Skip to main content

Recent advances in breeding citrus for drought and saline stress tolerance

  • Chapter
Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops

Abstract

Citrus is a major world horticultural commodity, and most of its world-wide production depends on irrigation, which is inevitably associated with the deterioration of water quality from run-off or ground water. Citrus, like most fruit trees, is relatively salt sensitive. The deleterious effects of salt stress lead to reduction in fruit yield and quality. In recent years, only a few relatively salt-tolerant rootstocks have been obtained through selection and conventional breeding, due to a rather limited existing genetic pool and the long period of time required for experiments. Attempts to regenerate salt-tolerant citrus plants via in vitro production of salt-tolerant callus or mutagenesis have been rather limited and as of yet not in use. Therefore, efforts should be invested to identify traits/genes that have a key role in tolerance to salt in order to speed up the process and to enlarge these genetic resources

QTL analyses revealed that response to salt in citrus is a multigenic trait, as has been shown in other species, but some genes probably exist that have a major impact on salt tolerance and (or) mineral accumulation. Several robust EST databases now exist and are growing, the first microarray chips have been manufactured, and an initial genome sequencing effort is underway. These tools should allow citrus physiologists, biochemists, and geneticists to make much more rapid progress in understanding salt and water stress in the future and to design strategies to ameliorate their effects

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almansa, M.S., Hernandez, J.A., Jimenez, A., Botella, M.A., and Sevilla, F., 2002, Effect of salt stress on the superoxide dismutase activity in leaves of Citrus limonum in different rootstock-scion combinati. Biol. Plant. 45:545 549.

    Article  CAS  Google Scholar 

  • Apse, M.P., Aharon, G.S., Snedden, W.A., and Blumwald, E., 1999, Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis, Science 285:1256 1258.

    Article  PubMed  CAS  Google Scholar 

  • Arbona, V., Flors, V., Jacas, J., Garcíia-Agustíi, P., and Gómez-Cadenas, A., 2003, Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive Citrus rootstock, to different levels of salinity, Plant Cell Physiol. 44:388 394.

    Article  PubMed  CAS  Google Scholar 

  • Asins, M.J., 2002, Present and future of quantitative trait locus analysis in plant breeding, Plant Breeding 121:281 291.

    Article  Google Scholar 

  • Avsian-Kretchmer, O., Eshdat, Y., Gueta-Dahan, Y., and Ben-Hayyim, G., 1999, Regulation of stress-induced phospholipid hydroperoxide glutathione peroxidase expression in citrus, Planta 209:469 477.

    Article  PubMed  CAS  Google Scholar 

  • Banuls, J., Serna, M. D., Legaz, M. and Primo-Millo, E., 1997, Growth and gas exchange parameters of Citrus plants stressed with different salts, J. Plant Physiol. 150:194 199.

    CAS  Google Scholar 

  • Beloualy, N., and Bouharmont, J., 1992, NaCl-tolerant plants of Poncirus trifoliate regenerated from tolerant callus lines, Theor. Appl. Genet. 83:509 514.

    Article  Google Scholar 

  • Ben-Hayyim, G., 1987, Relationship between salt tolerance and resistance to polyethylene glycol-induced water stress in cultured citrus cells, Plant Physiol. 85:430 433.

    PubMed  CAS  Google Scholar 

  • Ben-Hayyim, G., and Goffer, Y., 1989, Plantlet regeneration of NaCl-selected salt-tolerant callus culture of Shamouti orange (Citrus sinensis L. Osbeck), Plant Cell Rep. 7:680 683.

    CAS  Google Scholar 

  • Ben-Hayyim, G., and Kochba, J., 1983, Aspects of salt tolerance in a NaCl selected stable cell line of Citrus sinensis, Plant Physiol. 72:685 690.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Hayyim, G., Gueta-Dahan, Y., Avsian-Kretchmer, O., Weichert, H., and Feussner, I., 2001, Preferential induction of a 9-lipoxygenase by salt in salt-tolerant cells of Citrus sinensis L. Osbeck, Planta 212:367 375.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Hayyim, G., Spiegel-Roy, P., and Neumann, H., 1985, Relation between ion accumulation of salt-sensitive and isolated salt-tolerant cell lines of Citrus aurantium, Plant Physiol. 78:144 148.

    PubMed  CAS  Google Scholar 

  • Bernstein, L., 1969, Salinity factors and their limits for citrus culture, Proc. First Int. Citrus Symposium 3:1779 1782.

