Skip to main content

Pharmacological Applications of Biocompatible Carbon Nanotubes and Their Emerging Toxicology Issues

  • Chapter
Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 1))

Abstract

Since their discovery in 1991, carbon nanotubes (CNTs) have been studied for their application as diagnostic tools, chemical sensors, and vectors for drug delivery. Carbon nanotubes are of great interest because of their unique array of physical and chemical properties, including their high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, high thermal conductivity, and high surface area. The unique properties of carbon nanotubes also raise substantial concern about their potentially toxic effects on the environment and human health. This review focuses on the current pharmacological applications and emerging toxicology issues of biocompatible carbon nanotubes. Carbon nanotubes as agents for drug delivery, cancer therapeutics, along with their in vivo challenges and potential toxicity are discussed.

In Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes, Franco Cataldo and Tatiana Da Ros (eds.), Springer Vol. 1, Topics in Carbon Materials Chemistry and Physics, 2007.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787-1799.

    Article  CAS  Google Scholar 

  • Alyautdin R, Gothier D, Petrov V, Kharkevich D, Kreuter J (1995) Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles. Eur J. Pharm Biopharm 41:44-48.

    CAS  Google Scholar 

  • Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J (1997) Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 14:325-328.

    Article  CAS  Google Scholar 

  • Alyautdin RN, Tezikov EB, Ramge P, Kharkevich DA, Begley DJ, Kreuter J (1998) Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul 15:67-74.

    Article  CAS  Google Scholar 

  • Arthursson P, Edman P, Laakso T, Sjöholm I (1984) Characterization of polyacryl starch microparticles suitable as carrier for proteins and drugs. J Pharm Sci 73:1507-1513.

    Article  Google Scholar 

  • Arthursson P, Edman P, Sjöholm I (1985) Biodegradable microspheres II: immune response to a heterologous and an autologous protein entrapped in polyacryl starch microparticles. J Pharmacol Exp Ther 255-260.

    Google Scholar 

  • Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. LANCET 367:1241-1246.

    Article  Google Scholar 

  • Badaire S, Zakri C, Maugey M, Derre A, Barisci JN, Wallace G, Poulin P (2005) Liquid crystals of DNA-stabilized carbon nanotubes. Adv Mater 17:1673-1676.

    Article  CAS  Google Scholar 

  • Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7:1239-1267.

    Article  CAS  Google Scholar 

  • Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R (2002) Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett 2:25-28.

    Article  CAS  Google Scholar 

  • Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M (1995) Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 84:493-498.

    Article  CAS  Google Scholar 

  • Becker C, Jakse G (2007) Stem cells for regeneration of urological structures. Eur Urol 51:1217-1228.

    Article  Google Scholar 

  • Bekyarova E, Ni Y, Malarkey EB, Montana V, McWilliams JL, Haddon RC, Parpura V (2005) Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 1:3-17.

    Article  CAS  Google Scholar 

  • Bell TE (2006) Understanding Risk Assessment of Nanotechnology. Available at http://nano.gov/ Understanding_Risk_Assessment.pdf

    Google Scholar 

  • Bertling WM, Gareis M, Paspaleeva V, Zimmer A, Kreuter J, Nürnberg E, Harrer P (1991) Use of liposomes, viral capsids, and nanoparticles as DNA carriers. Biotechnol Appl Biochem 13:390-405.

    CAS  Google Scholar 

  • Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applications? Adv Mater 15:1765-1768.

    Article  CAS  Google Scholar 

  • Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 2005:571-577.

    Article  CAS  Google Scholar 

  • Birrenbach G, Speiser PP (1976) Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci 65:1763-1766.

    Article  CAS  Google Scholar 

  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121-126.

    Article  CAS  Google Scholar 

  • Bottini M, Magrini A, Dawson MI, Rosato N, Bergamaschi A, Mustelin T (2007) Noncovalently silylated carbon nanotubes decorated with quantum dots. Carbon 45:673-676.

    Article  CAS  Google Scholar 

  • Branemark PI, Breine U, Johansson B, Roylance PJ, Röckert H, Yoffey JM (1964) Regeneration of bone marrow. Acta Anat 59:1-46.

