Skip to main content

Abstract

Barley is the most tolerance cereal crop for drought and salinity and is an ideal model crop for genetic study of drought and salinity tolerance because of its early maturity, diploid and self-pollination. Selection for drought tolerance in convention breeding programs has achieved significant progress to improve yield and yield stability under drought through direct selection or indirect selection for early vigour, coleoptile length or “stay green”. A large number of Quantitative Trait Loci (QTL) were mapped for drought and salinity tolerance related traits, including physiological biochemical traits such as osmotic adjustment capacity, proline content, stomatal conductance, water-soluble carbohydrates, relative water content, leaf turgor, ABA content, transpiration efficiency, water use efficiency and carbon isotope discrimination; and developmental/ morphological traits such as height, leaf emergence, leaf area index, tiller development, flowering time, maturity rate and root characteristics. QTLs for yield and yield components were also identified under drought. Extensive research has been devoted to the characterization of genes induced or up-regulated by drought or salinity. Numerous candidate genes were identified to associate with tolerance to drought or salinity and some of the candidate genes co-located with the QTLs for drought tolerance. Wild barley (Hordeum spontaneum) was demonstrated as a key genetic resource for drought and salinity tolerance. QTLs from the wild barley increased yield by 12–22% under drought. New germplasm and molecular tools make it possible to develop better barley variety faster for drought or salinity tolerance, but challenges still remain due to complexity of drought and salinity tolerance.

Barley (Hordeum vulgare L.) is the fourth largest cereal crop in the world with annual production over 140 million tonnes. It has been used as a staple food for humans, feed for animals, and a key ingredient in beer and whiskey production. Barley has a wider ecological range than any other cereals and is widespread in temperate, subtropical and artic areas, from sea level to heights of more than 4,500 m in the Andes and Himalayas (Bothmer et al., 1995). Barley can be grown on soils unsuitable for wheat, and at altitudes unsuitable for wheat or oats. Because of its salt and drought tolerance, barley thrives in nearly every corner of the earth including extremely dry areas near deserts. Barley is a short-season, early maturing, diploid and self-pollinating crop, thus it is also an ideal model plant for genetic study of drought and salinity tolerance. Several papers have summarized research on barley abiotic stress tolerance including drought and salinity tolerance (Cattivelli et al., 2002; Stanca et al., 2003). In this chapter, we will review recently progress on molecular breeding for saline and drought tolerance in barley

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe H., Urao T., Ito T., Seki M., Shonozaki K., Yammaguchi-Shinozaki K. 2003. Arabidopsis AtMYC (bHLH) and AtMYB2 (MYB) function as transcription activators in abscisic acid signalling. Plant Cell 15:63–78

    PubMed  CAS  Google Scholar 

  • Ayliffe M.A., Mitchell H.J., Deuschle K., Pryor A.J. 2005. Comparative analysis in cereals of a key proline catabolism gene. Mol Gen Genomics 274: 494–505

    CAS  Google Scholar 

  • Allakhverdiev S. I., Nishiyama Y., Suzuki I., Tasaka Y., Murata N. 1999. Genetic engineering of the non-saturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96: 5862–5867

    PubMed  CAS  Google Scholar 

  • Aragüés R.I.R., Royo A. 1998. Validity of various physiological traits as screening criteria for salt tolerance in barley. Field Crops Res 58: 97–107

    Google Scholar 

  • Araus J.L., Slafer G.A., Reynolds M.P., Royo C. 2002. Plant Breeding and Drought in C3 Cereals: What Should We Breed For? Annals of Botany 89: 925–940

    PubMed  Google Scholar 

  • Asch F., Dingkuhn M., Dorffling K., Miezan K. 2000. Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica 113: 109–118

    Google Scholar 

  • Asins M.J. 2002. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121: 281–291

    Google Scholar 

  • Atsunori F., Yoshiaki Y., Ishikawa T., Setsuo K., Yoshiyuki T. 1998. Na+/K+ antiporter in tonoplast vesicles from rice roots. Plant Cell Physiol 39: 196–201

