Skip to main content

Metals and Metalloids in Photosynthetic Bacteria: Interactions, Resistance and Putative Homeostasis Revealed by Genome Analysis

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

Microbial metabolism of metals and metalloids has been a topic of interest since the early seventies when it was recognized that bacteria are involved in the transformation of metal compounds in the environment. For this reason, bacterial processing of inorganic compounds has been reviewed several times over the past decade. However, this is the first time that the metal(loid)s metabolism of photosynthetic bacteria has been considered in detail as compared to non-phototrophs. Another aspect touched on for the first time in this chapter is the analysis of genomes of representative phototrophs in an attempt to reveal common or unique features of the interactions of these bacteria with metal(loid)s. This work not only identified new genes linked to metal resistance, but also contributed to unify the nomenclature used among the genomes of different photosynthetic species. Based on our analysis, similarities and differences can be used more efficiently in future work as new ‘preys’ that have been either hypothesized or described generically in the past have also been uncovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CDF:

Cation Diffusion Facilitator

COX:

cytochrome c oxidase

E. :

Escherichia

MIC:

minimal inhibitory concentration

P. :

Pseudomonas

R. :

Ralstonia

Rba. :

Rhodobacter

RND:

Resistance-Nodulation-Cell division

ROS:

reactive oxygen species

Rps. :

Rhodopseudomonas

Rsp. :

Rhodospirillum

S. :

Staphylococcus

SAM:

S-adenosylmethionine

Trx:

thioredoxin

References

  • Andersen C, Hughes C and Koronakis V (2001) Protein export and drug efflux through bacterial channel-tunnels. Curr Opin Cell Biol 13: 412–416

    Article  PubMed  CAS  Google Scholar 

  • Angle JS and Chaney RL (1989) Cadmium resistance screening in nitrilotriacetate-buffered minimal media. Appl Environ Microbiol 55: 2030–2035

    Google Scholar 

  • Anton A, Große C, Reißman J, Pribyl T and Nies DH (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J Bacteriol 181: 6876–6881

    PubMed  CAS  Google Scholar 

  • Anton A, Weltrowski A, Haney CJ, Franke S, Grass G, Rensing C and Nies DH (2004) Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli. J Bacteriol 186: 7499–7507

    Article  PubMed  CAS  Google Scholar 

  • Avazeri C, Turner RJ, Pommier J, Weiner JH, Giordano G and Verméglio A (1997) Tellurite and selenate reductase activity of nitrate reductases from Escherichia coli: Correlation with tellurite resistance. Microbiol 143: 1181–1189

    Article  CAS  Google Scholar 

  • Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2005) The Universal Protein Resource (UniProt). Nucleic Acids Res 33:D154–D159

    Article  PubMed  CAS  Google Scholar 

  • Barbieri P, Galassi G and Galli E (1989) Plasmid encoded mercury resistance in a Pseudomonas stutzeri strain that degrades o-xylene. FEMS Microbiol Ecol 62: 375–384

    Article  CAS  Google Scholar 

  • Barceloux DG (1999) Selenium. J Toxicol Clin Toxicol 37: 145–172

    Article  PubMed  CAS  Google Scholar 

  • Barrnett RJ and Palade GA (1957) Histochemical demonstration of the sites of activity of dehydrogenase systems with the electron microscope. J Biophys Biochem Cytology 3: 577–588

    Article  CAS  Google Scholar 

  • Bebien M, Chauvin JP, Adriano JM, Grosse S and Verméglio A (2001) Effect of selenite on growth and protein synthesis in the phototrophic bacterium Rhodobacter sphaeroides. Appl Env Microbiol 67: 4440–4447

    Article  CAS  Google Scholar 

  • Bebien M, Lagniel G, Garin J, Touati D, Verméglio A and Labarre J (2002) Involvement of Superoxide dismutases in the response of Escherichia coli to selenium oxides. J Bacteriol 184: 1556–1564

    Article  PubMed  CAS  Google Scholar 

  • Beswick PH, Hall GH, Hook AJ, Little K, Mc Brien DC and Lott KA (1976) Copper toxicity: evidence for the conversion of cupric to cuprous copper in vivo under anaerobic conditions. Chem Biol Interact 14: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Beveridge TJ and Murray GE (1976) Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol 127: 1502–1518

    PubMed  CAS  Google Scholar 

  • Bhattacharjee H, Zhou T, Li J, Gatti DL, Walmsley AR and Rosen BP (2000). Structure-function relationships in an anion-translocating ATPase. Biochem Soc Tran 28: 520–526

    Article  CAS  Google Scholar 

  • Birringer M, Pilawa S and Flohe L (2002) Trends in selenium biochemistry. Nat Prod Rep 19: 693–718

    Article  PubMed  CAS  Google Scholar 

  • Bjornstedt M, Kumar S and Holmgren A (1992) Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase. J Biol Chem 267: 8030–8034

    PubMed  CAS  Google Scholar 

  • Blackadder ES and Manderson WG (1975) Occupational absorption of tellurium: A report of two cases. Br J Ind Med 32: 59–61

    PubMed  CAS  Google Scholar 

  • Borghese R, Borsetti F, Foladori P, Ziglio G and Zannoni D (2004) Effects of the metalloid oxyanion tellurite (TeO3 2-) on growth characteristics of the phototrophic bacterium Rhodobacter capsulatus. Appl Env Microbiol 70: 6595–6602

    Article  CAS  Google Scholar 

  • Borghese R, Marchetti D and Zannoni D (2007) The highly toxic oxyanion tellurite (TeO3 2-) enters the phototrophic bacterium Rhodobacter capsulatus via an as yet uncharacterized monocarboxylate transport system. Arch Microbil, in press

    Google Scholar 

  • Borremans B, Hobman JL, Provoost A, Brown NL and Van der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183: 5651–5658

    Article  PubMed  CAS  Google Scholar 

  • Borsetti F, Borghese R, Francia F, Randi MR, Fedi S and Zannoni D (2003a) Reduction of potassium tellurite to elemental tellurium and its effect on the plasma membrane redox components of the facultative phototroph Rhodobacter capsulatus. Protoplasma 221: 153–161

    Article  PubMed  CAS  Google Scholar 

  • Borsetti F, Toninello A and Zannoni D (2003b) Tellurite uptake by cells of the facultative phototroph Rhodobacter capsulatus is a ApH-dependent process. FEBS Lett 554: 315–318

    Article  PubMed  CAS  Google Scholar 

  • Borsetti F, Tremaroli V, Michelacci F, Borghese R, Winterstein C, Daldal F and Zannoni D (2005) Tellurite effects on Rhodobacter capsulatus cell viability and Superoxide dismutase activity under oxidative stress conditions. Res Microbiol 156: 807–813

