Skip to main content

The Roles of Cyclic Lipopeptides in the Biocontrol Activity of Bacillus subtilis

  • Chapter
  • First Online:
Recent Developments in Management of Plant Diseases

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 1))

Abstract

Bacillus subtilis species are well-known and extensively-used beneficial rhizobacteria for biocontrol of plant diseases. Their interest arises from their ability to generate a broad array of bioactive metabolites among which three families of cyclic lipopeptides (CLPs). These CLPs display a huge diversity of structures and physico-chemical and biological properties which probably account for an important part of the biocontrol potential of the producing strains. Beside their antimicrobial properties, they are also involved in colonization and motility as well as in the systemic stimulation of immune system of the host plant. We summarize here the current knowledge of CLPs activities and focus on the recent findings in the context of biocontrol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam A (2008) Elicitation de la résistance systémique induite chez la tomate et le concombre et activation de la voie de la lipoxygénase par des rhizobactéries non-pathogènes. Ph.D. thesis, University of Liège, Belgium

    Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    CAS  PubMed  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  • Bent E (2006) Induced systemic resistance mediated by Plant Growth-Promoting Rhizobacteria (PGPR) and Fungi (PGPF). In Multigenic and induced systemic resistance in plants. Tuzun, S., and Bent, E. (eds). New-York: Springer, pp. 225–258

    Chapter  Google Scholar 

  • Blée E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–321

    Article  PubMed  Google Scholar 

  • Bortolato M, Besson F, Roux B (1997) Inhibition of alkaline phosphatase by surfactin, a natural chelating lipopeptide from Bacillus subtilis. Biotechnol Lett 19:433–435

    Article  CAS  Google Scholar 

  • Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A 98:11621–11626

    Article  CAS  PubMed  Google Scholar 

  • Brasseur R, Braun N, El Kirat K, Deleu M, Mingeot-Leclercq MP, Dufrene YF (2007) The biologically important surfactin lipopeptide induces nanoripples in supported lipid Bilayers. Langmuir 23:9769–9772

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B, Prime APG et al (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  CAS  PubMed  Google Scholar 

  • Das K, Mukherjee AK (2006) Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains. Acta Trop 97:168–173

    Article  CAS  PubMed  Google Scholar 

  • De Boer M, Born P, Kindt F, Keurentjes JJB, van der Sluis I, van Loon LC, Bakker PAHM (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626–632

    Article  PubMed  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang LJ (2002) The phenylpropanoid pathway and plant defence – a genomics perspective. Mol Plant Pathol 3:371–390

    Article  CAS  PubMed  Google Scholar 

  • Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M (2005) Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta – Gen Subjects 1726:87–95

    Article  CAS  Google Scholar 

  • Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488

    Article  CAS  PubMed  Google Scholar 

  • Fraser GM, Hughes C (1999) Swarming motility. Curr Opin Microbiol 2:630–635

    Article  CAS  PubMed  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A (2002) Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology 92:976–985

    Article  PubMed  Google Scholar 

  • Haggag WM (2008) Isolation of bioactive antibiotic peptides from Bacillus brevis and Bacillus polymyxa against Botrytis grey mould in strawberry. Arch Phytopathol Plant Prot 41:477–491

    Article  CAS  Google Scholar 

  • Hamoen LW, Kausche D, Marahiel MA, van Sinderen D, Venema G, Serror P (2003) The Bacillus subtilis transition state regulator AbrB binds to the-35 promoter region of comK. FEMS Microbiol Lett 218:299–304

    Article  CAS  PubMed  Google Scholar 

  • Heerklotz H, Seelig J (2007) Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophys J Biophys Lett 36:305–314

    CAS  Google Scholar 

  • Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y (2002) Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693–698

    Article  CAS  PubMed  Google Scholar 

  • Hofemeister J, Conrad B, Adler B, Hofemeister B, Feesche J, Kucheryava N, Steinborn G, Franke P, Grammel N, Zwintscher A, Leenders F, Hitzeroth G, Vater J (2004) Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genomics 272:363–378. Epub