    Google Scholar 

  • Bajaj S., Targolli J., Liu L.F., Ho T.-H.D., Wu R., 1999. Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breed 5: 493–503

    CAS  Google Scholar 

  • Bartels D., Engelhardt K., Roncarati R., Schneider K., Rotter M., Salamini F.1991. An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. EMBO J 10:1037–43

    PubMed  CAS  Google Scholar 

  • Basu H.S., Schwietert H.C.A., Feuerstein B.G., Marton L.J. 1990. Effect of variation in the structure of spermine on the association with DNA and the induction of DNA conformational changes. Biochem J 269: 329–334

    PubMed  CAS  Google Scholar 

  • Baum M., Grando S., Backes G., Jahoor A., Sabbagh A., Ceccarelli S.2003. QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross _Arta_ _ H. spontaneum 41–1. Theor Appl Genet 107:1215–225

    PubMed  CAS  Google Scholar 

  • Belkhodja R., Morales F., Abadia A., Medrano H., Abadia J. 1999. Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. Photosynthetica 36: 375–387

    CAS  Google Scholar 

  • Benes S.E., Aragüés R., Austin R.B., Grattan S.R. 1996. Brief pr- and post-irrigation with freshwater reduces foliar salt uptake in maize and barley irrigated with saline water. Plant and Soil 180: 87–95

    CAS  Google Scholar 

  • Blum A. 1988. Plant breeding for stress environment. CRC, Boca Raton pp. 1–223

    Google Scholar 

  • Blumwald E. 2000. Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology 12: 431–434

    PubMed  CAS  Google Scholar 

  • Bohnert H. J., Jensen R. G. 1996. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14: 89–97

    CAS  Google Scholar 

  • Bohnert H.J., Bressan R.A. 2001. Abiotic stresses, plant reactions, and approaches towards improving stress tolerance. In: Nössberger J., ed. Crop Science: Progress and prospects. Wallingford, UK: CABI International, pp. 81–100

    Google Scholar 

  • Bothmer R. von, Jacobsen N., Baden C., Jorgensen R.B., Linde-Laursen I. 1995. An ecogeographical study of the genus Hordeum. Systematic and ecogeographic studies on crop genepools, 7. IPGRI, Rome, 2nd ed., pp. 129

    Google Scholar 

  • Boyd W.J.R., Li C.D., Grime C., Cakir M., Potipibool S., Kaveeta L., Men S., Jala Kamali M.R., Barr A.R., Moody D.B., Lance R.C.M., Logue S.J., Raman H., Read B.J. 2003 Conventional and molecular genetic analysis of factors contributing to variation in the timing of heading among spring barley (Hordeum vulgare L.) genotypes grown over a mild winter growing season. Australian Journal of Agricultural Research 54: 1277–1301

    CAS  Google Scholar 

  • Brugnoli E., Lauteri M. 1991. Effects of salinity on stomata l conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95: 628–635

    Article  PubMed  CAS  Google Scholar 

  • Byrne P.F., Bolaños J., Edmeades G.O., Eaton D.L. 1995. Gains from selection under drought versus multilocation testing in related tropical maize populations. Crop Science 35: 63–69

    Article  Google Scholar 

  • Cakirlar H., Bowling D.J.F. 1981. The effect of salinity on the membrane potential of sunflower roots. J Exp Bot 32: 479–485

    Google Scholar 

  • Calhoun D.S., Gebeyehu G., Miranda A., Rajaram S., van Ginkel M. 1994. Choosing evaluation environments to increase wheat grain yield under drought conditions. Crop Science 34: 673–678

    Article  Google Scholar 

  • Casaretto J., Ho T.-H. D. 2003. The transcription factors hvabi5 and hvvp1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15: 271–284