    Article  PubMed  CAS  Google Scholar 

  • Borsetti F, Francia F, Turner RJ and Zannoni D (2007) The disulfide binding protein DsbB allows the transfer of oxidizing equivalents from the toxic metalloid tellurite (TeO3 2-) to the plasma membrane electron transport system of Rhodobacter capsulatus. J Bacteriol 189: 851–859

    Article  PubMed  CAS  Google Scholar 

  • Bröer S, Ji G, Bröer A and Silver S (1993) Arsenic efflux governed by the arsenic resistance determinant of Staphylococcus aureus plasmid pI258. J Bacteriol 175: 3480–3485

    PubMed  Google Scholar 

  • Brown NL, Barret SR, Camakaris J, Lee BT and Rouch DA (1995) Molecular genetics and transport analysis of the copper-resistance determinant pco from Escherichia coli plasmid pRJ1004. Mol Microbiol 17: 1153–1166

    Article  PubMed  CAS  Google Scholar 

  • Brown NL, Misra TK, Winnie JN, Schmidt A, Seiff M and Silver S (1986) The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: Further evidence for mer genes which enhance the activity of mercuric ion detoxification system. Mol Gen Genet 202: 143–151

    Article  PubMed  CAS  Google Scholar 

  • Brown TA and Shrift A (1982) Selective assimilation of selenite by E. coli. Can J Microbiol 28: 307–310

    PubMed  CAS  Google Scholar 

  • Brudvig GW (1987) The tetranuclear manganese complex of photosystem II. J Bioenerg Biomembr 19: 91–104

    Article  PubMed  CAS  Google Scholar 

  • Bruins MR, Kapil S and Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Safety 45: 198–207

    Article  PubMed  CAS  Google Scholar 

  • Burian J, Tu N, Klucar L, Guller L, Lloyd-Jones G, Stuchlik S, Fejdi P, Siekel P and Turna J (1998) In vivo and in vitro cloning and phenotype characterization of tellurite resistance determinant conferred by plasmid pTE53 of a clinical isolate of Escherichia coli. Folia Microbiol 43: 589–599

    Article  CAS  Google Scholar 

  • Canovas D, Cases I and de Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5: 1242–1256

    Article  PubMed  CAS  Google Scholar 

  • Castresana J (2004) Evolution and Phylogenetic analysis of Respiration. In: Zannoni D (ed) Respiration in Archaea and Bacteria. Diversity of Prokaryotic Electron Transport Carriers (Advancesin Photosynthesis and Respiration,Vol 15), pp 1–14. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Cervantes C, Ohtake H, Chu L, Misra TK and Silver S (1990) Cloning, nucleotide sequence and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J Bacteriol 172: 287–291

    PubMed  CAS  Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC and Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25: 335–347

    Article  PubMed  CAS  Google Scholar 

  • Challenger F (1945) Biological methylation. Chemical Rev 36: 325–361

    Article  Google Scholar 

  • Chang JS, Hong J, Oa O and Bh O (1993) Interaction of mercuric ions with the bacterial growth medium and its effects on enzymatic reduction of mercury. Biotechnol Progr 9: 526–532

    Article  CAS  Google Scholar 

  • Chao Y and Fu D (2004) Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter ZitB. J Biol Chem 279: 12043–12050

    Article  PubMed  CAS  Google Scholar 

  • Chau YK, Wong PTS, Silverberg BA, Luxon PL and Bengert GA (1976) Methylation of selenium in the aquatic environment. Science 192: 1130–1131

    Article  PubMed  CAS  Google Scholar 

  • Chasteen TG and Bentley R (2003) Biomethylation of selenium and tellurium: Microorganisms and plants. Chem Rev 103: 1–25

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D and He C (2005) An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: Development of a fluorescent lead(II) probe. Angew Chem Int Ed Engl 44: 2715–2719

    Article  PubMed  CAS  Google Scholar 

  • Claverys JP (2001) A new family of high-affinity ABCmanganese and zinc permeases. Res Microbiol 152: 231–243

    Article  PubMed  CAS  Google Scholar 

  • Combs G F Jr, Garbisu C, Lee BC, Yee A, Carlson DE, Smith NR, Magyarosy AC, Leighton T and Buchanan BB (1996) Bioavailability of selenium accumulated by selenite-reducing bacteria. Biol Trace Elem Res 52: 209–225

    Article  PubMed  CAS  Google Scholar 

  • Cooke TD and Bruland KW (1987) Aquatic chemistry of selenium: Evidence of biomethylation. Environ Sci Technol 21: 1214–1219

    Article  Google Scholar 

  • Cournoyer B, Watanabe S and Vivian A (1998) A tellurite resistance genetic determinant from phytopathogenic pseudomonas encodes a thiopurine methyltransferase: Evidence of a widelyconserved family of methyltransferase. Biochem Biophys Acta 1397: 161–168

    PubMed  CAS  Google Scholar 

  • Croal LR, Gralnick JA, Malasarn D and Newman DK (2004) The genetics of geochemistry. Annu Rev Genet 38: 175–202

    Article  PubMed  CAS  Google Scholar 

  • Csotonyi J, Stackebrandt E and Yurkov V (2006) Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean. Appl Environ Microbiol 72: 4950–4956

    Article  PubMed  CAS  Google Scholar 

  • Dey S and Rosen BP (1995) Mechanisms of drug transport in prokaryotes and eukaryotes. In: Georgopapadakou NH (ed) Drug Transport in Antimicrobial and Anticancer Chemotherapy, pp 103–132. Marcel Dekker, New York

    Google Scholar 

  • Deley RG and Cole SP (2006) Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett 580: 1103–1111

    Article  CAS  Google Scholar 

  • Diels L, Faelen M, Mergeay M and Nies D (1985) Mercury transposons from plasmids governing multiple resistance to heavy metals in Alcaligenes eutrophus CH34. Arch Int Physiol Biochem 93: 27–28

    Article  Google Scholar 

  • Diels L, Qinghan D, Van der Lelie D, Baeyens W and Mergeay M (1995) The czc operon of Alcaligenes eutrophus CH34: From resistance mechanism to the removal of heavy metals. J Ind Microbiol 14: 142–153

    Article  PubMed  CAS  Google Scholar 

  • Di Tomaso G, Fedi S, Carnevali M, Manegatti M, Taddei C and Zannoni D (2002) The membrane-bound respiratory chain of Pseudomonas pseudoalcaligenes KF707 cells grown in the presence or absence of potassium tellurite. Microbiol 148: 1699–708

    Google Scholar 

  • Donovan TJ and van Netten P (1995) Culture media for the isolation and enumeration of pathogenic Vibrio species in foods and environmental samples. Int J Food Microbiol 26: 77–91

    Article  PubMed  CAS  Google Scholar 

  • Dopp E, Hartmann LM, Florea AM, Rettenmeier AW and Hirner AV (2004) Environmental distribution, analysis and toxicity of organometal(loid) compounds. Crit Rev Toxicol 34: 301–333

