukocytes and lymphocytes by high temperature in vitro and in vivo. Am J Vet Res 52:1692–1698

    CAS  Google Scholar 

  • Faurie AS, Mitchell D, Laburn HP (2004) Peripartum body temperatures in free-ranging ewes (Ovis aries) and their lambs. J Therm Biol 29:115–122

    Article  Google Scholar 

  • Feistkorn G, Ritter P, Jessen C (1981) Overall cardiovascular adjustments to thermal stress in conscious goats. Pfluegers Arch 391(Suppl. 1):184

    Google Scholar 

  • Ferguson W (1970) Poultry housing in the tropics: Applying the principles of thermal exchange. Trop Anim Health Prod 2:44–58

    Article  Google Scholar 

  • Finch VA (1986) Body temperature in beef cattle: its control and relevance to production in the tropics. J Anim Sci 62:513–542

    Google Scholar 

  • Flamenbaum I, Wolfenson D, Mamen M, Berman A (1986) Cooling dairy cattle by a combination of sprinkling and forced ventilation and its implementation in the shelter system. J Dairy Sci 69:3140–3147

    CAS  Google Scholar 

  • Folk GE (1974) Textbook of Environmental Physiology. Lea & Febiger, Philadelphia

    Google Scholar 

  • Folk GE, Reidesel ML, Thrift DL (1998) Principles of Integrative Environmental Physiology. Austin & Winfield, San Francisco, CA

    Google Scholar 

  • Fowler ME (1999) Medicine and Surgery of South American Camelids: Llama, Alpaca, Vicuna 2nd Edition, Blackwell Publishing Inc, Malden, USA

    Google Scholar 

  • Frank HK (1991) Risk estimation for ochratoxin A in European countries. IARC Sci Publ 115:321–325

    Google Scholar 

  • Frank KL, Mader TL, Harrington Jr JA, Hahn GL, Davis MS (2001) Climate change effects on livestock production in the Great Plains. In: Proceedings of the 6th International Livestock Environment Symposium. ASAE, St. Joseph, MI

    Google Scholar 

  • Frankham R (2005) Stress and adaptation in conservation genetics. J Evol Biol 18:750–755

    Article  CAS  Google Scholar 

  • Frazzi E, Calamari L, Calegari F (1997) The aeration with and without misting: effects on heat stress in dairy cows. In: Livestock Environment V: Proceedings of the 5th International Livestock Symposium. ASAE, St. Joseph, MO, pp. 907–914

    Google Scholar 

  • Frazzi E, Calamari L, Calegari F, Stefanini L (2000) Behaviour of dairy cows in response to different barn cooling systems. Trans ASAE 43:387–394

    Google Scholar 

  • Fuquay JW (1981) Heat stress as it effects animal production. J Anim Sci 52:164–174

    CAS  Google Scholar 

  • Gaffen DJ, Ross RJ (1998) Increased summertime heat stress in the US. Nature 396:529–530

    Article  CAS  Google Scholar 

  • Gallardo MR (1998) Manejo nutricional. In: Producción de leche en verano. Centro de publicaciones de la Secretaría de Extensión de la UNLitoral. Santa Fe, Argentina, pp. 47–63

    Google Scholar 

  • Gallardo MR, Valtorta SE, Leva PE, Castro HC, Maiztegui JA (2001) Hydrogenated fish fat for grazing dairy cows in summer. Int J Biometeorol 45:111–114

    Article  CAS  Google Scholar 

  • Garner JC, Bucklin RA, Kunkle WE, Nordstedt RA (1989) Sprinkled water and fans to reduce heat stress of beef cattle. App Eng Agric 5:99–101

    Google Scholar 

  • Gaughan JB, Holt MA (2004) Changes in the diurnal rhythm of rectal temperature of cattle exposed to prolonged heat stress and cooled with warm salt water. J Anim Sci 82(Suppl. 1):301

    Google Scholar 

  • Gaughan JB, Tait LA (2005) Effectiveness of evaporative cooling of beef cattle housed in confinement. In: Livestock Environment VIII. Proceedings of the 7th International Symposium. ASAE, St. Joseph, MI, pp. 105–114

    Google Scholar 

  • Gaughan JB, Goodwin PJ, Schoorl TA, Young BA, Imbeah M, Mader TL, Hall A (1998) Shade preferences of lactating Holstein-Friesian cows. Aust J Exp Agric 38:17–21

    Article  Google Scholar 

  • Gaughan JB, Mader TL, Holt SM, Josey MJ, Rowan KJ (1999) Heat tolerance of Boran and Tuli crossbred steers. J Anim Sci 77:2398–2405

    CAS  Google Scholar 

  • Gaughan JB, Holt SM, Hahn GL, Mader TL, Eigenberg R (2000) Respiration rate — is it a good measure of heat stress in cattle. Asian-Aus. J Anim Sci 13:329–332

    Google Scholar 

  • Gaughan JB, Lott S, Gordon G (2003) Wetting Cattle to Alleviate Heat Stress on Ships — Stage 1. Final Report LIVE.219. Meat & Livestock Australia Ltd. North Sydney, NSW

    Google Scholar 

  • Gaughan JB, Davis MS, Mader TL (2004) Wetting and physiological responses of grain fed cattle in a heated environment. Aust J Agric Res 55:253–260

    Article  Google Scholar 

  • Gaughan JB, Mader TL, Holt SM, Lisle A (2008a) Development of a new heat load index for feedlot cattle. J Anim Sci 86:226–234

    Article  CAS  Google Scholar 

  • Gaughan JB, Mader TL, Holt SM (2008b) Cooling and feeding strategies to reduce heat load of grain-fed beef cattle in intensive housing. Livest Sci 113:226–233