    Article  Google Scholar 

  • Brigger I, Morizet J, Aubert G, Chacun H, Terrier-Lacombe MJ, Couvreur P, Vassal G (2002) Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J Pharmacol Exp Ther 303:928-936.

    Article  CAS  Google Scholar 

  • Cai D, Mataraza JM, Qin ZH, Huang ZP, Huang JY, Chiles TC, Carnahan D, Kempa K, Ren ZF (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2:449-454.

    Article  CAS  Google Scholar 

  • Cai D, Doughty CA, Potocky TB, Dufort FJ, Huang Z, Blair D, Kempa K, Ren ZF, Chiles TC (2007) Carbon nanotube-mediated delivery of nucleic acids does not result in non-specific activation of B lymphocytes. Nanotechnology 18: Art. No. 365101.

    Google Scholar 

  • Capila I, Linhardt RJ (2002) Heparin - Protein interactions. Angew Chem Int Ed 41:391-412.

    Article  Google Scholar 

  • Chai C, Leong KW (2007) Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther 15:467-480.

    Article  CAS  Google Scholar 

  • Champion JA, Katare YK, Mitragotri S (2007) Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci USA 104:11901-11904.

    Article  CAS  Google Scholar 

  • Che GL, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346-349.

    Article  CAS  Google Scholar 

  • Chen CC, Liu YC, Wu CH, Yeh CC, Su MT, Wu YC (2005) Preparation of fluorescent silica nanotubes and their application in gene delivery. Adv Mater 17:404-407.

    Article  CAS  Google Scholar 

  • Chen X, Kis A, Zettl A, Bertozzi CR (2007) A cell nanoinjector based on carbon nanotubes. Proc Natl Acad Sci USA 104:8218-8222.

    Article  CAS  Google Scholar 

  • Couvreur P, Kante B, Roland M, Guiot P, Bauduin P, Speiser P (1979) Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol 31:331-332.

    CAS  Google Scholar 

  • Cuenca AG, Jiang HB, Hochwald SN, Delano M, Cance WG, Grobmyer SR (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107:459-466.

    Article  CAS  Google Scholar 

  • Cui DX, Tian FR, Ozkan CS, Wang M, Gao HJ (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73-85.

    Article  CAS  Google Scholar 

  • Cui DX, Tian FR, Coyer SR, Wang JC, Pan BF, Gao F, He R, Zhang YF (2007) Effects of antisense-myc-conjugated single-walled carbon nanotubes on HL-60 cells. J Nanosci Nanotechnol 7:1639-1646.

    Article  CAS  Google Scholar 

  • Das M, Mardyani S, Chan WCW, Kumacheva E (2006) Biofunctionalized pH-responsive microgels for cancer cell targeting: rational design. Adv Mater 18:80-83.

    Article  CAS  Google Scholar 

  • Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, Lyng FM (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 21:438-448.

    Article  CAS  Google Scholar 

  • Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, Wang T, Liu Y (2007) Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 45:1419-1424.

    Article  CAS  Google Scholar 

  • Devalapally H, Shenoy D, Little S, Langer R, Amiji M (2007) Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of

    Google Scholar 

  • hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother Pharmacol 59:477-484.

    Google Scholar 

  • Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61:727-728.

    Article  CAS  Google Scholar 

  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5-22.

    Article  CAS  Google Scholar 

  • Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6:1522-1528.

    Article  CAS  Google Scholar 

  • Eberli D, Atala A(2006) Tissue engineering using adult stem cells. Method Enzymol 420:287-302.

    Article  CAS  Google Scholar 

  • Edman P, Ekman B, Sjöholm I (1980) Immobilization of proteins in microspheres of biodegradable polyacryldextran. J Pharm Sci 69:838-842.

    Article  CAS  Google Scholar 

  • Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Vapor-grown carbon fibers (VGCFs) - Basic properties and their battery applications. Carbon 39:1287-1297.

    Article  CAS  Google Scholar 

  • Eriksson E and Branemark PI (1996) Osseointegrated from the Perspective of the Plastic Surgeon. Plast Reconstr Surg 93:626-637.