    PubMed  CAS  Google Scholar 

  • Cattivelli L., Baldi P., Crosatti C., Grossi M., Vale G., Stanca A.M. 2002 Genetic bases of barley physiological response to stressful conditions. In: GA Slafer, Molina-Cano JL, Savin R, Aruas JL, Romagosa I (eds) Barley science Recent advances from molecular biology to agronomy of yield and quality. Food Products Press, New York pp. 387–411

    Google Scholar 

  • Ceccarelli S., Grando S., Impiglia A. 1998. Choice of selection strategy in breeding barley for stress environments. Euphytica 103: 307–318

    Google Scholar 

  • Ceccarelli S., Grando S. 2002. Plant breeding with farmers requires testing the assumptions of conventional plant breeding: Lessons from the ICARDA barley program. In: Cleveland, David A. and Daniela. Soleri, . Farmers, scientists and plant breeding: Integrating Knowledge and Practice. Wallingford, Oxon, UK: CAB Publishing International. pp.297–332

    Google Scholar 

  • Chandra Babu R., Zhang J.A., Blum J.A., Ho T.-H.D., Wu R., Nguyen H.T. 2004. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Google Scholar 

  • Chen Z., Newman I., Zhou M., Mendham N., Zhang G., Shabara S. 2005. Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell and Environment 28: 1230–1246

    CAS  Google Scholar 

  • Close T.J. 1996. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    CAS  Google Scholar 

  • Close T.J., Kortt A., Chandler P.M. 1989. A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13:95–108

    PubMed  CAS  Google Scholar 

  • Cramer G., Epstain E., Lauchli A. 1989. Na-Ca interactions in barley seedlings: relationship to ion transport and growth. Plant Cell and Environment 12: 551–558

    CAS  Google Scholar 

  • Cramer G.R., Quarrie S.A. 2002. Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Funct Plant Biol 29: 111–115

    CAS  Google Scholar 

  • Craufurd P.Q., Austin R.C., Acevedo E., Hall M.A. 1991. Carbon isotope discrimination and grain-yield in barley. Field Crops Res 27: 301–313

    Google Scholar 

  • Diab A.A., Teulat-Merah B., This D., Ozturk N.Z., Benscher D., Sorrells M.E. 2004. Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet 109: 1417–1425

    PubMed  CAS  Google Scholar 

  • D’Oraci D., Bagni N. 1987. In vitro interactions between polyamines and pectic substances. Biochem. Biophys. Res. Commun 148: 1159–1163

    Google Scholar 

  • Day A.D., Ludeke K.L., Ottman M.J. 1985. Registration of Arizona 8501 Barley germplasm for disturbed land reclamation. Crop Sci 26: 387

    Google Scholar 

  • Dedolph C., Hettel G. 1997. Rice varieties boost yield and improve saline soils. Partners Making a Difference. IRRI, Manila, p. 37

    Google Scholar 

  • Dietz K.J., Tavakoli N., Kluge C., Mimura T., Sharma S.S., Harris G.C., Chardonnens A.N., Golldack D. 2001. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52: 1969–1980

    PubMed  CAS  Google Scholar 

  • Eckermann C., Eichel J., Schröder J. 2000. Plant methionine synthase: new insights into properties and expression. Biol Chem 381: 695–703

    PubMed  CAS  Google Scholar 

  • Epstein E., Norlyn J.D., 1977. Seawater-based crop production: a feasibility study. Science 197: 249–251

    PubMed  CAS  Google Scholar 

  • Farquhar G..D., Ehleringer J.R., Hubick K.T. 1989. Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol 40: 503–537

    CAS  Google Scholar 

  • Farquhar G..D., Richards R.A. 1984. Isotopic composition of plant carbon correlates efficiency of wheat genotypes. Aust J Plant Physiol 11: 539–552

    CAS  Google Scholar 

  • Flowers T.J. 2004. Improving crop salt tolerance. J Exp Bot 55: 1–13

    Google Scholar 

  • Flowers T. J., Yeo A. R. 1986. Ion relations of plant under drought and salinity. Aust Plant Physiol 13: 75–91