    Article  Google Scholar 

  • Giesecke HW (1985) The effect of stress on udder health of dairy cows. Onderstepoort J Vet Res 52:175–193

    CAS  Google Scholar 

  • Granzin BC, Gaughan JB (2002) The effect of sodium chloride supplementation on the milk production of grazing Holstein Friesian cows during summer and autumn in a humid sub-tropical environment. Anim Feed Sci Tech 96:147–160

    Article  CAS  Google Scholar 

  • Greer DH, Laing WA, Campbell BD, Halligan EA (2000) The effect of perturbations in temperature and photon flux density on the growth and photosynthetic responses of five pasture species. Aust J Plant Physiol 27:301–310

    Article  Google Scholar 

  • Guerouali A, Filali RZ (1995) Metabolic adjustments of camel during heat stress and dehydration. In: Flamant JC, Portugal AV, Costa JP, Nunes AF, Boyazoglu J (eds) Proceedings of the International Symposium on Animal Production and Rural Tourism in Mediterranean Regions. Wageningen Press, Wageningen, Netherlands pp. 57–62

    Google Scholar 

  • Hahn GL (1976) Shelter engineering for cattle and other domestic animals. In: Johnson HD (ed.) Progress in Animal Biometeorology, Vol I, Part I. Swets and Zeitlinger, Amsterdam, pp. 496–503.

    Google Scholar 

  • Hahn GL (1985) Management and housing of farm animals in hot environments. In: Yousef MK (ed.) Stress Physiology in Livestock, Volume II, Ungulates. CRC Press, Boca Raton, FL, pp. 151–174.

    Google Scholar 

  • Hahn GL (1989) Bioclimatology and livestock housing: theoretical and applied aspects. In: Proceedings of the Brazilian Workshop on Animal Bioclimatology. Jaboticabal, Brazil, 15 p.

    Google Scholar 

  • Hahn GL (1999) Dynamic responses of cattle to thermal heat loads. J. Anim Sci 77(Suppl 2): 10–20

    CAS  Google Scholar 

  • Hahn GL, Mader TL (1997) Heat waves in relation to thermoregulation, feeding behavior and mortality of feedlot cattle. In: Bottcher RW, Hoff SJ (eds) Livestock Environment V. Proceedings of the 5th International Symposium. ASAE, St. Joseph, MI, pp. 563–571

    Google Scholar 

  • Hahn GL, McQuigg JD (1970) Evaluation of climatological records for rational planning of livestock shelters. Agric Meteorol 7:131–141Hahn GL, Morrow-Tesch JL (1993) Improving livestock care and well-being. Agric Eng 74:14–17

    Article  Google Scholar 

  • Hahn GL, Eigenberg JA, Nienaber JA, Littledike ET (1990a) Measuring physiological responses of animals to environmental stressors using a micro-computer based portable datalogger. J Anim Sci 68:2658–2665

    CAS  Google Scholar 

  • Hahn GL, Klinedinst PL, Wilhite DA (1990b) Climate change impacts on livestock production and management. American Meteorological Society Annual Meeting, Aneheim, CA

    Google Scholar 

  • Hahn GL, Nienaber JA, Eigenberg RA (1993) Environmental influences on the dynamics of thermoregulation and feeding behaviour in cattle and swine. In: Proceedings of the 4th International Livestock Environment Symposium. ASAE, St. Joseph, MI, pp. 1106–1116

    Google Scholar 

  • Hahn GL, Parkhurst AM, Gaughan JB (1997) Cattle respiration rate as a function of ambient temperature. ASAE Paper No. MC97–121. ASAE, St. Joseph, MI

    Google Scholar 

  • Hahn GL, Mader TL, Gaughan JB, Hu Q, Nienaber JA (2000) Heat waves and their impacts on feedlot cattle. In: de Dear RJ, Kalma JD, Oke TR, Auliciems A (eds.) Biometeorology and Urban Climatology at the Turn of the Millennium: Selected papers from the Conference ICB-ICUC'99 (Sydney, 8–12 November 1999). WMO/TD-N° 1026. WMO, Geneva, pp. 353–357

    Google Scholar 

  • Hahn L, Mader T, Spiers D, Gaughan J, Nienaber J, Eigenberg R, Brown-Brandl T, Hu Q, Griffin D, Hungerford L, Parkhurst A, Leonard M, Adams W, Adams L (2001) Heat waves and their impacts on feedlot cattle: considerations for improved environmental management. In: Stowell RR, Bucklin R, Bottcher RW (eds) Livestock Environment VI. Proceedings of the 6th International Livestock Environment Symposium. ASAE, St. Joseph, MO, pp. 129–139

    Google Scholar 

  • Hahn GL, Mader TL, Harrington JA, Nienaber JA, Frank KL (2002) Living with climatic variability and potential global change: climatological analyses of impacts on livestock performance. Proceedings of the 16th International Congress on Biometeorology, Kansas, MO, pp. 45–49

    Google Scholar 

  • Hahn GL, Mader TL, Eigenberg RA (2003) Perspective on development of thermal indices for animal studies and management. In: Interactions Between Climate and Animal Production. EAAP Technical Series No. 7. Wageningen Academic Publishers, The Netherlands, pp. 31–44.