    Article  Google Scholar 

  • Fan XB, Tan J, Zhang GL, Zhang FB (2007) Isolation of carbon nanohorn assemblies and their potential for intracellular delivery. Nanotechnology 18: Art. No. 195103.

    Google Scholar 

  • Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliver Rev 58:1456-1459.

    Article  CAS  Google Scholar 

  • Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for Platinum(IV) anticancer drug design. J Am Chem Soc 129:8438-8439.

    Article  CAS  Google Scholar 

  • Ferrari M(2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161-171.

    Article  CAS  Google Scholar 

  • Fiorito S, Serafino A, Andreola F, Bernier P (2006) Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon 44:1100-1105.

    Article  CAS  Google Scholar 

  • Folkman J, Langer R, Linhardt RJ, Haudenschild C, Taylor S (1983) Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 221:719-725.

    Article  CAS  Google Scholar 

  • Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774-1785.

    Article  CAS  Google Scholar 

  • Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Electrochemical storage of lithium multiwalled carbon nanotubes. Carbon 37:61-69.

    Article  CAS  Google Scholar 

  • Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Let 77:2421-2423.

    Article  CAS  Google Scholar 

  • Frimberger D, Lin HK, Kropp BP (2006) The use of tissue engineering and stem cells in bladder regeneration. Regen Med 1:425-435.

    Article  CAS  Google Scholar 

  • Gardner RL (2007) Stem cells and regenerative medicine: principles, prospects and problems.

    Google Scholar 

  • C R Biol 330:465-473.

    Google Scholar 

  • Garibaldi S, Brunelli C, Bavastrello V, Ghigliotti G, Nicolini C (2006) Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology 17:391-397.

    Article  CAS  Google Scholar 

  • Geng Y, Dalhaimer P, Cai SS, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249-255.

    Article  CAS  Google Scholar 

  • Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G (2007)

    Google Scholar 

  • Hyaluronic acid hydrogen for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 104:11298-11303.

    Google Scholar 

  • Glück T (1890) Die Invaginationsmethode der Osteo- und Arthroplastik. Berl Klin Wochenschr Circulation 33:752-757.

    Google Scholar 

  • Glück T (1891) Referat über die Durch das Moderne Chirurgische Experiment GewonnenenPositiven Resultaten, Betreffende die Naht und den Ersatz von Defekten HöhererGewebe, Sowie über die Verwerthung Resorbirbarer und Lebendiger Tampons in der Chirurgie. Arch Klin Chir 41:186.

    Google Scholar 

  • Goldberg M, Langer R, Jia XQ (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomat Sci-Polym E 18:241-268.

    Article  CAS  Google Scholar 

  • Goldman L, Coussens C (2005) Implications of Nanotechnology for Environmental Health Research, Roundtable on Environmental Health Sciences, Research and Medicine, The National Academies Press.

    Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600-1603.

    Article  CAS  Google Scholar 

  • Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16:1564-1569.

    Article  CAS  Google Scholar 

  • Guo J, Zhang X, Li Q, Li W (2007) Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol 34:579-583.

    Article  CAS  Google Scholar 

  • Gurny R (1981) Preliminary study of prolonged acting drug delivery system for the treatment of glaucoma. Pharm Acta Helv 56:130-132.

    CAS  Google Scholar 

  • Gurny R, Peppas NA, Harrington DD, Banker GS (1981) Development of biodegradable and injectable lattices for controlled release of potent drugs. Drug Devind Pharm 7:1-25.

    Article  CAS  Google Scholar 

  • Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344-353.

    Article  CAS  Google Scholar 

  • Helland A, Wick P, Koehler A, Schmid K, Som C (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 115:1125-1131.

    Article  CAS  Google Scholar 

  • Henrymichelland S, Alonso MJ, Andremont A, Maincen P, Sauzieres J, Couvreur P (1987) Attachment of antibiotics to nanoparticles-preparation, drug-release and antimicrobial activity in vitro. Int J Pharm 35:121-127.

    Article  CAS  Google Scholar 

  • Hilder TA, Hill JM (2007) Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes. Nanotechnology 18: Art. No. 275704.

    Google Scholar 

  • Hillmyer MA (2007) Materials science - Micelles made to order. Science 317:604-605.

