Skip to main content

Phosphate solubilizing microorganisms: Effect of carbon, nitrogen, and phosphorus sources

  • Conference paper

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 102))

Abstract

Although most soils contain large amounts of total phosphorus, they are deficient in phosphates available to plants. However significant populations of soil microorganisms present the ability to dissolve poorly soluble mineral phosphates. Most of these microorganisms are heterotrophs and depend on carbon and energy sources that can be found in the rhizosphere or by recycling crop residues. Besides, nitrogen and phosphorus sources may be considered as control factors in soil, because as carbon sources, they influence microorganisms growth and consequently their solubilization capacity. The principal mechanism for mineral phosphate solubilization is the production of organic acids. Some studies indicate that the physiology and biochemistry of C, N, and P play a role in the phosphate solubilization process. Is was suggested that increased numbers of phosphate solubilizing microorganisms in soil may be significant in relation to the phosphorus economy of the plant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asea P E A, Kucey R M N and Stewart J W B 1988 Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem. 20, 459–464.

    Article  CAS  Google Scholar 

  • Bojinova D, Velkova R, Grancharov I and Zhelev S 1997 The bioconversion of tunisian phosphorite using Aspergillus niger. Nutrient Cycl. Agroecosyst. 47, 227–232.

    Article  Google Scholar 

  • Brock T D, Madigan M T, Martinko J M and Parker J 1994 Biology of Microorganisms. Prentice, New Jersey. 909 pp.

    Google Scholar 

  • Cerezine P C, Nahas E and Banzatto D A 1988 Soluble phosphate accumulation by Aspergillus niger from fluorapatite. Appl. Microbiol. Biotech. 29, 501–505.

    Article  CAS  Google Scholar 

  • Chabot R, Beauchamp C J, Kloepper J W and Antoun H 1998 Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Soil. Biol. Biochem. 30, 1615–1618.

    Article  Google Scholar 

  • Dinkelaker B, Romheld V and Marschner H 1989 Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ. 12, 285–292.

    Article  CAS  Google Scholar 

  • Di Simine C D, Sayer J A and Gadd G M 1998 Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol. Fert. Soils 28(1), 87–94.

    Article  Google Scholar 

  • Gallmetzer M and Burgstaller W 2002 Efflux of organic acids in Penicillium simplicissimum is an energy-spilling process, adjusting the catabolic carbon flow to the nutrient supply and the activity of catabolic pathways. Microbiol. Reading 148, 1143–1149.

    CAS  Google Scholar 

  • Goldstein A H 1986 Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Amer. J. Alter. Agric. 1, 51–57.

    Google Scholar 

  • Goldstein A H, Braverman K and Osorio N 1999 Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol. Ecol. 30, 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Gupta J K, Heding L G and Jorgensen O B 1976 Effect of sugars, hydrogen ion concentration and ammonium nitrate on the formation of citric acid by Aspergillus niger. Acta Microbiol. Acad. Sci. Hung. 23, 63–67.

    PubMed  CAS  Google Scholar 

  • Illmer P and Schinner F 1995 Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol. Biochem. 27, 257–263.

    Article  CAS  Google Scholar 

  • Illmer P, Barbato A and Schinner F 1995 Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol. Biochem. 27, 265–270.

    Article  CAS  Google Scholar 

  • Kara A and Bozdemir T O 1998 Optimization of the growth parameters of Aspergillus foetidus. Acta Biotech. 18, 327–338.

    Article  CAS  Google Scholar 

  • Katznelson H, Peterson E A and Rouatt J W 1962 Phosphatedissolving microorganisms on seed and in the root zone of plants. Can. J. Bot. 40, 1181–1186.

    CAS  Google Scholar 

  • Kubicek C P and Röhr M 1986 Citric acid fermentation. CRC Critical Rev. Biotech. 3, 331–373.

    Article  CAS  Google Scholar 

  • Lynch J M and Whipps J M 1990 Substrate flow in the rhizosphere. Plant Soil 128, 1–10.

    Article  Google Scholar 

  • Mattey M 1992 The production of organic acids. Rev. Biotech. 12, 87–122.

    CAS  Google Scholar 

  • Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A and Schulze J 1999 Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J. Plant Nutr. Soil Sci. 162, 373–383.

    Article  CAS  Google Scholar 

  • Moat A G and Foster J W 1988 Microbial Physiology, 2nd edn. Wiley, New York, 597 pp.