    Google Scholar 

  • Hamadeh SK, Rawda N, Jaber JS, Habre A, Abi Said M, Barbour EK (2006) Physiological responses to water restriction in dry and lactating Awassi ewes. Livest Sci 101(1–3):101–109

    Article  Google Scholar 

  • Hammond AC, Olson TA, Chase Jr. CC, Bowers EJ, Randel RD, Murphy CN, Vogt DW, Tewolde A (1996) Heat tolerance in two tropically adapted Bos taurus breeds, Senepol and Romosinuano, compared with Brahman, Angus, and Hereford cattle in Florida. J Anim Sci 74:295–303

    CAS  Google Scholar 

  • Hammond AC, Chase Jr. CC, Bowers EJ, Olson TA, Randel RD (1998) Heat tolerance of Tuli-, Senepol-, and Brahman-sired F1 Angus heifers in Florida. J Anim Sci 76:1568–1577

    CAS  Google Scholar 

  • Hansen PJ (2004) Physiological and cellular adaptations of zebu cattle to thermal stress. Anim Reprod Sci 82–83:349–360

    Article  Google Scholar 

  • Hansen PJ, Drost M, Rivera RM, Paula-Lopes FF, al-Katanani YM, Krininger 3rd CE, Chase CC (2001) Adverse impact of heat stress on embryo production: Causes and strategies for mitigation. Theriogenology 55:91–103

    Article  CAS  Google Scholar 

  • Hafez ESE (1968) Principles of animal adaptation. In: Hafez ESE (ed) Adaptation of Domestic Animals. Lea — Febiger, Philadelphia

    Google Scholar 

  • Herpin P, Damon M, Le Dividich M (2002) Development of thermoregulation and neonatal survival in pigs. Livest Prod Sci 78:25–45

    Article  Google Scholar 

  • Hogan JS, Smith KL, Hoblet KH, Schoenberger PS, Todhunter DA, Hueston WD, Pritchard DE,Bowman GL, Heider LE, Brockett BL (1989) Field survey of clinical mastitis in low somatic cell count herds. J Dairy Sci 72:1547–1556

    CAS  Google Scholar 

  • Holt SM, Gaughan JB, Mader TL (2004) Feeding strategies for grain-fed cattle in a hot environment. Aust J Agric Res 55:719–725

    Article  Google Scholar 

  • Horowitz M (1998) Do cellular heat acclimation responses modulate central thermoregulatory activity. News Physiol Sci 13:218–225

    Google Scholar 

  • Horowitz M (2002) From molecular and cellular to integrative heat defense during exposure to chronic heat. Comp Physiol Biochem 131:475–483

    Article  Google Scholar 

  • Howden SM, Soussana JF, Tubiello FN, Chhetri N, Dunlop M, Meinke H (2007) Adapting agriculture to climate change. PNAS 104:19691–19696

    Article  CAS  Google Scholar 

  • Hulme PH (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat. J Appl Ecol 42:784–794

    Article  Google Scholar 

  • Huynh TTT, Aarnink AJA, Verstegen MWA, Gerrits WJJ, Heetkamp MJW, Kemp B, Canh TT (2005) Effects of increasing temperature on physiological changes in pigs at different relative humidities. J Anim Sci 83:1385–1396

    CAS  Google Scholar 

  • Idso KE, Idso SB (1994) Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the last 10 years' research. Agric For Meteorol 69:153–203

    Article  Google Scholar 

  • Igono MO, Johnson HD, Steevens BJ, Krause GF, Shanklin MD (1987) Physiological, productive, and economic benefits of shade, spray, and fan systems versus shade for Holstein cows during summer heat. J Dairy Sci 70:1069–1079

    CAS  Google Scholar 

  • ILRI (International Livestock Research Institute) (2006) Climate change research by ILRI informs Stern Review on the economics of climate change. http://www.ilri.org/ILRIPubaware/ Accessed January 2007

  • Ingraham RH, Gillette DD, Wagner WC (1974) Relationship of temperature and humidity to conception rate in Holstein cows in a subtropical climate. J Dairy Sci 57:476–481

    CAS  Google Scholar 

  • Ingram DL, Mount LE (1975) Heat exchange between animal and environment. In: Ingram DL, Mount LE (eds) Man and Animals in Hot Environments. Springer, Heidlberg, Germany, pp. 5–23

    Google Scholar 

  • IUC (Information Unit for Conventions) — United Nations Environment Programme (2002) Climate disasters and extreme events. Climate change information sheet http://www.unep.ch/iuc/submenu/infokit/fact16.htm Accessed June 22nd, 2002

  • IUPS (The Commission for Thermal Physiology of the International Union of Physiological Sciences) (1987) Glossary of terms for thermal physiology. Pflügers Arch 410:567–587

    Article  Google Scholar 

  • IUPS (The Commission for Thermal Physiology of the International Union of Physiological Sciences) (2001) Glossary of Terms for Thermal Physiology, 3rd Edition. Jpn J. Physiology 51:245–280

    Google Scholar 

  • Johnson HD (1987) Bioclimate effects on growth, reproduction and milk production. In: Bioclimatology and the adaptation of livestock. Elsevier, Amsterdam, The Netherlands. Part II, Chapter 3

    Google Scholar 

  • Johnston KM, Schmitz OJ (1997) Wildlife and climate change: assessing the sensitivity of selected species to simulated doubling of atmospheric CO2. Glob Change Biol 3:531–544

    Article  Google Scholar 

  • Joubert DM (1954) The influence of winter nutritional depression on the growth, reproduction,and production of cattle. J Agric Sci 44:5–15

    Article  CAS  Google Scholar 

  • Kadzere CT, Murphy MR, Silanikove N, Maltz E (2002) Heat stress in lactating dairy cows: a review. Lives Prod Sci 77:59–91

    Article  Google Scholar 

  • Kamwanja LA, Chase CC, Gutierrez JA, Guerriero V, Olson TA, Hammond AC, Hansen PJ (1994) Responses of bovine lymphocytes to heat shock as modified by breed and antioxidant status. J Anim Sci 72:438–444

    CAS  Google Scholar 

  • Kelley KW, Osborne CA, Evermann JF, Parish SM, Gaskins CT (1982) Effects of chronic heat and cold stressors on plasma immunoglobulin and mitogen-induced blastogenesis in calves. J Dairy Sci 65:1514–1528