    Article  PubMed  CAS  Google Scholar 

  • Dowdle PR and Oremland RS (1998) Microbial oxidation of elemental selenium in soil slurries and bacterial cultures. Environ Sci Technol 32: 3749–3755

    Article  CAS  Google Scholar 

  • Dutton PL and Prince RC (1978) Reaction centre driven cytochrome interaction in electron and proton translocation and energy coupling. In: Clayton RK and Sistrom WR (eds) The photosynthetic bacteria, pp 525–570. Plenum Press, New York

    Google Scholar 

  • Dyllick-Brenzinger M, Liu M, Winstone TL, Taylor DE and Turner RJ (2000) The role of cysteine residues in tellurite resistance mediatedby the TehAB determinant. Biochem Biophys Res Comm 277: 394–400

    Article  PubMed  CAS  Google Scholar 

  • Ehrenreich A and Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Env Microbiol 60: 4517–4526

    CAS  Google Scholar 

  • Ehrlich HL (2002) Geomicrobiology of iron. In: Ehrilch HL (ed) Geomicrobiology, pp 345–429. Dekker, New York

    Google Scholar 

  • Fagan MJ and Saier Jr MH (1994) P-type ATPasee of eukaryotes and bacteria: Sequence comparisons and construction of phylogenetic trees. J Mol Evol 38: 57–99

    Article  PubMed  CAS  Google Scholar 

  • Fahey RC, Brown WC, Adams WB and Worsham MB (1978) Occurrence of glutathione in bacteria. J Bacteriol 133: 1126–1129

    PubMed  CAS  Google Scholar 

  • Fan AM (1990) Selenium. Nutritional, toxicological and clinical aspects. West J Med. 153: 160–167

    PubMed  CAS  Google Scholar 

  • Franke K W and Painter E P (1938) A study of the toxicity and selenium content of seleniferous diets: With statistical consideration. Cereal Chemistry 15: 1–24

    CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotech 11: 271–279

    Article  PubMed  CAS  Google Scholar 

  • Ganther H E (1968) Selenotrisulfides. Formation by the reaction of thiols and selenous acid. Biochemistry 7: 2898–2905

    Article  PubMed  CAS  Google Scholar 

  • Gerrard TL, Telford JN and Williams HH (1974) Detection of selenium deposits in Escherichia coli by electron microscopy. J Bacteriol 119: 1057–1060

    PubMed  CAS  Google Scholar 

  • Giotta L, Agostiano A, Italiano F, Milano F and Trotta M (2006) Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosph 62: 1490–1499

    Article  CAS  Google Scholar 

  • Gladysheva TB, Oden KL and Rosen BP (1994) Properties of the arsenate reductase of plasmid R773. Biochemistry 33: 7288–7293

    Article  PubMed  CAS  Google Scholar 

  • Grass G, Fan B, Rosen BP, Lemke K, Schlegel HG and Rensing C (2001) NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183: 2803–2807

    Article  PubMed  CAS  Google Scholar 

  • Griffin HG, Foster TJ, Silver S and Misra TK (1987) Cloning and DNA sequence of the mercuric- and organomercurial-resistance determinants of plasmid pDU1358. Proc Natl Acad Sci USA 84: 3112–3116

    Article  PubMed  CAS  Google Scholar 

  • Grunden AM and Shanmugam KT (1997) Molybdate transport and regulation in bacteria. Arch Microbiol 168: 345–354

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Whitton BA, Morby AP, Huckle JW and Robinson NJ (1992) Amplification and rearrangement of a prokaryotic methallothionein locus smt in Synechoccus PCC 6301 selected for tolerance to cadmium. Proc Roy Soc Lond 248: 273–281

    Article  CAS  Google Scholar 

  • Gupta A, Morby AP, Turner JS, Whitton BA and Robinson NJ (1993) Deletion within the metallothionein locus of cadmiumtolerant Synechococcus PCC 6301 involving a highly iterated palindrome (HIP1). Mol Microbiol 7: 189–195

    Article  PubMed  CAS  Google Scholar 

  • Hallenbeck PC (1992) Mutations affecting nitrogenase switchoff in Rhodobacter capsulatus. Biochim Biophys Acta 1118: 161–168

    PubMed  CAS  Google Scholar 

  • Hamlett NV, Landale EC, Davis BH and Summers AO (1992) Roles of the Tn21 merT, merP and merC gene products in mercury resistance and mercury binding. J Bacteriol 174: 6377–6385

    PubMed  CAS  Google Scholar 

  • Haney CJ, Grass G, Franke S and Rensing C (2005) New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 32: 215–226

    Article  PubMed  CAS  Google Scholar 

  • Harris RM, Webb DC, Howitt SM and Cox GB (2001) Characterization of PitA and PitB from Escherichia coli. J Bacteriol 183: 5008–5014

    Article  PubMed  CAS  Google Scholar 

  • Harrison JJ, Ceri H, Stremick CA and Turner RJ (2004) Biofilm susceptibility to metal toxicity. Environ Microbiol 6: 1220–1227

    Article  PubMed  CAS  Google Scholar 

  • Harrison JJ, Ceri H, Badry EA, Roper NJ, Tomlin KL and Turner RJ (2005) Effects of the twin-arginine translocase on the structure and antimicrobial susceptibility of Escherichia coli biofilms. Can J Microbiol 51: 671–683

    Article  PubMed  CAS  Google Scholar 

  • Hassan M-e-T, van der Lelie D, Springael D, Römling U, Ahmed N and Mergeay M (1999) Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 238: 417–425

    Article  PubMed  CAS  Google Scholar 

  • Hassen A, Saidi N, Cherif M and Boudabous A (1998) Resistance of environmental bacteria to heavy metals. Biores Technol 64: 7–15

    Article  CAS  Google Scholar 

  • Hedges RW and Baumberg S (1973) Resistance to arsenic compounds conferred by a plasmid transmissible between strains of Escherichia coli. J Bacteriol 115: 459–460

    PubMed  CAS  Google Scholar 

  • Heider J and Böck A (1993) Selenium metabolism in microorganisms. Adv Microbial Physiol 35: 71–109

    Article  CAS  Google Scholar 

  • Heising S and Schink B (1998) Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. Microbiol 144: 2263–2269

    Article  CAS  Google Scholar 

  • Higham DP, Sadler PJ and Scawen MD (1984) Cadmium-resistant Pseudomonas putida synthesizes novel cadmium binding proteins. Science 225: 1043–1046

    Article  PubMed  CAS  Google Scholar 

  • Hollins JG (1969) The metabolism of tellurium in rats. Health Phys 17: 497–505

    PubMed  CAS  Google Scholar 

  • Horne IM, Pemberton JM and McEwan AG (1998) Manganous ions suppress photosynthesis gene expression in Rhodobacter sphaeroides. Microbiol 144: 2255–2261