    Article  CAS  Google Scholar 

  • Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles - known and unknown health risks. J Nanobiotechnol 2:1-15.

    Article  CAS  Google Scholar 

  • Huczko A, Lange H (2001) Carbon nanotubes: experimental evidence for a null risk of skin irritation and allergy. Fullerene Sci Technol 9:247-250.

    CAS  Google Scholar 

  • Huczko A, Lange H, Calko E, Grubek-Jaworska H, Droszcz P (2001) Physiological testing of carbon nanotubes: are they asbestos-like? Fullerene Sci Technol 9:251-254.

    CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56-58.

    Article  CAS  Google Scholar 

  • Jan E, Kotov NA (2007) Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 7:1123-1128.

    Article  CAS  Google Scholar 

  • Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378-1383.

    Article  CAS  Google Scholar 

  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165:88-100.

    Article  CAS  Google Scholar 

  • Kam NWS, Dai HJ (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127:6021-6026.

    Article  CAS  Google Scholar 

  • Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850-6851.

    Article  CAS  Google Scholar 

  • Kam NWS, O’Connell M, Wisdom JA, Dai HJ (2005) Carbon nanotubes as multifunctional bio-logical transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600-11605.

    Article  CAS  Google Scholar 

  • Kam NWS, Liu ZA, Dai HJ (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 45:577-581.

    Article  CAS  Google Scholar 

  • Karp JM, Yeh J, Eng G, Fukuda J, Blumling J, Suh KY, Cheng J, Mahdavi A, Borenstein J, Langer R, Khademhosseini A (2007) Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip 7:786-794.

    Article  CAS  Google Scholar 

  • Kateb B, Van Handel M, Zhang L, Bronikowski MJ, Manohara H, Badie B (2007) Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. Neuroimage 37:S9-S17.

    Article  Google Scholar 

  • Ke PC, Qiao R (2007) Carbon nanomaterials in biological systems. J Phys-Condens Mat 19: Art. No. 373101 SEP 19 2007.

    Google Scholar 

  • Kong H, Luo P, Gao C, Yan D (2005) Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly. Polymer 46:2472-2485.

    Article  CAS  Google Scholar 

  • Kopf H, Joshi, RK, Soliva, M, Speiser, P (1976) Studium der Mizellpolymerisation in Gegenwart niedermolekularer Arzneistoffe. 1. Herstellung und Isolierung der Nanpartikel, Restmonomerenbestimmung, physikalischchemische. Daten Pharm Ind 38:281-284.

    CAS  Google Scholar 

  • Kopf H, Joshi, RK, Soliva, M, Speiser, P (1977) Studium der Mizellpolymerisation in Gegenwart niedermolekularer Arzneistoffe. 2. Bindungsartvon inkorporierten niedermolekularen Modellarzneistoffen an Nanopartikel auf Polyacrylamid-Basis. Restmonomerenbestimmung, physikalisch-chemische. Daten Pharm Ind 39:993-997.

    CAS  Google Scholar 

  • Kostarelos K (2003) Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Adv Colloid Interface 106:147-168.

    Article  CAS  Google Scholar 

  • Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2:108-113.

    Article  CAS  Google Scholar 

  • Kramer PA (1974) Albumin microspheres as vehicles for achieving specificity in drug delivery. J Pharm Sci 63:1646-1647.

    Article  CAS  Google Scholar 

  • Kreuter J (2007) Nanoparticles - a historical perspective. Int J Pharm 331:1-10.

    Article  CAS  Google Scholar 

  • Kumar A, Murugesan S, Pushparaj V, Xie J, Soldano C, John G, Nalamasu O, Ajayan PM, Linhardt RJ (2007) Conducting organic-metallic composite submicrometer rods based on ionic liquids. Small 3:429-433.

    Article  CAS  Google Scholar 

  • Labhasetwar V (2005) Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Curr Opin Biotechnol 16:674-680.

    Article  CAS  Google Scholar 

  • Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliver Rev 58:1460-1470.

    Article  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126-134.

    Article  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189-217.

    Article  CAS  Google Scholar 

  • Langer R (1998) Drug delivery and targeting. Nature 392:5-10.