    CAS  Google Scholar 

  • Cai, Q., Guy, C.L., and Moore, G.A., 1994, Extension of the Linkage Map in Citrus Using Random Amplified Polymorphic DNA (Rapd) Markers and Rflp Mapping of Cold-Acclimation-Responsive Loci, Theor. Appl. Genet. 89:606 614.

    Article  CAS  Google Scholar 

  • Cai, Q.Y., Moore, G.A., and Guy, C.L., 1995, An Unusual Group-2 Lea Gene Family in Citrus Responsive to Low-Temperature, Plant Mol. Biol. 29:11 23.

    Article  PubMed  CAS  Google Scholar 

  • Campos, H., Cooper, A., Habben, J.E., Edmeades, G.O., and Schussler, J.R., 2004, Improving drought tolerance in maize: a view from industry, Field Crops Res. 90:19 34.

    Article  Google Scholar 

  • Cervera, M., Ortega, C., Navarro, A., Navarro, L., and Pena, L., 2000, Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast, J. Hort. Sci. Biotechnol. 75:26 30.

    CAS  Google Scholar 

  • Champ, K.I., Febres, V.J., and Moore, G.A., 2006, The role of CBF transcriptional activators in two Citrus species (Poncirus and Citrus) with contrasting levels of freezing tolerance. Physiol. Plant., 129:529–541.

    Article  CAS  Google Scholar 

  • Chapman, H. D., 1968, Salinity and alkali. In: The Citrus Industry, Univ. of Calif. Press, Berkeley, Vol 2, pp. 243 266.

    Google Scholar 

  • Close, T.J., 1997, Dehydrins: A commonality in the response of plants to dehydration and low temperature, Physiol. Plant. 100:291 296.

    Article  CAS  Google Scholar 

  • Cooper, W. C., Gorton, B. S., and Olson, E. O, 1952, Ionic accumulation in citrus as influenced by rootstock and scion and concentration of salts and boron in the substrate, Plant Physiol. 27:191 203.

    PubMed  CAS  Google Scholar 

  • Durham, R.E., Liou, P.C., Gmitter, F.G., and Moore, G.A., 1992, Linkage of restriction-fragment-length-polymorphisms and isozymes in citrus, Theor. Appl. Genet. 84:39 48.

    Article  CAS  Google Scholar 

  • Flowers, T.J., and Flowers, S.A., 2005, Why does salinity pose such a difficult problem for plant breeders? Agr. Water Manage. 78:15 24.

    Article  Google Scholar 

  • Flowers, T.J., Koyama, M.L., Flowers, S.A., Sudhakar, C., Singh, K.P., and Yeo, A.R., 2000, QTL: their place in engineering tolerance of rice to salinity, J. Exp. Bot. 51:99 106.

    Article  PubMed  CAS  Google Scholar 

  • Forment, J., Gadea, J., Huerta, L., Abizanda, L., Agusti, J., Alamar, S., Alos, E., Andres, F., Arribas, R., Beltran, J.P., Berbel, A., Blazquez, M.A., Brumos, J., Canas, L.A., Cercos, M., Colmenero-Flores, J.M., Conesa, A., Estables, B., Gandia, M., Garcia-Martinez, J.L., Gimeno, J., Gisbert, A., Gomez, G., Gonzalez-Candelas, L., Granell, A., Guerri, J., Lafuente, M.T., Madueno, F., Marcos, J.F., Marques, M.C., Martinez, F., Martinez-Godoy, M.A., Miralles, S., Moreno, P., Navarro, L., Pallas, V., Perez-Amador, M.A., Perez-Valle, J., Pons, C., Rodrigo, I., Rodriguez, P.L., Royo, C., Serrano, R., Soler, G., Tadeo, F., Talon, M., Terol, J., Trenor, M., Vaello, L., Vicente, O., Vidal, C., Zacarias, L., and Conejero, V., 2005, Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies, Plant Mol. Biol. 57:375 391.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, M.R., Bernet, G.P., Puchades, J., Gomez, I., Carbonell, E.A., and Asins, M.J., 2002, Reliable and easy screening technique for salt tolerance of citrus rootstocks under controlled environments, Aust. J. Agric. Res. 53:653 662.

    Article  Google Scholar 

  • Garcia-Agustin, P., and Primo-Millo, E., 1995, Selection of NaCl-tolerant Citrus plant, Plant Cell Rep. 14:314 318.