    CAS  Google Scholar 

  • Kerr BJ, Yen JT, Nienaber JA, Easter PA (2003) Influences of dietary protein level, amino acid supplementation and environmental temperature on performance, body composition, organ weights and total heat production of growing pigs. J Anim Sci 81:1998–2007

    CAS  Google Scholar 

  • Kerr CA, Giles LR, Jones MR, Reverter A (2005) Effects of grouping unfamiliar cohorts, high ambient temperature and stocking density on live performance of growing pigs. J Anim Sci 83:908–915

    CAS  Google Scholar 

  • Khalifa HH, El-Sherbiny AA, Abdel-Khalek TMM (1997) Effect of seasonal variations on adaptability of goats under Egyptian environmental conditions. In: Proceedings of Earth-Atmosphere Forces for Change, Joint Assemblies of the International Association of Meteorology and Atmospheric Sciences and International Association for Physical Sciences of the Oceans, Melbourne, Australia

    Google Scholar 

  • Khalifa HH, Ahmed AA, El-Tantawy SMT, Kicka MA and Dawoud AM (2000) Effect of heat acclimation on body fluids and plasma proteins of broilers exposed to acute heat stress in summer. Third All African Conference on Animal Agriculture and 11th Conference of the Egyptian Society of Animal Production, Alexandria, Egypt, 6–9 November, 2000

    Google Scholar 

  • Khalifa HH, Shalaby T, Abdel-Khalek TMM (2005) An approach to develop a biometeorological thermal discomfort index for sheep and goats under Egyptian conditions. In: Proceeding of the 17th International Congress of Biometeorology, Garmisch, Germany, 5–9 September, 2005, Deutscher Wetterdienst, Kaiserleistr, 29–35, 63067 Offenbach am Main, Germany, pp. 118–122

    Google Scholar 

  • Kibler HH, Brody S (1950) Influence of temperature, 5° to 95°F, on evaporative cooling from the respiratory tract and exterior body surfaces in Jersey and Holstein cows. Missouri Agric. Exp. Sta. Bull. No. 461. Columbia, MO

    Google Scholar 

  • Kimball BA, Mauney JR, Nakayama FS, Idso SB (1993) Effects of elevated CO2 and climate variables on plants. J Soil Water Cons 48:9–14

    Google Scholar 

  • King DA (2004) Climate change science: adapt, mitigate, or ignore? Science 302:176–177

    Article  Google Scholar 

  • Koga A, Sugiyama M, del Barrio AN, Lapitan RM, Arenda BR, Robles AY, Cruz LC, Kanai Y (2004) Comparison of the thermoregulatory response of buffaloes and tropical cattle, using fluctuations in rectal temperature, skin temperature and haematocrit as an index. J Agric Sci 142:351–355

    Article  Google Scholar 

  • Lacetera N (1998) Influence of high air temperatures on colostrum composition of dairy cows and passive immunization of calves. Zoot Nutr Anim 6:239–246

    Google Scholar 

  • Lacetera N, Bernabucci U, Ronchi B, Nardone A (1996) Body condition score, metabolic status and milk production of early lactating dairy cows exposed to warm environment. Riv Agr Subtrop Trop 90:43–55

    Google Scholar 

  • Lacetera N, Bernabucci U, Ronchi B, Nardone A (2002) Moderate summer heat stress does not modify immunological parameters of Holstein dairy cows. Int J Biometeorol 46:33–37

    Article  Google Scholar 

  • Lacetera N, Scalia D, Bernabucci U, Ronchi B (2003) In vitro assessment of the immunotoxicity of mycotoxins in goats. Immunol Lett 87:323–324

    Google Scholar 

  • Lacetera N, Bernabucci U, Scalia D, Ronchi B, Kuzminsky G, Nardone A (2005) Lymphocyte functions in dairy cows in hot environment. Int J Biometeorol 50:105–110

    Article  Google Scholar 

  • Lacetera, N, Bernabucci, U, Scalia, D, Basirico, L, Morera, P and Nardone, A (2006) Heat stress elicits different responses in peripheral blood mononuclear cells from Brown Swiss and Holstein cows. J Dairy Sci 89:4606–4612

    CAS  Google Scholar 

  • Langlois B (1994) Inter-breed variation in the horse in regard to cold adaptation: a review. Lives Prod Sci 40:1–7

    Article  Google Scholar 

  • Lanham JK, Coppock CE, Milam KZ, Labore JM, Nave DH, Stermer RA, Brasington CF (1986) Effects of drinking water temperature on physiological responses on lactating Holstein cows in summer. J Dairy Sci 69:1004–1012

    CAS  Google Scholar 

  • LCI (1970) Patterns of transit losses. Livestock Conservation, Inc. Omaha, NE

    Google Scholar 

  • Leva PE, Valtorta SE, Fornasero LV (1997) Milk production declines during summer in Argentina: present situation and expected effects of global warming. In: Proceedings of the 14th International Congress of Biometeorology, Ljubljana, Slovenia, 1–8 September 1996. Part 2, Vol. 2, pp. 395–401

    Google Scholar 

  • Lin JC, Moss BR, Koon JL, Flood CA, Smith III RC, Cummins KA, Coleman DA (1998) Comparison of various fan, sprinkler, and mister systems in reducing heat stress in dairy cows. App Eng Agric 14:177–182

    Google Scholar 

  • Lin H, Jiao HC, Buyse J, Decuypere E (2006) Strategies for preventing heat stress in poultry. World's Poult Sci J 62:71–85

    Article  Google Scholar 

  • Liao CW, Veum TL (1994) Effects of dietary energy intake by gilts and heat stress for days 3 to 24 or 30 days after mating on embryo survival and nitrogen and energy balance. J Anim Sci 72:2369–2377