    Article  CAS  Google Scholar 

  • Hoyle B and Beveridge TJ (1983) Binding of metallic ions to the outer membrane of Escherichia coli. Appl Environ Microbiol 46: 749–752

    PubMed  CAS  Google Scholar 

  • Inoue S, Sugawara K and Kusano T (1991) The merR regulatory gene in Thiobacillus ferrooxidans is spaced apart from the mer structural genes. Mol Microbiol 5: 2707–2718

    Article  PubMed  CAS  Google Scholar 

  • Jasper P and Silver S (1978) Divalent cation transport systems of Rhodopseudomonas capsulata. J Bacteriol 133: 1323–1328

    PubMed  CAS  Google Scholar 

  • Ji G and Silver S (1992) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174: 3684–3694

    PubMed  CAS  Google Scholar 

  • Ji G, Garberg EA, Armes LG, Chen CM, Fuchs JA and Silver S (1994) Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry 33: 7294–7299

    Article  PubMed  CAS  Google Scholar 

  • Juhnke S, Peitzsch N, Hübener N, Große C and Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179: 15–25

    Article  PubMed  CAS  Google Scholar 

  • Kachur AV, Koch CJ and Biaglow JE (1998) Mechanism of copper catalyzed oxidation of glutathione. Free Radical Res 28: 259–269

    Article  CAS  Google Scholar 

  • Kessi J (2006) Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacterium Rhodospirillum rubrum and Rhodobacter capsulatus. Microbiol 152: 731–743

    Article  CAS  Google Scholar 

  • Kessi J and Hanselmann KW (2004) Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 279: 50662–50669

    Article  PubMed  CAS  Google Scholar 

  • Kho DH, Yoo SB, Kim JS, Kim EJ and Lee JK (2004) Characterization of Cu- and Zn-containing Superoxide dismutase of Rhodobacter sphaeroides. FEMS Microbiol Lett 234: 261–267

    Article  PubMed  CAS  Google Scholar 

  • Kimura T and Nishioka H (1997) Intracellular generation of Superoxide by copper sulphate in Escherichia coli. Mutat Res 389: 237–242

    PubMed  CAS  Google Scholar 

  • Kitchin KT (2001) Recent advances in carcinogenesis: Modes of action, animal model systems and methylated arsenic metabolites. Toxicol Appl Pharmacol 172: 249–261

    Article  PubMed  CAS  Google Scholar 

  • Klett A (1900) Zur kenntniss der reducirenden eigenschaften der bakterien. Z Hyg Infektionskr 33: 137–160

    Article  Google Scholar 

  • Klonowska A, Heulin T and Verméglio A (2005) Selenite and tellurite reduction by Shewanella oneidensis. Appl Environ Microbiol 71: 5607–5609

    Article  PubMed  CAS  Google Scholar 

  • Kryukov GV and Gladyshev VN (2004) The prokaryotic selenoproteome. EMBO Reports 5: 538–543

    Article  PubMed  CAS  Google Scholar 

  • Kuhn R and Jerchel D (1941) Uber investseifen. VIII Metteil. Reduktion von tetrazoliumsalzen durk bakterien, garende hefe und keimende samen. Ber Dtsch Chem Ges 74: 949–952

    Article  Google Scholar 

  • Kumar S, Bjornstedt M and Holmgren A (1992) Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen. Eur J Biochem 207: 435–439

    Article  PubMed  CAS  Google Scholar 

  • Lancaster VL, LoBrutto R, Selvaraj FM and Blankenship RE (2004) A cambialistic Superoxide dismutase in the thermophilic photosynthetic bacterium Chloroflexus aurantiacus. J Bacteriol 186: 3408–3414

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Turner RJ, Winstone TL, Saetre A, Brenzinger MD, Jickling G, Tari LW, Weiner JH and Taylor DE (2000) Escherichia coli TehB requires S-adenosilmethionine as a cofactor to mediate tellurite resistance. J Bacteriol 182: 6509–6513

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals andradionuclides. FEMS Microbiol Rev 27: 411–425

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JR, Lovley DR and Macaskie LE (2003) Biotechnological application of metal-reducing microorganisms. Adv Appl Microbiol 53: 85–128

    Article  PubMed  CAS  Google Scholar 

  • Lloyd-Jones G, Ritchie DA and Strike P (1991) Biochemical and biophysical anaylsis of plasmid pMJ600-encoded tellurite [TeO3 2-] resistance. FEMS Microbiology Lett 81: 19–24

    Article  CAS  Google Scholar 

  • Lloyd-Jones G, Osborn AM, Ritchie DA, Strike P, Hobman JL, Brown NL and Rouch DA (1994) Accumulation and intracellular fate of tellurite in tellurite-resistant Escherichia coli: A model for the mechanism of resistance. FEMS Microbiol Lett 118: 113–120

    Article  PubMed  CAS  Google Scholar 

  • Losi ME, Amrhein C and Frankenberg WTJ (1994) Environmental biochemistry of chromium. Rev Environ Contam Toxic 136: 91–121

    CAS  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55: 259–287

    PubMed  CAS  Google Scholar 

  • Mattison PL (1992) Bioremediation of metals: Putting it to work. Cognis, Santa Rosa, CA

    Google Scholar 

  • McEntee JD, Woodrow JR and Quirk AV (1986) Investigation of cadmium resistance in Alcaligenes sp. Appl Environ Microbiol 51: 515–520

    PubMed  CAS  Google Scholar 

  • McGinnis S, Madden TL (2004) BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32: W20–W25

    Article  PubMed  CAS  Google Scholar 

  • Meng YL, Liu Z, Rosen BP (2004) As (III) and Sb (III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem 279: 18334–18341

    Article  PubMed  CAS  Google Scholar 

  • Mergeay M (1991) Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol 9: 17–24

    Article  PubMed  CAS  Google Scholar 

  • Mergeay M, Houba C and Gerits J (1978) Extracromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: Evidence from curing in a Pseudomonas. Arch Int Physiol Biochem 86: 440–442

    CAS  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P and Von Gijsegem F (1985) Alcaligens eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162: 328–334

    PubMed  CAS  Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D and Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: Towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27: 385–410

    Article  PubMed  CAS  Google Scholar 

  • Michalke K, Wickenheiser EB, Mehring M, Hirner AV and Hensel R (2000) Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. App Environ Microbiol 66: 2791–2796

    Article  CAS  Google Scholar 

  • Milne JB, Lorusso L, Lear W and Charlebois R (1994) The bioremediation of Se-containing effluents. Reduction of Se by Escherichia coli with selenocysteine lyase and cysteine desulferase activities. J Biol Chem 272: 22417–22424

