NECTARIES AND NECTAR

NECTARIES AND NECTAR

Edited by

Susan W. Nicolson Department of Zoology and Entomology, University of Pretoria, South Africa

Massimo Nepi Department of Environmental Sciences, University of Siena, Italy

and

Ettore Pacini Department of Environmental Sciences, University of Siena, Italy

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4020-5936-0 (HB) ISBN 978-1-4020-5937-7 (e-book)

Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

Cover illustrations from left to right:

Left: Cross section through the base of an ornamental tobacco (*Nicotiana langsdorfii* x *Nicotiana sanderae* Hort var Sutton's Scarlett Line LxS8) flower showing the large, bright-orange floral nectary located at the base of the ovary (picture by Robert Thornburg).

Middle: Flower in an inflorescence of *Fatsia japonica* with large nectar droplets on the surface of the yellow nectary (picture by Massimo Nepi).

Right: Lycus fernandezi (Lycidae) drinking nectar of Aloysia wrightii (Verbenaceae), New Mexico (picture by Bob Barber).

Background: Scanning electron micrograph of the nectary surface of *Cyclanthera pedata*. Nectar droplets are secreted by multicellular capitate trichomes (picture by Fabrizio Ciampolini).

All Rights Reserved © 2007 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Contents at a glance

Table of contents	vii
Contributing authors	xiii
Preface	xv
Chapter 1: Introduction Ettore Pacini and Susan W. Nicolson	1
Chapter 2: A systematic survey of floral nectaries GABRIEL BERNARDELLO	19
Chapter 3: Nectary structure and ultrastructure MASSIMO NEPI	129
Chapter 4: Nectar production and presentation Ettore Pacini and Massimo Nepi	167
Chapter 5: Nectar chemistry Susan W. Nicolson and Robert W. Thornburg	215
Chapter 6: Molecular biology of the <i>Nicotiana</i> floral nectary ROBERT W. THORNBURG	265
Chapter 7: Nectar consumers Susan W. Nicolson	289
Chapter 8: Ecological and evolutionary aspects of floral nectars in Mediterranean habitats THEODORA PETANIDOU	343
Index to scientific names	377
Subject index	387

Contents

CONTR	RIBUT	TING A	AUTHORS	xiii
PREFA	CE			XV
			RODUCTION	
			ND SUSAN W. NICOLSON	1
1			y origins	1
2 3			nalogous to nectar xtrafloral nectaries	3 6
3 4		ar comp		8
5			n of this volume	11
			STEMATIC SURVEY OF FLORAL	NECTARIES
		BERNAR		10
1		duction		19
2 3			gymnosperms	21
3			angiosperms	24 24
	3.1	Divers		24
		3.1.2	Nectar presentation Structure	24 27
		3.1.2		32
			Symmetry	34
		3.1.5	5 5	35

3.1.6

Colour

3.2 Factors influencing nectary diversity
3.3 Basic types of floral nectaries
3.4 Nectariferous spurs

36

36 38 43

3.5	Pattern	ns of variability in nectaries	45
	3.5.1	Asteraceae	46
	3.5.2	Brassicaceae	47
		Cucurbitaceae	48
	3.5.4	Euphorbiaceae	49
		Ranunculaceae	50
	3.5.6	Solanaceae	51
3.6	Nectar	ies and deceit pollination	51
	3.6.1	Apocynaceae	52
	3.6.2	Bignoniaceae	52
	3.6.3	Orchidaceae	53
3.7	Relictu	al nectaries in anemophilous species	53
3.8		nution of nectary types	54
	3.8.1	Early-branching lineages	56
	3.8.2	Magnoliids	57
	3.8.3	Early-branching monocots	58
	3.8.4	Monocots	58
	3.8.5	Commelinids	60
	3.8.6	Ceratophyllales	62
	3.8.7	Eudicots	62
	3.8.8	Core Eudicots	63
	3.8.9	Rosids	66
	3.8.10	Eurosids I	68
	3.8.11	Eurosids II	73
	3.8.12	Asterids	76
	3.8.13	Euasterids I	79
	3.8.14	Euasterids II	82
3.9	Evolut	ionary trends	84
Appendix			122