    Google Scholar 

  • Nahas E, Banzatto D A and Assis L C 1990 Fluorapatite solubilization by Aspergillus niger in vinasse medium. Soil. Biol. Biochem. 22, 1097–1101.

    Article  CAS  Google Scholar 

  • Nahas E and Assis L C 1992 Effect of phosphate on the solubilization of fluorapatite by Aspergillus niger. Rev. Microbiol. 23, 37–42.

    CAS  Google Scholar 

  • Nahas E 1996 Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J. Microbiol. Biotech. 12, 567–572.

    Article  CAS  Google Scholar 

  • Nahas E 1999 In Inter-relação fertilidade, biologia do solo e nutrição de plantas. Ed. Siqueira J O et al. pp. 467–486. Viçosaa. SBCS Lavras. UFLA/DCS.

    Google Scholar 

  • Oberson A, Friesen D K, Rao I M, Bühler S and Frossard E 2001 Phosphorus transformations in an oxisol under contrasting land-use systems: The role of the soil microbial biomass. Plant Soil 237, 197–210.

    Article  CAS  Google Scholar 

  • Reyes I, Bernier L, Simard R R and Antoun H 1999a Effect of nitrogen source on the solubilization of different inorganic phosphates by Na isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. Ecol. 28, 281–290.

    Article  CAS  Google Scholar 

  • Reyes I, Bernier L, Simard R R, Tanguay P and Antoun H 1999b Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. Ecol. 28, 291–295.

    Article  CAS  Google Scholar 

  • Reyes I, Baziramakenga R, Bernier L and Antoun H 2001 Solubilization of phosphate rocks and minerals by a wildtype strain and two UV-induced mutants of Penicillium rugulosum. Soil Biol. Biochem. 33, 1741–1747.

    Article  CAS  Google Scholar 

  • Rodríguez H and Fraga R 1999 Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Adv. 17, 319–339.

    Article  Google Scholar 

  • Roos W and Luckner M 1984 Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. J. Gen. Microbiol. 130, 1007–1014.

    CAS  Google Scholar 

  • Ryan P R, Delhaize E and Jones D L 2001 Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. 52, 527–560.

    Article  CAS  Google Scholar 

  • Scheromm P, Plassard C and Salsac L 1990 Effect of nitrate and ammonium nutrition on the metabolism of the ectomycorrhizal basidiomycete, Hebeloma cylindrosporum Romagn. New Phytol. 114, 227–234.

    Article  CAS  Google Scholar 

  • Singh C P and Amberger A 1991 Solubilization and availability of phosphorus during decomposition of rock phosphate enriched straw and urine. Biol. Agric. Hort. 7, 261–269.

    Google Scholar 

  • Sperber J I 1958 Solution of apatite by soil microorganisms producing organic acids. Aust. J. Agron. Res. 9, 782–787.

    Article  CAS  Google Scholar 

  • Vassilev N, Franco I, Vassileva M and Azcon R 1996 Improved plant growth with rock phosphate solubilized by Aspergillus niger grown on sugar-beet waste. Bioresource Technol. 55, 237–241.

    Article  CAS  Google Scholar 

  • Villegas J and Fortin J A 2001 Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NH +4 as nitrogen source. Can. J. Bot. 79, 865–870.

    Article  CAS  Google Scholar 

  • Vinopal R T and Romano A H 2000 Carbohydrate synthesis and metabolism. In Encyclopedia of Microbiology, Vol. 1, 2nd edn. Ed. J. Lederberg. pp. 647–668. Academic, San Diego.

    Google Scholar 

  • Wenzel C L, Ashford A E and Summerell B A 1994 Phosphatesolubilizing bacteria associated with proteoid roots of seedlings of waratah [Telopea speciosissima (Sm.) R.Br.]. New Phytol. 128, 487–496.

    Article  Google Scholar 

  • Whitelaw M A, Harden T J and Helyar K R 1999 Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol. Biochem. 31, 655–665.

    Article  CAS  Google Scholar 

  • Xu D B, Madrid C P, Röhr M and Kubicek C P 1989 The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Appl. Microbiol. Biotech. 30, 553–558.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Velázquez C. Rodríguez-Barrueco

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Nahas, E. (2007). Phosphate solubilizing microorganisms: Effect of carbon, nitrogen, and phosphorus sources. In: Velázquez, E., Rodríguez-Barrueco, C. (eds) First International Meeting on Microbial Phosphate Solubilization. Developments in Plant and Soil Sciences, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5765-6_15

Download citation

Publish with us

Policies and ethics