    CAS  Google Scholar 

  • Lu CD (1989) Effects of heat stress on goat production. Small Rumin Res 2:151–162

    Article  Google Scholar 

  • McArthur AJ (1987) Thermal interaction between animal and microclimate: a comprehensive model. J Theor Biol 126:203–238

    Article  CAS  Google Scholar 

  • McDowell RE (1974) Effect of the environment on the functional efficiency of the ruminant. In: Livestock Environment. Proceedings of the 1st International Livestock Symposium. ASAE, St. Joseph, MI, pp. 220–231

    Google Scholar 

  • McDowell RE, Weldy JR (1960) Water exchange of cattle under heat stress. In: Proceedings of the 3rd International Biometeorological Congress, London. Pergamin Press, New York pp. 414–424

    Google Scholar 

  • McKeon GM, Hoeden SM, Abel NOJ, King JM (1993) Climate change: adapting tropical and subtropical grasslands. In: Proceedings of the XVII International Grassland Congress CSIRO, Melbourne, pp. 1181–1190

    Google Scholar 

  • Machado-Neto R, Graves CN, Curtis SE (1987) Immunoglobulins in piglets from sows heatstressed prepartum. J Anim Sci 65:445–455

    CAS  Google Scholar 

  • Mader TL, Dahlquist JM, Gaughan JB (1997) Wind protection effects and airflow patterns in outside feedlots. J Anim Sci 75:26–36

    CAS  Google Scholar 

  • Mader TL, Gaughan JB, Young BA (1999a) Feedlot diet roughage level for Herford cattle exposed to excessive heat load. The Professional Animal Scientist 15:53–62

    Google Scholar 

  • Mader TL, Dahlquist JM, Hahn GL, Gaughan JB (1999b) Shade and wind barrier effects on summertime feedlot cattle performance. J Anim Sci 77:2065–2072

    CAS  Google Scholar 

  • Mader TL, Holt SM, Hahn GL, Davis MS, Spiers DE (2002) Feeding strategies for managing heat load in feedlot cattle. J Anim Sci 80:2373–2382

    CAS  Google Scholar 

  • Mader TL, Davis MS (2004) Effect of management strategies on reducing heat stress of feedlot cattle: Feed and water intake. J Anim Sci 82:3007–3087

    Google Scholar 

  • Mader TL, Davis MS, Brown-Brandl T (2006) Environmental factors influencing heat stress in feedlot cattle. J Anim Sci 84:712–719

    CAS  Google Scholar 

  • Magana JG, Tewolde A, Anderson S, Segura JC (2006) Productivity of different cow genetic groups in dual-purpose cattle production systems in south-eastern Mexico. Trop Anim Health Prod 38:583–591

    Article  CAS  Google Scholar 

  • Marcillac NM, Robinson PH, Fadel JG, Mitloehner FM (2004) Effects of shade, sprinklers, and stocking density on performance, behaviour, physiology, and environmental impact of Holstein heifers in drylot pens. J Anim Sci (Suppl1) 82:301

    Google Scholar 

  • Mariasegaram M, Chase CC, Jr., Chaparro JX, Olson TA, Brenneman RA, Niedz, RP (2007) The slick hair coat locus maps to chromosome 20 in Senepol-derived cattle. Anim Genet 38:54–59

    Article  CAS  Google Scholar 

  • Martin SW, Schwabe CW, Franti CE (1975) Dairy calf mortality rate: characteristics of calf mortality rates in Tulare County, California. Am J Vet Res 36:1099–1104

    CAS  Google Scholar 

  • May JD, Deaton JW, Branton SL (1987) Body temperature of acclimated broilers during exposure to high temperature. Poul Sci 66:378–380

    CAS  Google Scholar 

  • Mayer DG, Davison TM, McGowan MR, Young BA, Matschoss AL, Hall AB, Goodwin PJ, Gaughan JB (1999) Extent and economic effect of heat loads on dairy cattle production in Australia. Aust Vet J 77:804–808

    Article  CAS  Google Scholar 

  • Mearns LO, Katz RW, Schneider SH (1984) Extreme high-temperature events; changes in their probabilities with changes in mean temperature. J Climate Appl Meteorol 23:1601–1613

    Article  Google Scholar 

  • Mendel VE, Morrisson SR, Bond TE, Lofgren GP (1971) Duration of heat exposure and performance of beef cattle. J Anim Sci 33:850–854

    Google Scholar 

  • Mignon-Grasteau S, Boissy A, Bouix J, Faure J, Fisher AD, Hinch GN, Jensen P, Le Neidre P, Mormède P, Prunet P, Vandeputte M, Beaumont C (2005) Genetics of adaptation of domestic livestock. Lives Prod Sci 93:3–14

    Article  Google Scholar 

  • Mitlöhner FM, Morrow JL, Daily DW, Wilson SC, Galyean ML, Miller MF, McGlone JJ (2001) Shade and water misting effects on behaviour, physiology, performance, and carcass traits of heat-stressed feedlot cattle. J Anim Sci 79:2327–2335

    Google Scholar 

  • Morgan K (1997) Effects of short-term changes in ambient air temperature or altered insulation horses. J Therm Biol 22:187–194

    Article  Google Scholar 

  • Morrison SR, Givens RL, Lofgreen GP (1973) Sprinkling cattle for relief from heat stress. J Anim Sci 36:428–431

    Google Scholar 

  • Morrison SR, Prokop M, Lofgreen GP (1981) Sprinkling cattle for heat stress relief: Activation temperature, duration of sprinkling and pen area sprinkled. Trans ASAE 24:1299–1300

    Google Scholar 

  • Morrow-Tesch JL, McGlone JJ, Salak-Johnson JL (1994) Heat and social effects on pig immune measures. J Anim Sci 72:2599–2609