CHAPTER 3: NECTARY STRUCTURE AND ULTRASTRUCTURE

MAS	SIMO	Nepi		
1	Introduction			129
2	Nect	ary stru	cture and ultrastructure	131
	2.1	Épider	mis	132
		2.1.1	Secretory trichomes	138
		2.1.2	Nectary-modified stomata	139
	2.2	Nectar	y parenchyma	142
		2.2.1	Patterns of plastid development in nectary parenchyma	
			cells	148
	2.3	Subnec	ctary parenchyma	152
	2.4 Nectary vasculature			152
3	Gyno	opleural	(septal) nectaries	154
4	Extrafloral nectaries 15			155
5	Nect	ary hist	ochemistry	157

CHAPTER 4: NECTAR PRODUCTION AND PRESENTATION

Ett	ORE PACINI AND MASSIMO NEPI			
1	Introduction	167		
2	Nectar secretion mechanism and models of nectary function	168		
3	Dynamics of nectar production	174		
	3.1 Nectar reabsorption: resource recovery and homeostasis	177		
	3.2 Nectar standing crop	182		
4	The source of nectar components	183		
5	Ecophysiological significance of parenchyma plastids	187		
6	Nectar presentation	190		
	6.1 Floral nectaries	190		
	6.2 Extrafloral nectaries	195		
7	Fate of nectar and nectaries	195		
8	Variability of nectar characteristics			
	8.1 Environmental variables	200		
	8.2 Intraspecies variability	201		
	8.3 Interpopulation differences	204		
	8.4 Variability and experimental design	205		

CHAPTER 5: NECTAR CHEMISTRY

SUSA	NW.	NICOLSON AND ROBERT W. THORNBURG		
1	Introduction 2			
2	2 Water			
	2.1	Nectar concentration	217	
	2.2	Chemical and microclimatic influences on nectar		
		concentration	218	
	2.3	Viscosity and feeding rates	221	
3	Suga		224	
	3.1	Constancy of sugar composition within species	225	
	3.2	The use of sugar ratios can be misleading	227	
	3.3	Is sugar composition determined by floral visitors or common		
		ancestry?	229	
4	Inorg	ganic ions	232	
5	Amino acids			
	5.1	Non-protein amino acids	235	
	5.2	Nectar amino acids are under the control of environmental		
		factors	235	
	5.3	Contribution of amino acids to the taste of nectar	237 238	
6	Proteins			
	6.1	Proteins in leek nectar	240	
	6.2	Nectar redox cycle	241	
7	Other nectar constituents			
	7.1	Lipids	245	
		Organic acids	246	
	7.3	Phenolics	246	
	7.4	Alkaloids	247	
	7.5	Terpenoids	248	
8	Conclusion 2			

CHAPTER 6: MOLECULAR BIOLOGY OF THE *NICOTIANA* FLORAL NECTARY

BERT W. THORNBURG			
Introduction			
The ornamental tobacco nectary	267		
Developmental processes	268		
3.1 Origin of the floral nectary	269		
3.2 Conversion of chloroplasts into chromoplasts	270		
3.3 Filling of the nectary	271		
Protection of the gynoecium	273		
Gene expression	273		
5.1 Macroarray analysis identifies defence genes	274		
5.1.1 Role of hydrogen peroxide in plant stress and defence	274		
5.1.2 Role of ascorbate in plant stress and defence	275		
5.2 EST analysis	276		
5.3 Nectary-specific gene expression	277		
Nectary molecular biology in other species	278		
6.1 Other nectary-expressed genes	278		
6.2 Metabolism and nectar production	280		
6.3 Hormones and nectar production	281		
6.4 CO_2 and nectar	282		
	 Introduction The ornamental tobacco nectary Developmental processes 3.1 Origin of the floral nectary 3.2 Conversion of chloroplasts into chromoplasts 3.3 Filling of the nectary Protection of the gynoecium Gene expression 5.1 Macroarray analysis identifies defence genes 5.1.1 Role of hydrogen peroxide in plant stress and defence 5.1.2 Role of ascorbate in plant stress and defence 5.2 EST analysis 5.3 Nectary-specific gene expression Nectary molecular biology in other species 6.1 Other nectary-expressed genes 6.2 Metabolism and nectar production 6.3 Hormones and nectar production 		