    CAS  Google Scholar 

  • Langer R (2001) Perspectives: drug delivery - drugs on target. Science 293:58-59.

    Article  CAS  Google Scholar 

  • Langer R (2007) Editorial: Tissue engineering - perspectives, challenges, and future directions.

    Google Scholar 

  • Tissue Eng 13:1-2.

    Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920-926.

    Article  CAS  Google Scholar 

  • Langer R, Linhardt RJ, Hoffberg S, Larsen AK, Cooney CL, Tapper D, Klein M (1982) An enzymatic system for removing heparin in extracorporeal therapy. Science 217:261-263.

    Article  CAS  Google Scholar 

  • Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci USA 100:12741-12746.

    Article  CAS  Google Scholar 

  • Li JG, Li WX, Xu JY, Cai XQ, Liu RL, Li YJ, Zhao QF, Li QN (2007a) Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 22:415-421.

    Article  CAS  Google Scholar 

  • Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, Shvedova A, Luster MI, Simeonova PP (2007b) Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115:377-382.

    Article  CAS  Google Scholar 

  • Linhardt RJ, Ampofo SA, Fareed J, Hoppensteadt D, Mulliken JB, Folkman J (1992) Isolation and characterization of human heparin. Biochemistry 31:12441-12445.

    Article  CAS  Google Scholar 

  • Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253-1256.

    Article  CAS  Google Scholar 

  • Liu YF, Wang HF (2007) Nanomedicine - Nanotechnology tackles tumours. Nat Nanotechnol 2:20-21.

    Article  CAS  Google Scholar 

  • Liu Z, Cai WB, He LN, Nakayama N, Chen K, Sun XM, Chen XY, Dai HJ (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47-52.

    Article  CAS  Google Scholar 

  • Lohse DL, Linhardt RJ (1992) Purification and characterization of heparin lyases from Flavobacterium heparinum. J Biol Chem 267:24347-55.

    CAS  Google Scholar 

  • Lu Q, Moore JM, Huang G, Mount AS, Rao AM, Larcom LL and Ke PC (2004) RNA Polymer Translocation with Single-Walled Carbon Nanotubes. Nano Lett 4:2473-2477.

    Article  CAS  Google Scholar 

  • Maincent P, Le Verge R, Sado P, Couvreur P, Devissaguet JP (1986) Disposition kinetics and oral bioavailability of vincamine-loaded polyalkyl cyanoacrylate nanoparticles. J Pharm Sci 75:955-958.

    Article  CAS  Google Scholar 

  • Maeda Y, Kanda M, Hashimoto M, Hasegawa T, Kimura S, Lian YF, Wakahara T, Akasaka T, Kazaoui S, Minami N, Okazaki T, Hayamizu Y, Hata K, Lu J, Nagase S (2006) Dispersion and separation of small-diameter single-walled carbon nanotubes. J Am Chem Soc 128:12239-12242.

    Article  CAS  Google Scholar 

  • Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes. Nano Lett 5:1676-1684.

    Article  CAS  Google Scholar 

  • Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2:29-37.

    Article  CAS  Google Scholar 

  • Maynard AD (2006) Nanotechnology: assessing the risks. Nano Today 1:22-33.

    Article  Google Scholar 

  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87-107.

    Article  CAS  Google Scholar 

  • McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48:1180-1189.

    Article  CAS  Google Scholar 

  • Michael RN (2006) The History of Dental Implants. US Dentistry 24-26.

    Google Scholar 

  • Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M, Kreuter J, Langer K J (2006) Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. Pharmacol Exp Ther 317:1246-1253.

    Article  CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. Faseb J 19:311-330.

    Article  CAS  Google Scholar 

  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YYY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377-384.

    Article  CAS  Google Scholar 

  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221-231.

    CAS  Google Scholar 

  • Murr LE, Bang JJ, Esquivel EV, Guerrero PA, Lopez A (2004) Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air. J Nanopart Res 6:241-251.

    Article  CAS  Google Scholar 

  • Murugesan S, Mousa S, Vijayaraghavan A, Ajayan PM, Linhardt RJ (2006a) Ionic liquid-derived blood-compatible composite membranes for kidney dialysis. J Biomed Mater Res B Appl Biomater 79:298-304.