    CAS  Google Scholar 

  • Morse D, DeLorenzo MA, Wilcox CJ, Collier RJ, Natzke RP, Bray DR (1988) Climatic effects on occurrence of clinical mastitis. J Dairy Sci 71:848–853

    CAS  Google Scholar 

  • Nardone A, Lacetera N, Bernabucci U, Ronchi B (1997) Composition of colostrum from dairy heifers exposed to high air temperatures during late pregnancy and the early postpartum period. J Dairy Sci 80:838–844

    CAS  Google Scholar 

  • Nienaber JA, Hahn GL, Yen JT (1987a) Thermal environment effects on growing finishing swine, Part I: growth, feed intake and heat production. Trans ASAE 30:1772–1775

    Google Scholar 

  • Nienaber JA, Hahn GL, Yen JT (1987b) Thermal environment effects on growing finishing swine, Part II: carcass composition and organ weights. Trans ASAE 30:1776–1779

    Google Scholar 

  • Nienaber JA, Hahn GL, Eigenberg RA (1999) Quantifying livestock responses for heat stress management: a review. Int J Biometeorol 42:183–188

    Article  CAS  Google Scholar 

  • Nienaber JA, Hahn GL, Eigenberg RA, Brown-Brandl TM, Gaughan JB (2001) Feed intake response of heat challenged cattle. In: Stowell RR, Bucklin R, Bottcher RW (eds.) Livestock Environment VI: Proceedings of the 6th International Symposium, Louisville, Kentucky. ASAE, St. Joseph, MI, 49085–9659, pp. 154–164

    Google Scholar 

  • Olson TA, Chase CC, Jr. Lucena C, Codoy E, Zuniga A, Collier RJ (2006) Effect of hair characteristics on the adaptation of cattle to warm climates. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte. Minas Gerais, Brazil 13–18 August

    Google Scholar 

  • Olsson K, Hydbring E (1996) The preferences for warm drinking water induces hyperhydration in heat-stressed lactating goats. Acta Physiol Scand 157:109–114

    Article  CAS  Google Scholar 

  • Olsson K, Cvek K, Hydbring E (1997) Preference for drinking warm water during heat stress affects milk production in food-deprived goats. Small Ruminant Res 25:69–75

    Article  Google Scholar 

  • Pagthinathan M, Perera ERK, Perera ANF, Kaduwela SC (2003) Relationship of environmental factors, cooling treatment, blood metabolites, and intensity of heat signs at insemination with conception rate of water buffalo (Bubalus bubalis). Trop Agric Res 15:226–234

    Google Scholar 

  • Parsons PA (1994) Habitats, stress, and evolutionary rates. J Evolution Biol 7:387–397

    Article  Google Scholar 

  • Ray DE, Halbach TJ, Armstrong DV (1992) Season and lactation number effects on milk production and reproduction efficiency of dairy cattle in Arizona. J Dairy Sci 75:2976–2983

    CAS  Google Scholar 

  • Regitono, LCA, Martinez, ML and Machado, MA (2006). Molecular aspects of bovine tropical adaptation. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte. Minas Gerais, Brazil 13–18 August 2006

    Google Scholar 

  • Regnier JA, Kelley KW, Gaskins CT (1980) Acute thermal stressors and synthesis of antibodies in chickens. Poult Sci 59:985–990

    CAS  Google Scholar 

  • Regnier JA, Kelley KW (1981) Heat- and cold-stress suppresses in vivo and in vitro cellular immune responses of chickens. Am J Vet Res 42:294–299

    CAS  Google Scholar 

  • Reilly J (1996) Agriculture in a changing climate: impacts and adaptation. In: Watson RT, Zinyowera MC, Moss RH (eds.) Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Cambridge University Press, USA, pp. 427–467

    Google Scholar 

  • Ronchi B, Bernabucci U, Lacetera N, Verini Supplizi A, Nardone A (1999) Distinct and common effects of heat stress and restricted feeding on metabolic status of Holstein heifers. Zootec Nutr Anim 1:11–20

    Google Scholar 

  • Rosenweig C, Parry ML (1994) Potential impact of climate change on world food supply. Nature 367:133–138

    Article  Google Scholar 

  • Rötter R, VandeGeijn SC (1999) Climate change effects on plant growth, crop yield and livestock. Climatic Change 43:651–681

    Article  Google Scholar 

  • Sackett D, Holmes P, Abbott K, Jephcott S, Barber, B (2006) Assessing the economic cost of endemic disease on the profitability of Australian beef cattle and sheep producers—Final Report AHW.087. Meat and Livestock Australia Limited, Nth Sydney NSW 2059

    Google Scholar 

  • Schmidt-Nielsen K (1975) Animal physiology: adaptation and environment. Cambridge University Press, New York

    Google Scholar 

  • Schmidt-Nielsen K, Schmidt-Nielsen B, Jarnum SA, Houpt TR (1956) Body temperature of the camel and its relation to water economy. Am J Physiol 188:103–112

    Google Scholar 

  • Schneider PL, Beede DK, Wilcox CJ (1986) Responses of lactating cows to dietary sodium source and quantity and potassium quantity during heat stress. J Dairy Sci 69:99–110

    Article  CAS  Google Scholar 

  • Schultz TA (1988) California dairy corral manger mister installation. ASAE Paper No. 88–4056, ASAE, St. Joseph, MI

    Google Scholar 

  • Scott AW, Slee J (1987) The effect of litter size, sex, age, body weight, dam age and genetic selection for cold resistance on the physiological responses to cold exposure of Scottish Blackface lambs in a progressively cooled water bath. Anim Prod 45:477–492