CHAPTER 7: NECTAR CONSUMERS

DUL		
1	Introduction	289
2	Not all floral nectar drinkers are pollinators	292
	2.1 Generalization and specialization in pollination systems	292
	2.2 Nectar robbing and nectar theft	293
3	Insect nectar consumers	295
	3.1 Coleoptera	297
	3.2 Diptera	298
	3.3 Lepidoptera	300
	3.4 Hymenoptera	304
	3.4.1 Wasps	304
	3.4.2 Bees	305
	3.4.3 Ants	310
4	Vertebrate nectar consumers	312
	4.1 Lizards	313
	4.2 Birds	313
	4.3 Bats	320
	4.4 Other mammals	321
5	What happens to nectar during pollinator shifts?	322
6	Conclusion	326

CHAPTER 8: ECOLOGICAL AND EVOLUTIONARY ASPECTS OF FLORAL NECTARS IN MEDITERRANEAN HABITATS

TH	EODOR	A PETANIDOU	
1	Nect	tar secretion in Mediterranean habitats	343
2	Cha	racteristics of Mediterranean nectars	345
	2.1	Nectar constituents of Mediterranean nectars	345
		2.1.1 Sugars	345
		2.1.2 Amino acids	346
		2.1.3 Minerals in floral nectars	348
		2.1.4 Secondary compounds	348
		2.1.5 Nectar viscosity	349
	2.2	Issues of nectar quantity and quality	350
	2.3	Plant species with no nectar	352
3	Fact	ors shaping nectar secretion and other characteristics	353
	3.1	Temperature	353
	3.2	Humidity	354
	3.3	Light intensity	354
	3.4	Water stress	355
	3.5	Nutrient stress	356
	3.6	Ecological succession	357
4	Mate	ching nectars and flower types	358
5	Nect	tar and the pollinator interface	360
	5.1	Relating consumers to deep-flower nectars	360
	5.2	Nectar sugars and pollinators	360
	5.3	Nectar amino acids and pollinators	361
	5.4	Nectar minerals and pollinators	363
	5.5	Nectar secondary compounds and pollinators	364
	5.6	Floral nectar, floral diversity, and bee diversity	364
	5.7	What types of nectars do pollinators prefer?	365
6		tar and management of Mediterranean habitats	366
	6.1	Introduced and invasive plants: effects on wild flowers and	
		bees	366
	6.2	Invasive bees: beekeeping, bumblebee management, and wild	
		bee conservation	367
INDEX	TO S	CIENTIFIC NAMES	377

SUBJECT INDEX

387

Contributing authors

GABRIEL BERNARDELLO

Instituto Multidisciplinario de Biología Vegetal (Universidad Nacional de Córdoba-CONICET), Casilla de Correo 495, 5000 Córdoba, Argentina bernarde@imbiv.unc.edu.ar

MASSIMO NEPI

Department of Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy nepim@unisi.it

SUSAN W. NICOLSON

Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa swnicolson@zoology.up.ac.za

ETTORE PACINI

Department of Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy pacini@unisi.it

THEODORA PETANIDOU

Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, 81100 Mytilene, Greece t.petanidou@aegean.gr

ROBERT W. THORNBURG

Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA thorn@iastate.edu

Preface

"Nectar is the drink of the gods"... since the time of Homer (the *Iliad*, 800 BC), nectar has been known as a unique biological fluid with mystical properties; yet it is only now that the true chemistry of nectar is being defined. Nectar is a complex biochemical milieu offering much more than sugars to visiting pollinators. Its consumption is central to one of two types of plant–animal interaction that have contributed so much to global biodiversity: herbivory and pollination. All types of plants, regardless of their position on the evolutionary scale, are eaten by herbivorous animals. Nectar, however, is the product of a mutualism in which animals consume nectar and are involuntarily responsible for the transport of pollen or, in some cases, for plant defence. The presence of nectaries, in either reproductive or vegetative parts of a plant, symbolizes that plant's benevolent relationship with animals.