    Google Scholar 

  • Momoshima N, Song L.X, Osaki S and Maeda Y (2001) Formation and emission of volatile polonium compound by microbial activity and polonium methylation with methylcobalamin. Environ Sci Technol 35: 2956–2960

    Article  PubMed  CAS  Google Scholar 

  • Momoshima N, Song LX, Osaki S and Maeda Y (2002). Biologically induced Po emission from fresh water. J Environ Radioact 63: 187–197

    Article  PubMed  CAS  Google Scholar 

  • Moore MD and Kaplan S (1992) Identification of intrinsic highlevel resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: Characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 174: 1505–1514

    PubMed  CAS  Google Scholar 

  • Moore MD and Kaplan S (1994) Members of the family Rhodospirillaceae reduce heavy-metal oxyanions to maintain redox poise during photosynthetic growth. ASM News 60: 17–23

    Google Scholar 

  • Morby AP, Turner JS, Huckle JW and Robinson NJ (1993) SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: Identification of a Zn inhibited DNA-protein complex. Nucleic Acids Res 91: 921–925

    Article  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT and Silver S (2002) Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiol Rev 26: 311–325

    Article  PubMed  CAS  Google Scholar 

  • Murata K, Fukuda Y, Shimosaka M, Watanabe K, Saikusa T and Kimura A (1985) Phenotypic character of the methylglyoxal resistance gene in Saccharomyces cerevisae: expression in Escherichia coli and application to breeding wild-type yeast strains. Appl Environ Microbiol 50: 1200–1207

    PubMed  CAS  Google Scholar 

  • Murphy RJ and Levy JF (1983) Production of copper oxalate by some copper tolerant fungi. Trans Br Mycol Soc 81: 165–168

    Article  CAS  Google Scholar 

  • Nascimento AMA and Chartone-Souza E (2003) Operon mer: Bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet Mol Res 2: 92–101

    PubMed  Google Scholar 

  • Nealson KH and Saffarini D (1994) Iron and manganese in anaerobic respiration: Environmental significance, physiology and regulation. Annu Rev Microbiol 48: 311–343

    Article  PubMed  CAS  Google Scholar 

  • Nepple BB, Kessi J and Bachofen R (2000) Chromate reduction by Rhodobacter sphaeroides. J Ind Microbiol Biotech 25: 198–203

    Article  CAS  Google Scholar 

  • Nies DH (1992a) Resistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid 27: 17–28

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (1992b) CzcR and CzcD, gene products affecting resistance to cobalt, zinc and cadmium (czc system) in Alcaligenes eutrophus. J Bacteriol 174: 8102–8110

    PubMed  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51: 730–750

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (2000) Heavy metal-resistant bacteria as extremophiles: Molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4: 77–82

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27: 313–339

    Article  PubMed  CAS  Google Scholar 

  • Nies DH and Silver S (1989a) Metal ion uptake by plasmid-free metal-sensitive Alcaligenes eutrophus strain. J Bacteriol 171: 4073–4075

    PubMed  CAS  Google Scholar 

  • Nies DH and Silver S (1989b) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus. J Bacteriol 171: 896–900

    PubMed  CAS  Google Scholar 

  • Nies DH and Silver S (1995) Ion efflux systems involved in bacterial metals resistance. J Ind Microbiol 14: 186–199

    Article  PubMed  CAS  Google Scholar 

  • Nies A, Nies DH and Silver S (1990) Nucleotide sequence and expression of aplasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem 265: 5648–5653

    PubMed  CAS  Google Scholar 

  • Novick RP, Murphy RP, Gryczan TJ, Barone E and Edelman I (1979) Penicillase plasmids of Staphylococcus aureus: restriction-deletion maps. Plasmid 2: 109–209

    Article  PubMed  CAS  Google Scholar 

  • Nucifora G, Chu L, Misra TK and Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid, pI258 cadA results from a cadmium-efflux ATPase. Proc Natl Acad Sci USA 86: 3544–3548

    Article  PubMed  CAS  Google Scholar 

  • O’Gara JP, Gomelsky M and Kaplan S (1997) Identification and molecular genetics analysis of multiple loci contributing to high-level tellurite resistance in Rhodobacter sphaeroides 2.4.1. Appl Environ Microbiol 63: 4713–4720

    PubMed  CAS  Google Scholar 

  • Odermatt A, Suter H, Krapf R and Solioz M (1993) Primary structure of two P-type ATPase involved in copper homeostasis in Enterococcus hirae. J Biol Chem 268: 12775–1777

    PubMed  CAS  Google Scholar 

  • Oh J-II and Kaplan S (2004) Oxydases as redox sensors in pigment synthesis. In: Zannoni D (ed) Respiration in Archaea and Bacteria. Diversity of Prokaryotic Respiratory Systems (Advances in Photosynthesis and Respiration, Vol 16), pp 287–309, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ohtake H, Fujii E and Toda K (1990) Bacterial reduction of hexavalent chromium: Kinetic aspects of chromate reduction by Enterobacter cloacae HO1. Biocatalysis 4: 227–235

    Article  CAS  Google Scholar 

  • Oremland RS, Steinberg NA, Maest AS, Miller LG and Hollibaugh JT (1990) Measurements of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environ Sci Tech 24: 1157–1164

    Article  CAS  Google Scholar 

  • Oremland RS, Steinberg NA, Presser TS and Miller LG (1991) In situ bacterial selenate reduction in the agricultural drainage systems of western Nevada. Appl Environ Microbiol 57: 615–617

    PubMed  CAS  Google Scholar 

  • Osborn AM, Kenneth DB, Strike P and Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19: 239–262

    Article  PubMed  CAS  Google Scholar 

  • Painter EP (1941) The chemistry and toxicity of selenium compounds with special reference to the selenium problem. Chem Rev 28: 179–213

    Article  CAS  Google Scholar 

  • Park MH, Wong BB and Lusk JE (1976) Mutants in three genes affecting transport of magnesium in Escherichia coli. J Bacteriol 126: 1096–1103

    PubMed  CAS  Google Scholar 

  • Paulsen IT and Saier Jr MR (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156: 99–103

    Article  PubMed  CAS  Google Scholar 

  • Pierru B, Grosse S, Pignol D and Sabaty M (2006) Genetic and biochemical evidence for the involvement of a molybdenumdependent enzymes in one of the selenite reduction pathways of Rhodobacter sphaeroides f. sp. denitrificans IL 106. Appl Env Microbiol 72: 3147–3153

    Article  CAS  Google Scholar 

  • Poole K, Krebes K, McNally C and Neshat S (1993) Multiple antibiotic resistance in Pseudomonas aeruginosa: Evidence for involvement of an efflux operon. J Bacteriol 175: 7363–7372