    Google Scholar 

  • Murugesan S, Park TJ, Yang HC, Mousa S, Linhardt RJ (2006b) Blood compatible carbon nanotubes - Nano-based neoproteoglycans. Langmuir 22:3461-3463.

    Article  CAS  Google Scholar 

  • Murugesan S, Mousa S, O’Connor LJ, Lincoln DW, Linhardt RJ (2007) Carbon inhibits vascular endothelial growth factor- and fibroblast growth factor-promoted angiogenesis. Febs Letters 581:1157-1160.

    Article  CAS  Google Scholar 

  • Na K, Kim S, Park K, Kim K, Woo DG, Kwon IC, Chung HM, Park KH (2007) Heparin/poly(Llysine) nanoparticle-coated polymeric microspheres for stem-cell therapy. J Am Chem Soc 129:5788-5789.

    Article  CAS  Google Scholar 

  • Nepal D, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3:1259-1265.

    Article  CAS  Google Scholar 

  • Nie SM, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257-288.

    Article  CAS  Google Scholar 

  • Nishiyama N (2007) Nanomedicine - Nanocarriers shape up for long life. Nat Nanotechnol 2:203-204.

    Article  CAS  Google Scholar 

  • Niu CM, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70:1480-1482.

    Article  CAS  Google Scholar 

  • Nohynek GJ, Lademann J, Ribaud C, Roberts MS (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251-277.

    Article  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823-839.

    Article  CAS  Google Scholar 

  • O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang YH, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342:265-271.

    Article  Google Scholar 

  • O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB (2002) Smalley RE Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593-596.

    Article  Google Scholar 

  • Ostomel TA, Shi QH, Tsung CK, Liang HJ, Stucky GD (2006) Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity. Small 2:1261-1265.

    Article  CAS  Google Scholar 

  • Pantarotto D, Singh R, McCarthy D, Erhardt M, Braind J-P, Prato M, Kostarelos K Bianco A (2004) Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery. Angew Chem Int Ed 43:5242-5246.

    Article  CAS  Google Scholar 

  • Patel HRH (2007) The stem cell revolution: a biologic nanotechnology. Eur Urol 51:1173-1174.

    Article  Google Scholar 

  • Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG (2007) Animal models for implant biomaterial research in bone: a review. Eur Cells Mater 13:1-10.

    CAS  Google Scholar 

  • Peng WD, Anderson DG, Bao YH, Padera RF, Langer R, Sawicki JA (2007) Nanoparticulate delivery of suicide DNA to murine prostate and prostate tumors. Prostate 67:855-862.

    Article  CAS  Google Scholar 

  • Peracchia MT, Vauthier C, Puisieux F, Couvreur P (1997) Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). J Biomed Mater Res 34:317-326.

    Article  CAS  Google Scholar 

  • Peracchia MT, Fattal E, Desmaele D, Besnard M, Noel JP, Gomis JM, Appel M, d’Angelo J, Couvreur P (1999) Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60:121-128.

    Article  CAS  Google Scholar 

  • Polizu S, Savadogo O, Poulin P, Yahia L (2006) Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J Nanosci Nanotechnol 6:1883-1904.

    Article  CAS  Google Scholar 

  • Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58-74.

    Article  CAS  Google Scholar 

  • Pushparaj VL, Manikoth SM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible nanocomposite thin film energy storage devices. Proc Natl Acad Sci USA 104: 13574-13577.

    Article  CAS  Google Scholar 

  • Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW (2005) Nanoparticle-induced platelet aggregation and vascular thrombosis. Brit J Pharmacol 146:882-893.

    Article  CAS  Google Scholar 

  • Raja PMV, Connolley J, Ganesan GP, Ci LJ, Ajayan PM, Nalamasu O, Thompson DM (2007) Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells. Toxicol Lett 169:51-63.

    Article  CAS  Google Scholar 

  • Rao CNR, Satishkumar BC, Govindaraj A, Nath M(2001) Nanotubes. Chemphyschem 2:78-105.

