Skip to main content

The Role of the Leaf Apoplast in Manganese Toxicity and Tolerance in Cowpea (Vigna Unguiculata L. Walp)

  • Chapter
The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions

Abstract

First visible Mn toxicity symptoms are brown spots on older leaves, followed by chlorosis, necrosis and leaf shedding. The brown spots represent local accumulations of oxidized Mn (MnIV) and oxidized phenols in the cell wall, especially of the epidermis. Differences in Mn resistance between cv TVu 91 (Mn-sensitive) and cv TVu 1987 (Mntolerant) are due to higher Mn tissue tolerance. The physiological mechanism of Mn toxicity and Mn tolerance are still poorly understood. The apoplast was proposed to be the most important compartment for development of Mn toxicity and Mn tolerance.

The detailed analysis and characterization of the proteome of the leaf apoplast confirm the particular role of PODs in the expression of Mn toxicity mediating H2O2 production/consumption and the oxidation of phenols in the leaf apoplast. The observed Mninduced release of pathogenesis-related like proteins (PR-like) is attributed to a general stress response. Since PR-like proteins are induced by various other abiotic and biotic stresses, a specific physiological role of these proteins in response to excess Mn supply remains to be established. From the apoplastic metabolites, particular the composition of phenolic compounds seemed to be crucial for the development and avoidance of Mn toxicity. Phenolic compounds affect POD activities causing a stimulation or inhibition of PODs in the apoplast. Furthermore, sequestration of Mn by phenolic compounds and thus rendering Mn physiologically inactive might enhance Mn tolerance. The analysis of the release of organic acids into the apoplast and translocation of Mn into the vacuoles did not support the hypothesis, that sequestration of Mn by organic acids in the apoplast and the vacuoles is crucial for Mn tolerance. Silicon alleviated Mn toxicity symptoms not only by a decrease of the apoplastic Mn concentration and an increased adsorption of Mn to the cell walls but also by the soluble Si in the apoplast. Although the antioxidant ascorbic acid proved to be beneficial for protecting the leaf tissue from Mn toxicity, it is not considered as the most important factor in Mn tolerance.

The presented data confirm the importance of the apoplast for development and avoidance of Mn toxicity in the leaf tissue of cowpea. Conclusions about the chronology of Mn-induced physiological changes are difficult to draw. A more detailed study with emphasis on very early stages of Mn toxicity and a comparison of Mn-sensitive and Mn-tolerant leaves (genotype, Si nutrition, leaf age) is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archibal, F.S. and Fridovich, I. (1982). The scavenging of superoxide radical by manganous complexes: In vitro. Arch. Biochem. Biophys., 214, 452–463.

    Article  Google Scholar 

  • Bartlett, R.J. and James, B. (1980). Studying dried, stored soil samples-some pitfalls. Soil Sci. Soc. Amer. J., 44, 721–724.

    Article  CAS  Google Scholar 

  • Blamey, F.P.C, Joyce, D.C., Edwards, D.G. and Asher, C.J. (1986). Role of trichomes in sunflower tolerance to manganese toxicity. Plant Soil, 91, 171–180.

    Article  CAS  Google Scholar 

  • Brown, P.H., Graham, R.D. and Nicholas, J.D. (1984). The effects of manganese and nitrate supply on the levels of phenolics and lignin in young wheat plants. Plant Soil, 81, 437–440.

    Article  CAS  Google Scholar 

  • Campa, A. (1991). Biological roles of plant peroxidases: Known and potential functions. In J. Evers, K. Evers and M.B. Grisham (eds.), Peroxidase in chemistry and biology Vol II (pp. 26–49). Boca Raton Fl.: CRS Press.

    Google Scholar 

  • Castillo, F.J. (1986). Extracellular peroxidases as markers of stress? In H. Greppin, C. Penel, Th. Gaspar (eds.), Molecular and physiological aspects of plant peroxidases. (pp. 419–426) Switzerland: University of Geneva.

    Google Scholar 

  • Castillo, F.J. and Greppin, H. (1988). Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album leaves after ozone exposure. Environ. Exp. Bot., 28, 231–238.

    Article  CAS  Google Scholar 

  • Castillo, F.J., Penel, C. and Greppin, H. (1984). Peroxidase release induced by ozone in Sedum album leaves Involvement of Ca2+. Plant Physiol., 74, 846–851.

    PubMed  CAS  Google Scholar 

  • Chaoui, A., Mazhoudi, S., Ghorbal, M.H. and El Ferjani, E. (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci., 127, 139–147.