    PubMed  CAS  Google Scholar 

  • Qian H, Sahlman L, Eriksson PO, Hambraeus C, Edlund U and Sethson I (1998) NMR solution structure of the oxidized form of MerP, a mercuric ion binding protein involved in bacterial mercuric ion resistance. Biochemistry 37: 9316–9322

    Article  PubMed  CAS  Google Scholar 

  • Rabenstein D L and Tan K-S (1988) 77Se NMR studies of bis(alkylthio)selenides of biological thiols. Magn Res Chem 26: 1079–1085

    Article  CAS  Google Scholar 

  • Rathgeber C, Yurkova N, Stackebrandt E, Beatty JT and Yurkov V (2002). Isolation of tellurite- and selenite-resistant bacteria from hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environm Microbiol 68: 4613–4622

    Article  CAS  Google Scholar 

  • Reamer DC and Zoller WH (1980) Selenium biomethylation products from soil and sewage sludge. Science 208: 500–502

    Article  PubMed  CAS  Google Scholar 

  • Reniero D, Galli E and Barbieri P (1995) Cloning and comparison of mercury and organomercurial-resistance determinants from a Pseudomonas stutzeri plasmid. Gene 166: 77–82

    Article  PubMed  CAS  Google Scholar 

  • Rensing C and Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27: 385–410

    Article  CAS  Google Scholar 

  • Rojas DM and Vásquez CC (2005) Sensitivity to potassium tellurite of Escherichia coli cells deficient in CSD, CsdB and IscS cysteine desulfurases. Res Microbiol 156: 465–471

    Article  PubMed  CAS  Google Scholar 

  • Rosen BP (1996) Bacterial resistance to heavy metals and metalloids. J Biol Inorg Chem 1: 273–277

    Article  CAS  Google Scholar 

  • Rosen BP (2002a) Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A Mol Integr Physiol 133: 689–693

    Article  PubMed  Google Scholar 

  • Rosen BP (2002b) Biochemistry of arsenic detoxification. FEBS Lett 529: 86–92

    Article  PubMed  CAS  Google Scholar 

  • Rosen BP and Borbolla MG (1984) A plasmid-encoded arsenite pump produces arsenite resistance in Escherichia coli. Biochem Biophys Res Comm 124: 760–765

    Article  PubMed  CAS  Google Scholar 

  • Rosen BP, Weigel U, Karkaria C and Gangola P (1988) Molecular characterization of an anion pump. The arsA gene product is an arsenite (antimonite)-stimulated ATPase. J Biol Chem 263: 3067–3070

    PubMed  CAS  Google Scholar 

  • Rosen BP, Bhattacharjee H, Zhou T and Walmsley AR (1999) Mechanism of the ArsA ATPase. Biochim Biophys Acta 1461: 207–215

    Article  PubMed  CAS  Google Scholar 

  • Rouch DA, Lee BTD and Morby AP (1995) Understanding cellular responses to toxic agents: A model for mechanism choice in bacterial metal resistance. J Ind Microbiol 14: 132–141

    Article  PubMed  CAS  Google Scholar 

  • Sabaty M, Avazeri C, Pignol D and Verméglio A (2001) Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl Env Microbiol 67: 5122–5126

    Article  CAS  Google Scholar 

  • Sahlmann L, Wong W and Powlowski J (1997) A mercuric ion uptake role for the integral inner membrane protein MerC, involved in bacterial mercuric ion resistance. J Biol Chem 272: 29518–29526

    Article  Google Scholar 

  • Saltikov CW and Newman DK (2003) Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci USA 100: 10983–10988

    Article  PubMed  CAS  Google Scholar 

  • Saltikov CW, Cifuentes A, Venkateswaran K and Newman DK (2003) The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl Environ Microbiol 69: 2800–2809

    Article  PubMed  CAS  Google Scholar 

  • Sanders OI, Rensing C, Kuroda M, Mitra B and Rosen BP (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179: 3365–3367

    PubMed  CAS  Google Scholar 

  • Sandrin TR and Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111: 1093–1101

    PubMed  CAS  Google Scholar 

  • Schiering N, Kabsch W, Moore MJ, Distefano MD, Walsh CT and Pai EF (1991) Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature 352: 168–172

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T and Schlegel HG (1994) Combined nickel-cobaltcadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176: 7045–7054

    PubMed  CAS  Google Scholar 

  • Schreiner O and Sullivan M X (1911) Reduction by roots. Bot Gaz 51: 121–130

    Article  Google Scholar 

  • Scott JA and Palmer SJ (1990) Sites of cadmium uptake in bacteria used for biosorption. Appl Environ Microbiol 33: 221–225

    CAS  Google Scholar 

  • Seki H, Suzuki A and Mitsueda S (1998) Biosorption of heavy metal ions on Rhodobacter sphaeroides and Alcaligenes eutrophus H16. J Coll Inter Sci 197: 185–190

    Article  CAS  Google Scholar 

  • Seki H and Suzuki A (2002) Adsorption of heavy metals to floctype biosorbents. J Coll Inter Sci 249: 295–300

    Article  CAS  Google Scholar 

  • Shamberger RJ (1985) The genotoxicity of selenium. Mutat Res 154: 29–48

    PubMed  CAS  Google Scholar 

  • Shi J, Vlamis-Gardikas A, Aslund F, Holmgren A and Rosen BP (1999) Reactivity of glutaredoxin 1,2 and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J Biol Chem 274: 36039–36042

    Article  PubMed  CAS  Google Scholar 

  • Shrift A (1969) Aspects of selenium metabolism in higher plants. Annu Rev Plant Physiol 20: 475–494

    Article  CAS  Google Scholar 

  • Sidique T, Zhang Y, Oleke B C and Frankenberger W T (2006) Characterization of sediment bacteria involved in selenium reduction. Bioresource Technology 97: 1041–1049

    Article  CAS  Google Scholar 

  • Silver S and Keach D (1982) Energy-dependent arsenate efflux: The mechanism of plasmid-mediated resistance. Proc Natl Acad Sci USA 79: 6114–6118

    Article  PubMed  CAS  Google Scholar 

  • Silver S and Walderhaug M (1992) Gene regulation of plasmid- and chromosomal-determined inorganic transport in bacteria. Microbiol Rev 56: 195–228

    PubMed  CAS  Google Scholar 

  • Silver S and Phung LT (1996) Bacterial heavy metal resistance: new surprises. Ann Rev Microbiol 50: 753–789

    Article  CAS  Google Scholar 

  • Silver S and Phung LT (2005a) A bacterial view of the periodic table : Genes and protein for toxic inorganic ions. J Ind Microbiol Biotechnol 32: 587–605

    Article  PubMed  CAS  Google Scholar 

  • Silver S and Phung LT (2005b) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71: 599–608