    Article  CAS  Google Scholar 

  • Flowers T.J., Yeo A.R. 1995. Breeding for salinity resistance in crop plants-Where next? Aust J Plant Physiol 22: 875–884

    Google Scholar 

  • Flowers, T.J., Yeo, A.R. 1986. Ion relations of plants under drought and salinity. Aust. J Plant Physiol 13: 75–91

    CAS  Google Scholar 

  • Foolad M.R. 1999. Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42: 727–734

    CAS  Google Scholar 

  • Forster B.P., Phillips M.S., Miller T.E., Baird E., Powell W. 1990. Chromosomal location of genes controlling tolerance in salt (NaCl) and vigour in Hordeum vulgare and H. chilense. Heredity 65: 99–107

    Google Scholar 

  • Forster B.P., Ellis R.P., Thomas W.T.B., Newton A.C., Tuberosa R., This D., El-Enein R.A., Bahri M.H., Salem M.B. 2000. The development and application of molecular markers for abiotic stress tolerance in barley. Journal of Experimental Botany 51:19–27

    PubMed  CAS  Google Scholar 

  • Forster B.P., Ellis R.P., Thomas W.T.B., Newton A.C., Tuberosa R., This D., El-Enein R.A., Bahri M.H., Ben-Salem M. 2000. The development and application of molecular markers for abiotic stress tolerance in barley. J Exp Bot 51: 19–27

    PubMed  CAS  Google Scholar 

  • Forster B.P. 2001. Mutation genetics of salt tolerance in barley: An assessment of Golden Promise and other semi-dwarf mutants. Euphytica 120: 317–328

    CAS  Google Scholar 

  • Forster B.P., Ellis R.P., Moir J., Talamè V., Sanguineti M.C., Tuberosa R., This D., Teulat-Merah B., Ahmed I., Mariy S., Bahri H., Muahabi M., Zoumarou-Wallis N., El-fellah M., and Salem M.B. 2004. Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann Appl Biol144:157–168

    Google Scholar 

  • Fox G., Panozzo J.F., Li C.D., Lance R.C.M., Inkerman A., Henry R.J. 2003. Molecular basis of barley quality. Australian Journal of Agricultural Research. 54: 1081–1101

    CAS  Google Scholar 

  • Garbarino J., Dupont F.M. 1988. NaCl induces a Na+/H+ antiport in tonoplast vesicles from barley roots. Plant Physiol 86: 231–236

    PubMed  CAS  Google Scholar 

  • Garcia E.S., Gonzalez M.S., Azambuja P., Baralle F.E., Frainderaich D., Torres H.N., Flawia M.M. 1995. Induction of Trypanosoma cruzi metacyclogenesis in the hematophagous insect vector by hemoglobin and peptides carrying globin sequences. Exp Parasitol 81: 255–261

    PubMed  CAS  Google Scholar 

  • Grando S. 1989. Breeding for low rainfall areas. In: Cereal improvement program annual report 1089, ICARDA, Aleppo, pp. 26–35

    Google Scholar 

  • Greenway H. 1962. Plant response to saline substrates I. Growth and ion uptake of several varieties of Hordeum during and after sodium chloride treatment. Aust. J. Biol. Sci 15: 16–38

    CAS  Google Scholar 

  • Greenway H., Munns R. 1980. Mechanisms of salt tolerance in nonhalophytes. Ann Rev Plant Physiol 31: 149–190

    CAS  Google Scholar 

  • Grossi M., Gulli M., Stanca A.M., Cattivelli L. 1995. Characterization of two barley genes that respond rapidly to dehydration stress. Plant Science 105: 71–80

    CAS  Google Scholar 

  • Gulli M., Maestri E., Hartings H., Raho C., Perrotta C., Devos K.M., Marmiroli N. 1995. Isolation and characterizationof abscisic acid inducible genes in barley seedlings and their responsiveness to environmental stress. Plant Physiology 14: 89–96