    Article  CAS  Google Scholar 

  • Garcia-Sanchez, F., Jifon, J.L., Carvajal, M., and Syversteen, J.P., 2002, Gas exchange, chlorophyll and nutrient contents in relation to Na+and Cl- accumulation in ‘Sunburst’ mandarin grafted on different rootstocks, Plant Sci 162: 705 712.

    Article  CAS  Google Scholar 

  • Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B.A., and Ben-Hayyim, G., 1997, Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus, Planta 203:460–469.

    Article  PubMed  CAS  Google Scholar 

  • Hara, M., Terashima, S., and Kuboi, T., 2001, Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu, J. Plant Physiol. 158:1333 1339.

    Article  CAS  Google Scholar 

  • Hara, M., Terashima, S., Fukaya, T., and Kuboi, T., 2003, Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco, Planta 217:290 298.

    PubMed  CAS  Google Scholar 

  • Hara, M., Wakasugi, Y., Ikoma, Y., Yano, M., Ogawa, K., and Kuboi, T., 1999, cDNA sequence and expression of a cold-responsive gene in Citrus unshiu, Biosci. Biotechnol. Biochem. 63:433 437.

    Article  PubMed  CAS  Google Scholar 

  • Iba, K., 2002, Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance, Annu. Rev. Plant Biol. 53:225 245.

    Article  PubMed  CAS  Google Scholar 

  • Lang, P., Zhang, C.K., Ebel, R.C., Dane, F., and Dozier, W.A., 2005, Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display, Gene 359:111 118.

    Article  PubMed  CAS  Google Scholar 

  • Levy, Y., and Syvertsen, J.P., 2004, Irrigation water quality and salinity effects in citrus trees, in: Horticultural Reviews. J. Janick, ed., Vol, 30, pp. 37 82.

    Google Scholar 

  • Lexer, C., Heinze, B., Alia, R., and Rieseberg, L.H., 2004, Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp.), Forest Ecol. Manag. 197:49 64.

    Article  Google Scholar 

  • Loussert, R., 1989, Les argumes, Techniques agricoles mediterraneennes, Lavoisier, Paris.

    Google Scholar 

  • Molinari, H.B.C., Marur, C.J., Bespalhok, J.C., Kobayashi, A.K., Pileggi, M., Leite, R.P., Pereira, L.F.P., and Vieira, L.G.E., 2004, Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing praline, Plant Sci. 167:1375 1381.

    Article  CAS  Google Scholar 

  • Moya, J.L., Tadeo, F.R., Gómez-Cadenas, A., Primo-Millo, E., Talón, M., 2002, Transmissible salt tolerance traits identified through reciprocal grafts between sensitive Carrizo and tolerant Cleopatra citrus genotypes, J. Plant Physiol. 159:991 998.

    Article  CAS  Google Scholar 

  • Nambara, E., and Marion-Poll, A., 2005, Abscisic acid biosynthesis and catabolism, Annu. Rev. Plant Biol. 56:165 185.

    Article  PubMed  CAS  Google Scholar 

  • Newcomb, D. A., 1978, Selection of rootstocks for salinity and disease resistance, Proc. Intern. Soc. Citriculture 1:117 120.

    Google Scholar 

  • Piqueras, A., Hernandez, J.A., Olmos, E., Helfin, E., and Sevilla, F., 1996, Changes in antioxidant enzymes and organic solutes associated with adaptation of citrus to salt stress, Plant Cell Tissue and Organ Culture, 45:53 60.

    Article  CAS  Google Scholar 

  • Porat, R., Pasentsis, K., Rozentzvieg, D., Gerasopoulos, D., Falara, V., Samach, A., Lurie, S., and Kanellis, A.K., 2004, Isolation of a dehydrin cDNA from orange and grapefruit citrus fruit that is specifically induced by the combination of heat followed by chilling temperatures, Physiol. Plant. 120:256 264.

    Article  PubMed  CAS  Google Scholar 

  • Porat, R., Pavoncello, D., Ben-Hayyim, G., and Lurie, S., 2002a, A heat treatment induced the expression of a Na+/H+ antiport gene (cNHX1) in citrus fruit, Plant Sci. 162: 957 963.

    Article  CAS  Google Scholar 

  • Porat, R., Pavoncello, D., Lurie, S., and McCollum, T.G., 2002b, Identification of a grapefruit cDNA belonging to a unique class of citrus dehydrins and characterization of its expression patterns under temperature stress conditions, Physiol. Plant. 115:598 603.