    Article  PubMed  CAS  Google Scholar 

  • Silver S, Budd K, Leahy KM, Shaw WV, Hammond D, Novick RP, Willsky GR, Malamy MH and Rosenberg H (1981) Inducible plasmid-determined resistance to arsenate, arsenite and antimony (III) in Escherichia coli and Staphylococcus aureus. J Bacteriol 146: 983–996

    PubMed  CAS  Google Scholar 

  • Silver S, Nucifora G and Phung LT (1993) Human Menkes X-chromosome disease and the staphylococcal cadmium resistance ATPase: A remarkable similarity in protein sequences. Mol Microbiol 10: 7–12

    Article  PubMed  CAS  Google Scholar 

  • Smejan A, Wilkinson KJ and Rossier C (2003) Cd bioaccumulation by a freshwater bacterium, Rhodospirillum rubrum. Environ Sci Technol 37: 701–706

    Article  CAS  Google Scholar 

  • Smith K and Novick RP (1972) Genetic studies on plamid-linked cadmium resistance in Staphylococcus aureus. J Bacteriol 112: 761–772

    PubMed  CAS  Google Scholar 

  • Snavely MD, Florer JB, Miller CG and Maguire ME (1989) Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by CorA, MgtA and MgtB systems. J Bacteriol 171: 4761–4766

    PubMed  CAS  Google Scholar 

  • Solioz M and Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27: 183–195

    Article  PubMed  CAS  Google Scholar 

  • Solioz M and Vulpe C (1996) CPx-type ATPase: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21: 237–241

    PubMed  CAS  Google Scholar 

  • Springer SE and Huber RE (1973) Sulfate and selenate uptake and transport in wild and in two selenate-tolerant strains of Escherichia coli K12. Arch Biochem Biophys 156: 595–603

    Article  PubMed  CAS  Google Scholar 

  • Stadtman TC (1974) Selenium biochemistry. Science 183: 915–922

    Article  PubMed  CAS  Google Scholar 

  • Steinberg NA and Oremland RS (1990) Dissimilatory selenate reduction potential in a diversity of sediments types. Appl Environ Microbiol 56: 3550–3557

    PubMed  CAS  Google Scholar 

  • Stohs SJ and Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radie Biol Med 18: 321–336

    Article  CAS  Google Scholar 

  • Stolz JF and Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23: 615–627

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF, Basu P, Oremland RS (2002) Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 5: 201–207

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF, Basu P, Santini JM and Oremland RS (2006) Arsenic and selenium in microbial metabolism. Ann Rev Microbiol 60: 107–130

    Article  CAS  Google Scholar 

  • Straub KL, Benz M and Schink B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34: 181–186

    Article  PubMed  CAS  Google Scholar 

  • Switzer Blum J, Bindi AB, Buzzelli J, Stolz JF and Oremland RS (1998) Bacillus arsenoselenatis sp.nov., and Bacillus selenitireducens sp. nov.: Two haloalkaliphiles from Mono Lake, California, which respire oxyanions of selenium and arsenic. Arch Microbiol 171: 19–30

    Article  PubMed  CAS  Google Scholar 

  • Tabares LC, Bittel C, Carrillo N, Bortolotti A and Cortez N (2003) The single Superoxide dismutase of Rhodobacter capsulatus is a cambialistic, manganese-containing enzyme. J Bact 185: 3223–3227

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Hirayama H, Sakihama Y, Inagaki F, Yamato Y and Horikoshi K (2002) Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68: 3046–3054

    Article  PubMed  CAS  Google Scholar 

  • Tantaleàn JC, Araya MA, Saavedra CP, Fuentes DE, Perez JM, Calderon IL, Youderian P and Vasquez CC (2003) The Geobacillus stearothermophilus V iscS Gene, encoding cysteine desulfurase, confers resistance to potassium tellurite in Escherichia coli K-12. J Bacteriol 185: 5831–5737

    Article  PubMed  CAS  Google Scholar 

  • Taylor A (1996) Biochemistry of tellurium. Biol Trace Elem Res 55: 231–239

    Article  PubMed  CAS  Google Scholar 

  • Taylor DE (1999) Bacterial tellurite resistance. Trends Microbiol 7: 111–115

    Article  PubMed  CAS  Google Scholar 

  • Tetaz TJ and Luke RK (1983) Plasmid-controlled resistance to copper in Escherichia coli. J Bacteriol 154: 1263–1268

    PubMed  CAS  Google Scholar 

  • Thompson-Eagle ET, Frankenberger WT and Karlson U (1989) Volatilization of selenium by Alternaria alternata. Appl Environ Microbiol 55: 1406–1413

    PubMed  CAS  Google Scholar 

  • Tomas JM and Kay WW (1986) Tellurite susceptibility and nonplasmid mediated resistance in Escherichia coli. Antimicrob Agents Chemother 30: 127–131

    CAS  Google Scholar 

  • Toptchieva A, Sisson G, Bryden LJ, Taylor DE and Hoffman PS (2003) An inducible tellurite resistance operon in Proteus mirabilis. Microbiol 149: 1285–1295

    Article  CAS  Google Scholar 

  • Tremaroli V, Fedi S and Zannoni D (2007) Evidence for a tellurite dependent generation of reactive oxygen species and absence of a tellurite mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707. Arch Microbiol 187: 127–135

    Article  PubMed  CAS  Google Scholar 

  • Trevors JT, Stratton GW and Gadd GM (1986) Cadmium transport, resistance and toxicity in bacteria, algae and fungi. Can J Microbiol 32: 447–464

    Article  PubMed  CAS  Google Scholar 

  • Trutko SM, Akimenko VK, Suzina NE, Anisimova LA, Shlyapnikov MG, Baskunov BP, Duda VI and Boronin AM (2000) Involvement of the respiratory chain of gram-negative bacteria in the reduction of tellurite. Arch Microbiol 173: 178–186

    Article  PubMed  CAS  Google Scholar 

  • Tsai KJ and Linet AL (1993) Formation of a phosphorylated enzyme intermediate by the cadA Cd2+-ATPase. Arch Biochem Biophys 305: 267–270

    Article  PubMed  CAS  Google Scholar 

  • Turner RJ, Hou Y, Weiner JH and Taylor DE (1992a) The arsenical ATPase efflux pump mediates tellurite resistance. J Bacteriol 174: 3092–3094

    PubMed  CAS  Google Scholar 

  • Turner RJ, Weiner JH and Taylor DE (1992b) Use of diethyldithiocarbamate for quantitative determination of tellurite uptake by bacteria. Anal Biochem 204: 292–295

    Article  PubMed  CAS  Google Scholar 

  • Turner JS, Morby AP, Whitton BA, Gupta A and Robinson NJ (1993) Construction of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. J Biol Chem 268: 4494–4498

    PubMed  CAS  Google Scholar 

  • Turner RJ, Weiner JH and Taylor DE (1994a) In vivo complementation and site-specific mutagenesis of the tellurite resistance determinant kilAtelAB from IncP alpha plasmid RK2Ter. Microbiol 140: 1319–1326