    Google Scholar 

  • Shearer JK (1999) Foot health from a veterinarian's perspective. Proceedings Feed and Nutritional Management Cow College, Virginia Tech, pp. 33–43

    Google Scholar 

  • Shearer JK, Beede DK (1990) Thermoregulation and physiological responses of dairy cattle in hot weather. Agric Practice 11:5–17

    Google Scholar 

  • Shearer JK, Beede DK, Bucklin RA, Bray DR (1991) Environmental modifications to reduce heat stress in dairy cattle. Agric Practice 12:7–10, 13–16, 18

    Google Scholar 

  • Shkolnik A, Maltz E, Gordon S (1980) Desert conditions and goat milk production. J Dairy Sci. 63:1749–1754

    CAS  Google Scholar 

  • Silanikove N (2000). Goat production under harsh environmental conditions: The physiological basis and the challenge. In: Merkel RC, Abebe G, Goetsch AL (eds.) The Opportunities and Challenges of Enhancing Goat Production in East Africa. E (Kika) de la Garza Institute for Goat Research, Langston University, Langston, OK, pp. 6–28

    Google Scholar 

  • Simensen E (1984) Livestock environment and health: general concepts and research strategies. Report 7, Department of Animal Husbandry and Genetics. Norwegian College of Veterinary Medicine, Oslo

    Google Scholar 

  • Slee J, Alexander G, Bradley LR, Jackson N, Stevens D (1991) Genetic aspects of cold resistance and related characters in new born Merino lambs. Aust J Exp Agric 31:175–182

    Article  Google Scholar 

  • Smit B, Mc Nabb D, Smihers J (1996) Agricultural adaptation to climatic variation. Climatic Change 33:7–29

    Article  CAS  Google Scholar 

  • Smith KL, Todhunter DA, Schoenberger PS (1985) Environmental mastitis: cause, prevalence, prevention. J Dairy Sci 68:1531–1553

    Article  CAS  Google Scholar 

  • Sombroek W, Gommes R (1995) The climate change — agriculture conundrum. Paper presented at the Expert Consultation on global climate change and agricultural production: direct and indirect effects of changing hydrological, soil and plant physiological processes. Rome, FAO, 7–11 December 1993, 300 p

    Google Scholar 

  • Soper F, Muscoplat CC, Johnson DW (1978) In vitro stimulation of bovine peripheral blood lymphocytes: analysis of variation of lymphocyte blastogenic response in normal dairy cattle. Am J Vet Res 39:1039–1042

    CAS  Google Scholar 

  • Spiers DE, Spain JN, Leonard MJ, Lucy MC (2001) Effect of cooling strategy and night temperature on dairy cow performance during heat stress. In: Livestock Environment VI. Proceedings of the 6th International Symposium. ASAE, St. Joseph, MI, pp. 45–55

    Google Scholar 

  • Spiers DE, Vogt DW, Johnson HD, Garner GB, Murphy CN (1994) Heat stress responses of temperate and tropical breeds of Bos taurus cattle. Arch Latinoam Prod Anim 2:41–52

    Google Scholar 

  • St-Pierre NR, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by US livestock industries. J Dairy Sci 86(E Suppl):E52–E77

    Google Scholar 

  • Starling JMC, da Silva RG, Cerón-Muñoz M, Barbosa GSSC, da Costa MJRP (2002) Analysis of some physiological variables for the evaluation of the degree of adaptation in sheep submitted to heat stress. Revista Brasileira de Zootecnia 31:2070–2077

    Article  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestocks Long Shadow: Environmental Issues and Options. FAO, Rome, Italy

    Google Scholar 

  • Stott GH (1981) What is animal stress and how is it measured? J Anim Sci 52:150–153

    CAS  Google Scholar 

  • Strickland JT, Bucklin RA, Norstedt RA, Beede DK, Bray DR (1989) Sprinkler and fan cooling system for dairy cows in hot, humid climates. Appl Eng Agric 5:231–236

    Google Scholar 

  • Srikandakumar A, Johnson EH, Mahgoub O (2003) Effect of heat stress on respiratory rate, rectal temperature and blood chemistry in Omani and Australian Merino sheep. Small Ruminant Res 49:193–198

    Article  Google Scholar 

  • Taylor SE, Buffington DE, Collier RJ, DeLorenzo MA (1986) Evaporative cooling for dairy cattle in Florida. ASAE Paper No. 86–4022. St. Joseph, MI

    Google Scholar 

  • Thom EC (1959) Cooling-degree days. Air conditioning, heating and ventilation 7:65–72

    Google Scholar 

  • Thuiller W, Broennimann O, Hughes G, Alkemades JRM, Midgley GF, Corsi F (2006) Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob Change Biol 12:424–440

    Article  Google Scholar 

  • Turner LW, Chastain JP, Hemken RW, Gates RS, Crist WL (1989) Reducing heat stress in dairy cows through sprinkler and fan cooling. ASAE Paper No 89–4025. ASAE, St. Joseph, MI

    Google Scholar 

  • Turner LW, Warner RC, Chastain JP (1993) Reducing heat stress in dairy cows through improved facility and systems designs. In: Livestock Environment IV. Proceedings of the 4th International Livestock Environment Symposium. ASAE, St. Joseph, MI, pp. 356–364

    Google Scholar 

  • Turnpenny JR, Parsons DJ, Armstrong AC, Clark JA, Cooper K, Mathews AM (2001) Integrated models of livestock systems for climate change studies. 2. Intensive systems. Glob Change Biol 7:163–170

    Article  Google Scholar 

  • Valtorta SE, Leva PE, Fornasero LV, Bardin J (1996a) Horas de estrés para el ganado de origen europeo en la República Argentina: Situación actual e impacto del cambio climático global. Anais do 1° Congresso Brasileiro de Biometeorologia pp: 275–285