    Article  CAS  Google Scholar 

  • de Souza, I.R.P. and MacAdam, J.W. (1998). A transient increase in apoplastic peroxidase activity precedes decrease in elongation rate of B73 maize (Zea mays) leaf blades. Physiol. Plant., 104, 556–562.

    Article  Google Scholar 

  • Didierjean, L., Frendo, P., Nasser, W., Genot, G., Marivet, J. and Burkard, G. (1996). Heavy-metal-responsive genes in maize: Identification and comparison of their expression upon various forms of abiotic stress. Planta, 199, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Engelsma, G. (1972). A possible role of divalent manganese ions in the photoinduction of phenylalanine ammonialyase. Plant Physiol., 50, 599–602.

    PubMed  CAS  Google Scholar 

  • Fecht-Christoffers, M.M., Horst, W.J. (2005). Does apoplastic ascorbic acid enhance manganese tolerance of Vigna unguiculata and Phaseolus vulgaris? J. Plant Nutr. Soil Sci., 168, 590–599.

    Article  CAS  Google Scholar 

  • Fecht-Christoffers, M.M., Maier, P. and Horst, W.J. (2003a). Apoplastic peroxidase and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiol. Plant., 117, 237–244.

    Article  CAS  Google Scholar 

  • Fecht-Christoffers, M.M., Braun, H.P., Lemaitre-Guillier, C., VanDorsselaer, A. and Horst, W.J. (2003b). Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea (Vigna unguiculata). Plant Physiol., 133, 1935–1946.

    Article  CAS  Google Scholar 

  • Fecht-Christoffers, M.M., Führs, H., Braun, H.P. and Horst, W.J. (2006). The role of H2O2-producing and H2O2-consuming peroxidases in the leaf apoplast of Vigna unguiculata L. in manganese tolerance. Plant Physiol., 140, 1451–1463.

    Article  PubMed  CAS  Google Scholar 

  • Gaspar, T., Penel, C., Castillo, FJ. and Greppin, H., (1985). A two-step control of basic and acidic peroxidases and its significance for growth and development. Physiol. Plant., 54, 418–423.

    Article  Google Scholar 

  • González, A., Steffens, K.L. and Lynch, J.P. (1998). Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiol., 118, 493–504.

    Article  PubMed  Google Scholar 

  • Gupta, M., Cuypers, A., Vangronsveld, J. and Clijsters, H. (1999). Copper affects the enzyme of the ascorbate-glutathioneglutathionee cycle and its related metabolites in the roots of Phaseolus vulgaris. Plant Physiol., 106, 262–267.

    Article  CAS  Google Scholar 

  • Halliwell, B. (1978). Lignin synthesis. The generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese(II) and phenols. Planta, 140, 81–88.

    Article  CAS  Google Scholar 

  • Heim, A., Brunner, I., Frey, B., Fossard, E. and Luster, J. (2001). Root exudation, organic acids and element distribution in roots of Norway spruce seedlings treated with aluminum in hydrophonics. J.Plant Nutr. Soil Sci., 164, 519–526.

    Article  CAS  Google Scholar 

  • Hirschi, K.D., Korenkov, V.D., Wilganowski, N.L. and Wagner, G.J. (2000). Expression of arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol., 124, 125–133.

    Article  PubMed  CAS  Google Scholar 

  • Horemanns, N., Foyer, C.H., Potters, G. and Asard, H. (2000). Ascorbate function and associated transport system in plants. Plant Physiol. Biochem., 38, 531–540.

    Article  Google Scholar 

  • Horiguchi, T. (1987). Mechanism of manganese toxicity and tolerance of plants II. Deposition f oxidized manganese and plant tissue. Soil Sci. Plant Nutr., 33 (4), 595–606.

    CAS  Google Scholar 

  • Horiguchi, T. (1988). Mechanism of manganese toxicity and tolerance of plants IV. Effect of silicon on alleviation of manganese toxicity in rice plants. Soil Sci. Plant Nutr., 34, 65–73.

    CAS  Google Scholar 

  • Horiguchi, T. and Fukomoto, T. (1987). Mechanism of manganese toxicity and tolerance of plants. III. Effect of excess manganese on respiration rate and peroxidase activity of various plant species. J. Soil Sci. Plant Nutr., 58, 713–716.

    CAS  Google Scholar 

  • Horiguchi, T. and Morita, S. (1987). Mechanism of manganese toxicity and tolerance of plants. VI. Effect of silicon on alleviation of manganese toxicity of barley. J. Plant Nutr., 10, 229–2310.

    Google Scholar 

  • Horst, W.J. (1982). Quick screening of cowpea genotypes for manganese tolerance during vegetative and reproductive growth. Z. Pflanzenernähr. Bodenkd., 145, 423–435.