Nectaries are interesting not only for our knowledge of plant biology, but also because they are involved in the pollination of many edible and rare plants, thus having huge economic and ecological importance. About a third of our food may be derived from bee-pollinated crops. In addition, nectar is the raw material of honey. Other than bees, nectar is food for an enormous variety of insects, a tenth of all bird species, and some mammals; when nectar is not an animal's main food, it often provides an energy drink. Nectar biology has many overlapping facets, evident in the chapters that follow: botany, chemistry, zoology, and ecology.

The stimulus for this volume was the meeting of a group of nectar biologists in Italy, at the first international conference dedicated exclusively to nectar and nectaries. The meeting was held in Montalcino, Tuscany, in May 2002, and the proceedings were published as a special volume of *Plant Systematics and Evolution* (238, issues 1–4, 2003). The topics ranged from the molecular biology of tobacco nectar to the potential effects of global climate change on floral nectar production, and we decided it was the right time for a new book on nectar. The cooperation of the three co-editors was also assisted by an award from the Joint Italy/South Africa Science and Technology Agreement (2002–2003).

The authors of the various chapters would like to thank the following people and institutions for their help:

Chapter 1. Braam van Wyk (University of Pretoria, South Africa) reviewed the manuscript.

Chapter 2. The University of Connecticut Libraries, G. Caram (IMBIV), M.A. Plaza, and E. Werner (IBODA) provided bibliographical support. L.E. Mana, F. Di Tada, M.L. Las Peñas, and F. Chiarini helped with the literature cited, and L. Ribulgo and M.L. Las Peñas with the illustrations. CONICET and Universidad Nacional de Córdoba (Argentina) provided financial assistance. Tito Prevotel helped in every possible way, not only in this project, but also in most of my scientific and personal adventures; my debt to him is certainly beyond payment.

Chapters 3 and 4. Art Davis (University of Saskatchewan, Canada) for his invaluable suggestions and discussions that greatly improved the quality of the manuscript; Malgorzata Stpiczyńska for her helpful comments and for providing a picture for Chapter 3; Fabrizio Ciampolini for SEM and TEM pictures, Laura Cresti and Massimo Guarnieri for technical support. We are indebted to José Vesprini for sharing his data on *Helleborus* nectaries. The research was funded by PAR (Piano di Ateneo per la Ricerca, Università di Siena) and PRIN (Progetti di Ricerca di Interesse Nazionale, Ministero dell'Università e della Ricerca Scientifica).

Chapter 5. Steve Johnson (University of KwaZulu-Natal, South Africa) and Rob Raguso (University of Michigan, USA) for comments on the manuscript; Petra Wester (Johannes Gutenberg-Universität, Mainz) for providing a copy of Schwerdtfeger's 1996 thesis; Angela Kőhler and Carolina Leseigneur for help with literature (also for Chapter 7); the National Research Foundation (South Africa) and National Science Foundation (USA) for support.

Preface

Chapter 6. Patrick von Aderkas (University of Victoria, Canada) revised the manuscript; the National Science Foundation (USA) supported the research.

Chapter 7. Trish Fleming and Todd McWhorter (Murdoch University, Australia) for comments on the manuscript; Luke Verburgt for figures; Cromwell Purchase, Tim Jackson, Steve Johnson, Dennis Hansen, and Bob Barber for permission to use their photographs; National Research Foundation (South Africa) for support.

Chapter 8. Dan Eisikowitch (Tel Aviv University, Israel) and Dr Ellen Lamborn for invaluable comments on earlier drafts of the manuscript.

On the production side, we thank Marthina Mössmer for excellent copyediting and indexing, and Zuzana Bernhart and Ineke Ravesloot for guiding the process at Springer.

Sue Nicolson Massimo Nepi Ettore Pacini

November 2006