    Google Scholar 

  • Valtorta SE, Gallardo MR, Castro HC, Castelli MC (1996b) Artificial shade and supplenetation effects on grazing dairy cows in Argentina. Trans. ASAE 39:233–236

    Google Scholar 

  • Valtorta SE, Leva PE, Gallardo MR (1997) Effect of different shades on animal well being in Argentina. Int J Biometeorol 41:65–67

    Article  CAS  Google Scholar 

  • Valtorta SE, Gallardo MR (1998) Modificaciones del ambiente. In: Producción de leche en verano. Centro de publicaciones de la Secretaría de Extensión de la UNLitoral. Santa Fe, Argentina, pp. 93–105

    Google Scholar 

  • Valtorta SE, Leva PE (1998) Respuestas del animal al ambiente. In: Producción de leche en verano. Centro de publicaciones de la Secretaría de Extensión de la UNLitoral, Santa Fe, Argentina

    Google Scholar 

  • Valtorta SE, Maciel M (1998) Respuesta reproductiva. In: “Producción de leche en verano”. Centro de publicaciones de la Secretaría de Extensión de la UNLitoral, Santa Fe, Argentina, pp. 64–76

    Google Scholar 

  • Valtorta SE, Leva PE, Gallardo MR, Scarpati OE (2002) milk production responses during heat waves events in Argentina. In: Proceedings of the 16th Congress of Biometerology. Kansas City, MI, October 27th—November 1st, pp. 98–101

    Google Scholar 

  • Vitali A, Scalia D, Bernabucci U, Lacetera N, Ronchi B (2004) Citotoxic effect of aflatoxin B1 in goat lymphocytes. Proceedings of the 8th International Conference on Goat, p. 65

    Google Scholar 

  • Voh Jr AA, Larbi A, Olorunju SAS, Agyemang K, Abiola BD, Williams TO (2004) Fertility of N'dama and Bunaji cattle to artificial insemination following oestrus synchronization with PRID and PGF in the hot humid zone of Nigeria. Trop Anim Health Prod 36:499–511

    Article  Google Scholar 

  • Waage S, Sviland S, Odegaard SA (1998) Identification of risk factors for clinical mastitis in dairy heifers. J Dairy Sci 81:1275–1284

    CAS  Google Scholar 

  • West JW (1999) Nutritional strategies for managing the heat stressed dairy cow. J. Anim Sci 77 (Suppl 2)/J Dairy Sci 82(Suppl 2):21–34

    CAS  Google Scholar 

  • West JW, Mullinix BG, Sandifer TG (1991) Changing dietary electrolyte balance for dairy cows in cool and hot environments. J Dairy Sci 74:1662–1674

    CAS  Google Scholar 

  • Wettemann RP, Bazer FW (1985) Influence of environmental temperature on prolificacy of pigs. J Reprod Fertil Suppl 33:199–208

    CAS  Google Scholar 

  • Wiernusz CJ, Teeter RG (1996) Acclimation effects on fed and fasted broiler thermobalance during thermoneutral and high ambient temperature exposure. Br Poult Sci 37:677–687

    Article  CAS  Google Scholar 

  • Winchester CF, Morris MJ (1956) Water intake rates of cattle. J Anim Sci 15:722–739

    CAS  Google Scholar 

  • Willmer P, Stone G, Johnston I (2000) Environmental Physiology of Animals. Blackwell, Oxford

    Google Scholar 

  • Wittmann EJ, Mellor PS, Baylis M (2001) Using climate data to map the potential distribution of Culicoides imicola (Diptera: Ceratopogonidae) in Europe. Rev Sci Tech 20:731–740

    CAS  Google Scholar 

  • Wolfenson D, Bachrach D, Maman M, Graber Y, Rozenboim I (2001) Evaporative cooling of ventral regions of the skin in heat stressed laying hens. Poul Sci 80:958–964

    CAS  Google Scholar 

  • Xin H, Puma MC (2001) Cooling caged laying hens in high-rise house by fogging inlet air. In: Livestock Environment VI. Proceedings of the 6th International Symposium. ASAE, St. Joseph, MI, pp. 244–249

    Google Scholar 

  • Yahav S, Plavnik I (1999) Effect of early-stage thermal conditioning and food restrictions on performance and thermotolerance of male broiler chickens. Br Poult Sci 40:120–126

    Article  CAS  Google Scholar 

  • Yahav S, Shinder D, Tanny J, Cohen S (2005) Sensible heat loss: the broiler's paradox. World's Poult Sci J 61:419–430

    Article  Google Scholar 

  • Yalchin S, Ozkan S, Turkmut L, Siegel PB (2001) Responses to heat stress in commercial and local broiler stocks. 1. Performance traits. Br J Nutr 42:149–152

    Google Scholar 

  • Yeruham I, Elad D, Friedman S, Perl S (2003) Corynebacterium pseudotuberculosis infection in Israeli dairy cattle. Epidemiol Infect 131:947–955

    Article  CAS  Google Scholar 

  • Young BA (1985) Physiological responses and adaptations of cattle. In: Yousef MK (ed) Stress Physiology in Livestock Vo l II, CRC Press, Boco Raton, FL

    Google Scholar 

  • Yousef MK (1987) Principles of bioclimatology and adaptation. In: Bioclimatology and the Adaptation of Livestock, Elsevier, Amsterdam, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Gaughan, J., Lacetera, N., Valtorta, S.E., Khalifa, H.H., Hahn, L., Mader, T. (2009). Response of Domestic Animals to Climate Challenges. In: Ebi, K.L., Burton, I., McGregor, G.R. (eds) Biometeorology for Adaptation to Climate Variability and Change. Biometeorology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8921-3_7

Download citation

Publish with us

Policies and ethics