    Article  CAS  Google Scholar 

  • Ratner BD, Schoen FJ, Hoffman AS, Lemons JE, Hoffman A (2004) Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed. Elsevier, New York.

    Google Scholar 

  • Regev O, ElKati PNB, Loos J, Koning CE (2004) Preparation of conductive nanotube-polymer composites using latex technology. Adv Mater 16:248-251.

    Article  CAS  Google Scholar 

  • Reilly RM (2007) Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J Nucl Med 48:1039-1042.

    Article  CAS  Google Scholar 

  • Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C (2003) Supramolecular selfassembly of lipid derivatives on carbon nanotubes. Science 300:775-778.

    Article  CAS  Google Scholar 

  • Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, Kohgo T, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Ishiguro M, Hatakeyama R, Watari F, Tohji K (2005) Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-I in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst 1:176-182.

    Article  CAS  Google Scholar 

  • Sayes CM, Liang F, Hudson JL, Mendez J, Guo WH, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of singlewalled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135-142.

    Article  CAS  Google Scholar 

  • Scheffel U, Rhodes BA, Natarajan TK, Wagner HN Jr (1972) Albumin microspheres for study of the reticuloendothelial system. J Nucl Med 13:498-503.

    CAS  Google Scholar 

  • Service RF (1998) Nanotubes: The Next Asbestos? Science 281:941.

    Article  CAS  Google Scholar 

  • Shao N, Lu S, Wickstrom E, Panchapakesan B (2007) Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnology 18: Art. No. 315101.

    Google Scholar 

  • Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909-1926.

    Article  CAS  Google Scholar 

  • Shvedova AA, Kisin ER, Murray AR, Gorelik O, Arepalli S, Castranova V, Young SH, Gao F, Tyurina YY, Oury TD, Kagan VE (2007) Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol Appl Pharm 221:339-348.

    Article  CAS  Google Scholar 

  • Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 127:4388-4396.

    Article  CAS  Google Scholar 

  • Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 103:3357-3362.

    Article  CAS  Google Scholar 

  • Son SJ, Bai X, Lee SB (2007a) Inorganic hollow nanoparticles and nanotubes in nanomedicine. Part 1. Drug/gene delivery applications. Drug Discov Today 12:650-656.

    Article  CAS  Google Scholar 

  • Son SJ, Bai X, Lee SB (2007b) Inorganic hollow nanoparticles and nanotubes in nanomedicine. Part 2: imaging, diagnostic, and therapeutic applications. Drug Discov Today 12:657-663.

    Article  CAS  Google Scholar 

  • Speiser P, Khanna SC (1970) Perlpolymerisate, eine neue perorale Darre-ichungsform und ihre Beeinflussung durch Arzneistoffe. Präpar Pharm 6:1-4.

    Google Scholar 

  • Sugibayashi K, Morimoto Y, Nadai T, Kato Y (1977) Drug-carrier property of albumin microspheres in chemotherapy. I. Tissue distribution of microsphere-entrapped 5-fluorouracil in mice. Chem Pharm Bull 25:3433-3434.

    CAS  Google Scholar 

  • Sugibayashi K, Akimoto M, Morimoto Y (1979a) Drug-carrier property of albumin microspheres in chemotherapy III. Effect of microsphere-entrapped 5-fluorouracil on ehrlich ascites-carcinoma in mice. J Pharmacobio-Dynam 2:350-355.

    CAS  Google Scholar 

  • Sugibayashi K, Morimoto Y, Nadai T, Kato Y, Hasegawa A, Arita T (1979b) Drug-carrier property of albumin microspheres in chemotherapy. II. Preparation and tissue distribution in mice of microsphere-entrapped 5-fluorouracil. Chem Pharm Bull 27:204-209.

    CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105-1136.

    Article  CAS  Google Scholar 

  • Thompson KP (2007) Near vision accommodating intraocular lens with adjustable power. U.S. patent No. 5,607,472. Retrieved on 2007-02-04.

    Google Scholar 

  • Tong R, Cheng JJ (2007) Anticancer polymeric nanomedicines. Polym Rev 47:345-381.

    Article  CAS  Google Scholar 

  • Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89:42-50.