    Article  CAS  Google Scholar 

  • Horst, W.J. (1988). The physiology of manganese toxicity, In M.J. Webb, R.O. Nable, R.D. Graham, and R.J. Hannam (eds.), Mangenese in Soil and Plants. (pp. 175–188). Dodrecht/Boston/London: Kluwer Academic Publishers.

    Google Scholar 

  • Horst, W.J. and Maier, P. (1999). Compartmentation of manganese in the vacuoles and in the apoplast of leaves in relation to genotypic manganese leaf-tissue tolerance in Vigna unguiculata (L.) Walp. In G. Gissel-Nielsen and A., Jensen (eds.), Plant Nutrition - Molecular Biology and Genetics. (pp. 223–234).Dordrecht: Kluwer Academic Publishers. ISBN 0-7923-5716-7

    Google Scholar 

  • Horst, W.J. and Marschner, H. (1978). Symptome von Mangan-überschuß bei Bohnen. Z. Pflanzenernähr. Bodenkd., 141, 129–142,

    Article  CAS  Google Scholar 

  • Horst, W.J., Fecht, M., Naumann, A., Wissemeier, A.H. and Maier, P. (1999). Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. J. Plant Nutr. Soil Sci., 162, 263–274.

    Article  CAS  Google Scholar 

  • Iwasaki, K. and Matsumura, A. (1999). Effect of silicon on alleviation of manganese toxicity in pumpkin (Curcubita moschata Duch cv. Shintosa). Soil Sci. Plant Nutr., 45, 909–920.

    CAS  Google Scholar 

  • Iwasaki, K., Maier, P., Fecht, M. and Horst, W.J. (2001a). Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil, 238, 281–288.

    Article  Google Scholar 

  • Iwasaki, K., Maier, P., Fecht, M. and Horst, W.J. (2001b). Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). J. Plant Physiol., 159, 167–173.

    Article  Google Scholar 

  • Jung, JL., Maurel, S., Fritig, B. and Guenther, H. (1995). Different pathogenesis-related proteins are expressed in sunflower (Helianthus annuus L.) in response to physical, chemical and stress factors. J. Plant Physiol., 145 (1-2), 153–160.

    Google Scholar 

  • Kenten, R.H. and Mann, P.J.G. (1950). The oxidation of manganese by peroxidase systems. Biochem J., 46, 67–73.

    PubMed  CAS  Google Scholar 

  • Khana, P.L. and Michra, B. (1978). Behavior of manganese in some acid soils in Western Germany in relation to pH and air-drying. Geoderma., 20, 289–297.

    Article  Google Scholar 

  • Klotz, K.L., Liu, T.T.Y., Liu, L. and Lagrimini, L.M. (1998). Expression of the tobacco anionic peroxidase gene is tissue-specific and developmentally regulated. Plant Mol. Biol., 36, 509–520.

    Article  PubMed  CAS  Google Scholar 

  • Langheinrich, U., Tischner, R. and Goldbold, D.L. (1992). Influence of high Mn supply on Norway spruce (Picea abies (L.) Karst.) seedlings in relation to the nitrogen source. Tree Physiol., 10, 259–271.

    PubMed  CAS  Google Scholar 

  • MacAdam, J.W., Sharp, R.E. and Nelson, C.J. (1992). Peroxidase activity in the leaf elongation zone of tall fescue II. Spatial distribution of apoplastic peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiol., 99, 879–885.

    PubMed  CAS  Google Scholar 

  • Maier, P. (1997). Bedeutung der Kompartimentierung von Mangan und organischen Säuren für die Mangantoleranz von Cowpea (Vigna unguiculata (L.) Walp.). Stuttgart: Verlag Ulrich E. Grauer. ISBN 3-86186-170-4.

    Google Scholar 

  • Marsh, K.B., Peterson, L.S. and McCown, B.H. (1989). Gradient in Mn accumulation and changes in plant form for potato plants affected by Mn toxicity. Plant Soil, 121, 157–163.

    Article  Google Scholar 

  • Mehlhorn, H., Cottam, D.A., Lucas, P.W. and Wellburn, A.R. (1987). Induction of ascorbate peroxidase and glutathione reductase activities by interactions of mixtures of air pollutions. Free Radical Res. Commun., 3, 1–5.

    Google Scholar 

  • Morgan, P.W., Joham, H.E. and Amin, J.V. (1966). Effect of manganese toxicity on indoleacetic acid oxidase system of cotton. Plant Physiol., 41, 718–724.

    PubMed  CAS  Google Scholar 

  • Noctor, G. and Foyer, C.H. (1998). Ascorbate and Glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 249–279.