    Google Scholar 

  • Qin, X.Q., and Zeevaart, J.A.D., 2002, Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance, Plant Physiol. 128:544 551.

    Article  PubMed  CAS  Google Scholar 

  • Rochdi, A., El Yacoubi, H., Rachidai, A., 2003, Responses to NaCl stress of Citrus aurantium, Citrange troyer and Poncirus trifoliata in callus cultures: assessment of characters for evaluating salt stress responses in citrus rootstocks, Agronomie 23:643 649.

    Article  CAS  Google Scholar 

  • Rodrigo, M.J., Alquezar, B., and Zacarias, L., 2006, Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck), J. Exp. Bot. 57:633 643.

    Article  PubMed  CAS  Google Scholar 

  • Ronnberg-Wastljung, A.C., Glynn, C., and Weih, M., 2005, QTL analyses of drought tolerance and growth for a Salix dasyclados x Salix viminalis hybrid in contrasting water regimes, Theor. Appl. Genet. 110:537 549.

    Article  PubMed  CAS  Google Scholar 

  • Rozenzvieg, D., Elmaci, C., Samach, A., Lurie, S., and Porat, R., 2004, Isolation of four heat shock protein cDNAs from grapefruit peel tissue and characterization of their expression in response to heat and chilling temperature stresses, Physiol. Plant. 121:421 428.

    Article  CAS  Google Scholar 

  • Sahin-Cevik, M., and Moore, G.A., 2006a, Isolation and characterization of a novel RING-H2 finger gene induced in response to cold and drought in the interfertile Citrus relative Poncirus trifoliate, Physiol. Plant. 126:153 161.

    Article  CAS  Google Scholar 

  • Sahin-Cevik, M., and Moore, G.A., 2006b, Identification and expression analysis of cold-regulated genes from the cold-hardy Citrus relative Poncirus trifoliata (L.) Raf., Plant Mol. Biol., 129:529–541.

    Google Scholar 

  • Åžahim-çvik, M., and Moore, G.A. 2006c. Two AP2 domain containing genes isolated from the Cold-Hardy Citrus relative Poncirus trifoliata (L.) Raf. are induced in responce to cold. Funtional Plant Bilogy. 33:863–875.

    Article  Google Scholar 

  • Sanchez-Ballesta, M.T., Rodrigo, M.J., LaFuente, M.T., Granell, A., and Zacarias, L., 2004, Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves, J. Agri. Food Chem. 52:1950 1957.

    Article  CAS  Google Scholar 

  • Sawkins, M.C., Farmer, A.D., Hoisington, D., Sullivan, J., Tolopko, A., Jiang, Z., and Ribaut, J.M., 2004, Comparative Map and Trait Viewer (CMTV): an integrated bioinformatic tool to construct consensus maps and compare QTL and functional genomics data across genomes and experiments, Plant Mol. Biol. 56:465 480.

    Article  PubMed  CAS  Google Scholar 

  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., and Shinozaki, K., 2002, Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray, Plant J. 31:279 292.

    Article  PubMed  CAS  Google Scholar 

  • Shalhevet, J., and Levy, Y., 1990. Citrus trees, in: Irrigation of agricultural crops, A. R. Stewart, and D. R. Nielsen, eds., Am. Soc. Agron., Crop Sci. Soc. Am. Soil Sci. Soc. Am., Madison, WI, Vol. 30, pp. 951 986.

    Google Scholar 

  • Singh, A., Saini, M. L., Behl, R. K. 2004, In vitro screening of citrus rootstocks for salt tolerance, Indian J. Genet. Plant Breed. 64:54 57.

    Google Scholar 

  • Storey, R., and Walker, R.R., 1999, Citrus and salinity, Scientia Horticulturae 78:39 81.

    Article  CAS  Google Scholar 

  • Sung, D.Y., Kaplan, F., Lee, K.J., and Guy, C.L., 2003, Acquired tolerance to temperature extremes, Trends Plant Sci. 8:179 187.

    Article  PubMed  CAS  Google Scholar 

  • Tozlu, I., Guy, C.L., and Moore, G.A., 1999a, QTL analysis of morphological traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and non-saline environments, Genome 42:1020 1029.

    Article  CAS  Google Scholar 

  • Tozlu, I., Guy, C.L., and Moore, G.A., 1999b, QTL analysis of Na+ and Cl- accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments, Genome 42:692 705.