    Article  CAS  Google Scholar 

  • Turner RJ, Weiner JH and Taylor DE (1994b) Characterization of the growth inhibition phenotype of the kilAtelAB operon from IncP alpha plasmid RK2Ter. Biochem Cell Biol 72: 333–342

    PubMed  CAS  Google Scholar 

  • Turner RJ, Weiner JH and Taylor DE (1995) Neither reduced uptake nor increased efflux is encoded by tellurite resistance determinants expressed in Escherichia coli. Can J Microbiol 41: 92–98

    Article  PubMed  CAS  Google Scholar 

  • Turner RJ, Taylor DE and Weiner JH (1997) Expression of Escherichia coli TehA givesresistance to antiseptics and disinfectants similar to that conferred by multidrug resistance efflux pumps. Antimicrob Agents Chemotherap 41: 440–444

    CAS  Google Scholar 

  • Turner RJ, Weiner JH and Taylor DE (1998) Selenium metabolism in Escherichia coli. BioMetals 11: 223–227

    Article  PubMed  CAS  Google Scholar 

  • Turner RJ, Aharonowitz Y, Weiner JH and Taylor DE (2001) Glutathione is a target in bacterial tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can J Microbiol 47: 33–40

    Article  PubMed  CAS  Google Scholar 

  • Tynecka Z, Gos Z and Zajac J (1981) Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J Bacteriol 147: 313–319

    PubMed  CAS  Google Scholar 

  • Van Fleet-Stalder V, Gürleyük H, Bachofen R and Chasteen T G (1997) Effects of growth conditions on production of methyl selenides in cultures of Rhodobacter sphaeroides. Ind Microbiol Biotechnol 19: 98–103

    Article  CAS  Google Scholar 

  • Van Fleet-Stalder V and Chasteen TG (1998) Using fluorine-induced chemiluminescence to detect organo-metalloids in the headspace of phototrophic bacterial cultures amended with selenium and tellurium. J Photochem Photobiol 43: 193–203

    Article  Google Scholar 

  • Van Fleet-Stalder V, Chasteen TG, Pickering IJ, George GN and Prince RC (2000) Fate of selenate and selenite metabolized by Rhodobacter sphaeroides. Appl Env Microbiol 66: 4849–4853

    Article  Google Scholar 

  • Van Iterson W and Leene W (1964a) A cytochemical localization of reductive sites in a Gram-negative bacterium: Tellurite reduction in Proteus vulgaris. J Cell Biol 20: 377–387

    Article  Google Scholar 

  • Van Iterson W and Leene W (1964b) A cytochemical localization of reductive sites in a Gram-positive bacterium: Tellurite reduction by Bacillus subtilis. J Cell Biol 20: 362–375

    Google Scholar 

  • Van Veen HW (1997) Phosphate transporter in prokaryotes: Molecules, mediators and mechanisms. Antonie van Leeuwenhoek 72: 299–315

    Article  PubMed  Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL and Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395: 65–67

    Article  PubMed  CAS  Google Scholar 

  • Vinceti M, Wei E T, Malagoli C, Bergomi M and Vivoli G (2001) Adverse health effects of selenium in humans. Rev Environ Health 16: 233–251

    PubMed  CAS  Google Scholar 

  • Watanabe M, Kawahara K, Sasaki K and Noparatnaraporn N (2003) Biosorption of cadmium ions using a photosynthetic bacterium, Rhodobacter sphaeroides S and a marine photosynthetic bacterium, Rhodovulum sp. and their biosorption kinetics. J Biosci Bioeng 95: 374–378

    PubMed  CAS  Google Scholar 

  • Watt RK and Ludden PW (1999) Ni2+ transport and accumulation in Rhodospirillum rubrum. J Bacteriol 181: 4554–4560

    PubMed  CAS  Google Scholar 

  • White C, Sayer JA and Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20: 503–516

    Article  PubMed  CAS  Google Scholar 

  • Whittaker JW (2000) Manganese Superoxide dismutase. Met Ions Biol Syst 37: 587–611

    PubMed  CAS  Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B and Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834–836

    Article  CAS  Google Scholar 

  • Wilson JR, Leang C, Morby AP, Hobman JL and Brown NL (2000) MerF is a mercury transport protein: Different structures but a common mechanism for mercuric ion transporters? FEBS Lett 472: 78–82

    Article  PubMed  CAS  Google Scholar 

  • Wildgust MA, McDonald P and White KN (1998) Temporal changes of 210Po in temperate coastal waters. Sci Total Environ 214: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Xiong AM and Jayaswal RK (1998) Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus. J Bacteriol 180: 4024–4029

    PubMed  CAS  Google Scholar 

  • Yarema MC and Curry SC (2005) Acute tellurium toxicity from ingestion of metal oxidizing solutions. Pediatrics 116: 319–321

    Article  Google Scholar 

  • Yoch DC (1979) Manganese, an essential trace element for N2 fixation by Rhodospirillum rubrum and Rhodopseudomonas capsulata: Role in nitrogenase regulation. J Bacteriol 140: 987–995

    PubMed  CAS  Google Scholar 

  • Yurkov V, Jappé J and Verméglio A (1996) Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Env Microbiol 62: 4195–4198

    CAS  Google Scholar 

  • Zadvorny OA, Zorin NA and Gogotov IN (2006) Transformation of metals and metal ions by hydrogenases from phototrophic bacteria. Arch Microbiol 184: 279–285

    Article  PubMed  CAS  Google Scholar 

  • Zadik PM, Chapman, PA and Siddons CA (1993) Use of tellurite for the selection of verocytotoxigenic Escherichia coli O157. J Med Microbiol 39: 155–158

    Article  PubMed  CAS  Google Scholar 

  • Zannoni D, Borsetti F, Harrison JJ and Turner RJ (2007) The bacterial response to the chalcogen metalloids Se and Te. Adv Microbial Physiol 53: 1–71

    Article  CAS  Google Scholar 

  • Zawadzka AM, Crawford RL and Paszczynski AJ (2006) Pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces and precipitates selenium and tellurium oxyanions. Appl Environ Microbiol 72: 3119–3129

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Fomenko DE and Gladyshev VN (2005) The microbial selenoproteome of the Sargasso Sea. Genome Biology 6: R37

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y and Frankenberger WT Jr (2005) Removal of selenium from river water by a microbial community enhanced with Enterobacter taylorae in organic carbon coated sand columns. Sci Tot Environ 346: 280–285

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Zannoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Borsetti, F., Martelli, P.L., Casadio, R., Zannoni, D. (2009). Metals and Metalloids in Photosynthetic Bacteria: Interactions, Resistance and Putative Homeostasis Revealed by Genome Analysis. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_33

Download citation

Publish with us

Policies and ethics