    Article  CAS  Google Scholar 

  • Venkatesan N, Yoshimitsu J, Ito Y, Shibata N, Takada K (2005) Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 26:7154-7163.

    Article  CAS  Google Scholar 

  • Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7:415-418.

    Article  CAS  Google Scholar 

  • Wang HF, Wang J, Deng XY, Sun HF, Shi ZJ, Gu ZN, Liu YF, Zhao YL (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4:1019-1024.

    Article  CAS  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117-125.

    Article  CAS  Google Scholar 

  • Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan RJ (2007) Biological properties of carbon nanotubes. J Nanosci Nanotechnol 7:1284-1297.

    Article  CAS  Google Scholar 

  • Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121-131.

    Article  CAS  Google Scholar 

  • Widder K, Flouret G, Senyei A (1979) Magnetic microspheres: synthesis of a novel parenteral drug carrier. J Pharm Sci 68:79-82.

    Article  CAS  Google Scholar 

  • Widder KJ, Marino PA, Morris RM, Howard DP, Poore GA, Senyei AE (1983a) Selective targeting of magnetic albumin microspheres to the Yoshida sarcoma: ultrastructural evaluation of microsphere disposition. Eur J Cancer Clin Oncol 19:141-147.

    Article  CAS  Google Scholar 

  • Widder KJ, Morris RM, Poore GA, Howard DP, Senyei AE (1983b) Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur J Cancer Clin Oncol 19:135-139.

    Article  CAS  Google Scholar 

  • Worle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261-1268.

    Article  CAS  Google Scholar 

  • Wu GT, Wang CS, Zhang XB, Yang HS, Qi ZF, He PM, Li WZ (1999) Structure and lithium insertion properties of carbon nanotubes. J Electrochem Soc 146:1696-1701.

    Article  CAS  Google Scholar 

  • Wu Y, Hudson JS, Lu Q, Moore JM, Mount AS, Rao AM, Alexov E, Ke PC (2006) Coating singlewalled carbon nanotubes with phospholipids. J Phys Chem B 110:2475-2478.

    Article  CAS  Google Scholar 

  • Xiao H, Yang LS, Zou HF, Yang L, Le XC (2007) Analysis of oxidized multi-walled carbon nanotubes in single K562 cells by capillary electrophoresis with laser-induced fluorescence. Anal Bioanal Chem 387:119-126.

    Article  CAS  Google Scholar 

  • Yang J, Yamato M, Nishida K, Ohki T, Kanzaki M, Sekine H, Shimizu T, Okano T (2006) Cell delivery in regenerative medicine: the cell sheet engineering approach. J Control Release 116:193-203.

    Article  CAS  Google Scholar 

  • Yinghuai Z, Peng AT, Carpenter K, Maguire JA, Hosmane NS, Takagaki M (2005) Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J Am Chem Soc 127:9875-9880.

    Article  CAS  Google Scholar 

  • Yu BZ, Yang JS, Li WX (2007) In vitro capability of multi-walled carbon nanotubes modified with gonadotrophin releasing hormone on killing cancer cells. Carbon 45:1921-1927.

    Article  CAS  Google Scholar 

  • Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F, Rusling JF (2006) Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 128:11199-11205.

    Article  CAS  Google Scholar 

  • Yurekli K, Mitchell CA, Krishnamoorti R (2004) Small-angle neutron scattering from surfactantassisted aqueous dispersions of carbon nanotubes. J Am Chem Soc 126:9902-9903.

    Article  CAS  Google Scholar 

  • Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003a) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338-342.

    Article  CAS  Google Scholar 

  • Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, McLean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003b) Structurebased carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545-1548.

    Article  CAS  Google Scholar 

  • Zolle I, Hosein F, Rhodes BATK, Wagner HN Jr (1970) Human serum albumin microspheres for studies of the reticuloendothelial system. J Nucl Med 11:379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Park, TJ., Martin, J.G., Linhardt, R.J. (2008). Pharmacological Applications of Biocompatible Carbon Nanotubes and Their Emerging Toxicology Issues. In: Cataldo, F., Da Ros, T. (eds) Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Carbon Materials: Chemistry and Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6845-4_12

Download citation

Publish with us

Policies and ethics