    Article  CAS  Google Scholar 

  • Tozlu, I., Moore, G.A., and Guy, C.L., 2000, Regulation of growth and differential tissue dry mass accumulation by Citrus gandis, Poncirus trifoliata, and their F1 under salinized and non-salinized environments, Aust. J. Plant Physiol. 27:27 33.

    Google Scholar 

  • Tozlu, I., Moore, G.A., and Guy, C.L., 2000a, Effects of increasing NaCl concentration on stem elongation, dry mass production, and macro- and micro-nutrient accumulation in Poncirus trifoliata, Aust. J. Plant Physiol. 27:35 42.

    CAS  Google Scholar 

  • Tozlu, I., Moore, G.A., and Guy, C.L., 2000b, Regulation of growth and differential tissue dry mass accumulation by Citrus grandis, Poncirus trifoliata, and their F-1 under salinized and non-salinized environments, Aust. J. Plant Physiol. 27:27 33.

    Google Scholar 

  • Tschaplinski, T.J., Tuskan, G.A., Sewell, M.M., Gebre, G.M., Donald, E.T.I., and Pendleyi, C., 2006, Phenotypic variation and quantitative trait locus identification for osmotic potential in an interspecific hybrid inbred F-2 poplar pedigree grown in contrasting environments, Tree Physiol. 26:595 604.

    PubMed  Google Scholar 

  • Tudela, D., and Primomillo, E., 1992, 1-Aminocyclopropane-1-Carboxylic Acid Transported from Roots to Shoots Promotes Leaf Abscission in Cleopatra Mandarine (Citrus-Reshni Hort Ex Tan) Seedlings Rehydrated after Water-Stress, Plant Physiol. 100:131 137.

    PubMed  CAS  Google Scholar 

  • Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K., 2006, Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future, Curr. Opin. Biotechnol. 17:113 122.

    PubMed  CAS  Google Scholar 

  • Vardi, A., Spiegel-Roy, P., Ben-Hayyim, G., Newmann, H., and Shalhevet, J., 1988, Response of Shamouti orange and Minneola tangelo on six rootstocks to salt stress, Proceeding of the sixth international Society of Citriculture, Balaban publishers, Rehovot, pp.75 82.

    Google Scholar 

  • Weber, C.A., Moore, G.A., Deng, Z., and Gmitter, F.G., 2003, Mapping freeze tolerance quantitative trait loci in a Citrus grandis x Poncirus trifoliata F-1 pseudo-test cross using molecular markers, J. Am. Soc. Hort. Sci. 128:508 514.

    CAS  Google Scholar 

  • Wong, W.S., Li, G.G., Ning, W., Xu, Z.F., Hsiao, W.L.W., Zhang, L.Y., and Li, N., 2001, Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of antisense 1-aminocyclopropane-1-carboxylate synthase RNA, Plant Sci. 161:969 977.

    Article  CAS  Google Scholar 

  • Wong, W.S., Ning, W., Xu, P.L., Kung, S.D., Yang, S.F., and Li, N., 1999, Identification of two chilling-regulated 1-aminocyclopropane-1-carboxylate synthase genes from citrus (Citrus sinensis Osbeck) fruit, Plant Mol. Biol. 41:587 600.

    Article  PubMed  CAS  Google Scholar 

  • Wutscher, H. K., 1979, Citrus rootstocks, in: Horticultural Reviews, A.V.I. Publishers, Westport, CT, Vol. 1, pp. 237 269.

    Google Scholar 

  • Zekri, M., 1991, Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings, Scientia Horticulturae, 47:305 315.

    Article  CAS  Google Scholar 

  • Zhang, C.K., Lang, P., Dane, F., Ebel, R.C., Singh, N.K., Locy, R.D., and Dozier, W.A., 2005a, Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata), Plant Cell Rep. 23:764 769.

    Google Scholar 

  • Zhang, C.K., Lang, P., Ebel, R.C., Dane, F., Singh, N.K., Locy, R.D., and Dozier, W.A., 2005b, Down-regulated gene expression of cold acclimated Poncirus trifoliata, Can. J. Plant Sci. 85:417 424.

    Google Scholar 

  • Zhang, J.Z., 2003, Overexpression analysis of plant transcription factors, Curr. Opin. Plant Biol. 6:430 440.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J.Z., Creelman, R.A., and Zhu, J.K., 2004, From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops, Plant Physiol. 135:615 621.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ben-Hayyim, G., Moore, G.A. (2007). Recent advances in breeding citrus for drought and saline stress tolerance. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_25

Download citation

Publish with us

Policies and ethics