    Article  PubMed  CAS  Google Scholar 

  • Noga, G. and Schmitz, M. (1998). Antioxidants in higher plants: Biosynthesis, characteristics, actions and specific functions in stress defence. Shaker Verlag, Aachen. ISBN 3-8265-4418-8.

    Google Scholar 

  • Okuda, A. and Takahashi, E. (1962). Studies on the physiological role of silicon in crop plants (Part 5). Effect of silicon supply on the injuries due to excessive amounts of FeII, MnII, CuII, AsII, CoII of barley and rice plant. Jpn. J. Sci Soil Manure, 33, 1–8.

    CAS  Google Scholar 

  • Polle, A. and Renneberg, H. (1993). Significance of antioxidants in plant adaptation to environmental stress. In L. Fowden et al. (ed.) Plant adaption to Environmental Stress, (pp. 264–273). London: Capman and Hall.

    Google Scholar 

  • Rhodes, M.J.C. (1985). The physiological significance of plant phenolic compounds. Ann. Proc. Phyt. Soc., 25, 99–117.

    Google Scholar 

  • Rogalla, H. and Römheld, V. (2002). Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant, Cell Environ., 25 (4), 549–555.

    Article  CAS  Google Scholar 

  • Ros Barcelo, A. (1997). Lignification in plant cell walls. Int. Rev. Cyt., 176, 87–132.

    Article  CAS  Google Scholar 

  • Schaaf, G., Catoni, E., Fitz, M., Schwacke, R., Schneider, A., von Wirén, N. and Frommer, W.B. (2002). A putative role for vacuolar calcium/manganese proton antiporter AtCAX2 in heavy metal detoxification. Plant Biol., 2, 612–618.

    Article  Google Scholar 

  • Schmitz, M. and Noga, G. (2000). Ausgewählte pflanzliche Inhaltstoffe und ihr antioxidatives Potential in hydrophilen und lipophilen Extrakten von Phaseolus vulgaris-, Malus domestica- und Vitis vinifera-Blättern. Gartenbauwissenschaften, 65, 56–73.

    Google Scholar 

  • Smirnoff, N. (2000) Ascorbic acid. Metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol., 3, 229–235

    CAS  Google Scholar 

  • Sonneveld, C. and Voogt, S.J. (1975). Studies on the manganese uptake of lettuce on steam-sterilised glasshouse soils. Plant Soil, 42, 49–64.

    Article  CAS  Google Scholar 

  • Takahama, U. (1993). Redox state of ascorbic acid in the apoplast of stems of Kalanchoë daigremontiana Physiol. Plant., 89, 791–798.

    Article  CAS  Google Scholar 

  • Takahama, U. and Oniki, T. (1992). Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol., 33, 379–387.

    CAS  Google Scholar 

  • Vanacker, H., Harbinson, J., Ruisch, J., Carver, T.L.W. and Foyer, C.H. (1998). Antioxidant defence of the apoplast. Protoplasma, 205, 129–140.

    Article  CAS  Google Scholar 

  • Van Loon, L.C. and Van Strien, E.A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant. Pathol., 55, 85–97.

    Article  Google Scholar 

  • Wang, J. and Evangelou, V.P. (1995). Metal tolerance aspects of plant cell wall and vacuoles. In M. Pessarakli. (ed.), Handvolume of plant and crop physiology. (pp. 695–717). New York: Marcel Dekker.

    Google Scholar 

  • Williams, D.E. and Vlamis, J. (1957). The effect of silicon on yield and manganese-54 uptake and distribution in leaves of barley plants grown in culture solutions. Plant Physiol., 32, 404–409.

    Article  PubMed  CAS  Google Scholar 

  • Wissemeier, A.H. (1988). Beziehung zwischen Mangantoleranz und Oxidation von Mangan in den Blättern von Cowpea-Genotypen (Vigna unguiculata (L.) Walp.). Stuttgart: Verlag Ulrich E. Grauer. ISBN 3-9803063-6-4.

    Google Scholar 

  • Wissemeier, A.H. and Horst, W.J. (1990). Manganese oxidation capacity of cowpea [Vigna unguiculata (L.) Walp.] leaves differing in manganese tolerance. J. Plant Physiol., 136, 103–109.

    CAS  Google Scholar 

  • Wissemeier, A.H. and Horst, W.J. (1992). Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil, 143, 299–309.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Fecht-Christoffers, M., Maier, P., Iwasaki, K., Braun, H., Horst, W. (2007). The Role of the Leaf Apoplast in Manganese Toxicity and Tolerance in Cowpea (Vigna Unguiculata L. Walp). In: Sattelmacher, B., Horst, W.J. (eds) The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5843-1_23

Download citation

Publish with us

Policies and ethics