    Google Scholar 

  • Huang XQ, We ZY, Gao XP, Yang SJ, Cui YH (2008) Optimization of inactivation of endospores of Bacillus cereus in milk by surfactin and fengycin using a response surface method. Intl J Pept Res Ther 14:89–95

    Article  CAS  Google Scholar 

  • Hwang MH, Lim JH, Yun HI, Rhee MH, Cho JY, Hsu W, Park SC et al (2005) Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1 beta and inducible nitric oxide synthase and nitric oxide production in murine RAW 264.7 cells. Biotechnol Lett 27:1605–1608

    Article  CAS  PubMed  Google Scholar 

  • Hwang YH, Park BK, Lim JH, Kim MS, Park SC, Hwang MH, Yun HI (2007) Lipopolysaccharide-binding and neutralizing activities of surfactin C in experimental models of septic shock. Eur J Pharmacol 556:166–171

    Article  CAS  PubMed  Google Scholar 

  • Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22:456–468

    Article  CAS  PubMed  Google Scholar 

  • Julkowska D, Obuchowski M, Holland IB, Seror SJ (2005) Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J Bacteriol 187:65–76

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Oira S, Matsui K, Kanatomo S, Hase T (1974) Antitumor activity of Bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chem Pharm Bull (Tokyo) 22:938–944

    CAS  Google Scholar 

  • Kearns DB, Chu F, Rudner R, Losick R (2004) Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol 52:357–369

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Jung SY, Lee DK, Jung JK, Park JK, Kim DK, Lee CH et al (1998) Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A(2). Biochem Pharmacol 55:975–985

    Article  CAS  PubMed  Google Scholar 

  • Kim SD, Park SK, Cho JY, Park HJ, Lim JH, Yun HI, Park SC, Lee KY, Kim SK, Rhee MH et al (2006) Surfactin C inhibits platelet aggregation. J Pharm Pharmacol 58:867–870

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Kim JY, Kim SH, Bae HJ, Yi H, Yoon SH, Koo BS, Kwon M, Cho JY, Lee CE, Hong S (2007) Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett 581:865–871

    Article  CAS  PubMed  Google Scholar 

  • Kinsinger RF, Shirk MC, Fall R (2003) Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol 185:5627–5631

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang SA (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kracht M, Rokos H, Ozel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot (Tokyo) 52:613–619

    CAS  Google Scholar 

  • Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  PubMed  Google Scholar 

  • Leclère V, Marti R, Bechet M, Fickers P, Jacques P (2006) The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol 186:475–483

    Article  PubMed  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Adam A, Jourdan E, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A et al (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440

    Article  CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He HY, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus Uw85. Appl Environ Microbiol 60:2023–2030

    CAS  PubMed  Google Scholar 

  • Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J (1998) Target range of Zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37:6–11

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun 319:291–297

    Article  CAS  PubMed  Google Scholar 

  • Smith KP, Havey MJ, Handelsman J (1993) Suppression of Cottony Leak of Cucumber with Bacillus cereus strain Uw85. Plant Dis 77:139–142

    Article  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Ohno O, Ikeda Y, Sawa R, Homma Y, Igarashi M, Umezawa K et al (2006) Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin. J Antibiot 59:35–43

    Article  CAS  PubMed  Google Scholar 

  • Touré Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160

    Article  PubMed  Google Scholar 

  • Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot (Tokyo) 39:888–901

    CAS  Google Scholar 

  • Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25:289–297

    Article  CAS  PubMed  Google Scholar 

  • Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is funded by the Program F.R.F.C. No. 2.4624.06 (National Funds for Scientific Research, FRS-F.N.R.S, Belgium). G. Henry is recipient of a grant from the Formation à la Recherche dans l’Industrie et l’Agriculture (F.R.I.A.). M. Ongena and E. Jourdan are respectively research associate and post-doctoral researcher at the FRS-F.N.R.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ongena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ongena, M., Henry, G., Thonart, P. (2010). The Roles of Cyclic Lipopeptides in the Biocontrol Activity of Bacillus subtilis . In: Gisi, U., Chet, I., Gullino, M. (eds) Recent Developments in Management of Plant Diseases. Plant Pathology in the 21st Century, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8804-9_5

Download citation

Publish with us

Policies and ethics