    Google Scholar 

  • Handley L.L., Nevo E., Raven J.A., Martines-Carrasco R., Scrimgeour C.M., Pakniyat H., Foster B.P. 1994. Chromosome 4 controls potential water us efficiency ibarley. J Exp Botany 45: 1661–1663

    CAS  Google Scholar 

  • Hong B., Uknes S., Ho T.H.D. 1988. Cloning and characterization of a cDNA encoding a mRNA rapidly induced by ABA in barley aleurone layers. Plant Molecular Biology 11: 495–506

    CAS  Google Scholar 

  • Hong B., Barg R., Ho T.D. 1992. Developmental and organ-specific expression of an ABA- and stress induced protein in barley. Plant Molecular Biology 18: 663–674

    PubMed  CAS  Google Scholar 

  • Hollung K., Espelund M., JakobsenK.J. 1994 Another Lea B19 gene (Group 1 Lea) from barley containing a single amino acid hydrophilic motif. Plant Molecular Biology 25: 559–564

    PubMed  CAS  Google Scholar 

  • Huang C.X., Van Steveninck R.F.M. 1990. Salinity induced structural changes in meristematic cells of barley roots. New Phytol 115: 17–22

    Google Scholar 

  • Ishitani M., Nakamura T., Han S.Y., Takabe T. 1995. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Molecular Biology 27: 307–315

    PubMed  CAS  Google Scholar 

  • James R. A., Rivelli A. R., Munns R., von Caemmerer S. 2002. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology. 29: 1393–1403

    CAS  Google Scholar 

  • Jana S., Wilen R.W. 2005. Breeding for abiotic stress tolerance in barley. In: M. Ashraf, P.J.C. Harris (eds), Abiotic stresses:plant resistance through breeding and molecular approaches. Haworth Press, pp. 491–511

    Google Scholar 

  • Jiang Q., Roche D., Monaco T.A., Durham M. 2006. Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Research 96: 269–278

    Google Scholar 

  • Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol 17: 287–291

    PubMed  CAS  Google Scholar 

  • Kawasaki S., Borchert C., Deyholos M., Wang H., Brazille S., Kawai K., Galbraith D., Bohnert H.J. 2001. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13: 889–905

    PubMed  CAS  Google Scholar 

  • Kearsey M.J. 1998. The principles of QTL analysis (a minimal mathematics approach). J Exp Bot 49: 1619–1623

    CAS  Google Scholar 

  • Kleines M., Ralph-Cyrus E., Maria-Jesus R., Anne-Sophie B., Francesco S., Dorothea B., Max P. 1999. Isolation and expression analysis of two stress-responsive sucrose-synthase genes from the resurrection plant Craterostigma plantagineum (Hochst.). Planta 209:13–24

    PubMed  CAS  Google Scholar 

  • Koval V. S. 2000. Male and female gametophyte selection of barley for salt tolerance. Hereditas 132: 1–5

    PubMed  CAS  Google Scholar 

  • Koval V.S., Koval S.F. 1996. Genetic analysis of salt tolerance in barley: identification of the number of genes. Russian J Genet 32: 954–958

    CAS  Google Scholar 

  • Kramer D. 1984. Cytological aspects of salt tolerance in higher plants. In: Salinity Tolerance in Plants (Ed. by Staples R.C. and Toenniessen G.H.). John Wiley and Sons, New York. pp. 3–5

    Google Scholar 

  • Krestnikov I.S., Netsvetaev V.P., Biryukov S.V. 1986. Genotypic variability of root superoxide dismutase in spring barley. Nauch.- Tekhn. Bull. VSGI (Odessa). 62: 35–40

    Google Scholar 

  • Krishnaraj S., Mawson B.T., Yeung E.C., Jhorpe J.A. 1993. Utilizationof induction and quenching kinetics of chlorophyll fluorescencefor in vivo salinity screening studies in wheat (Triticum aestivumvass. Kharcia-65 and Fielder). Canadian Journal of Botany 71: 87–97

    Article  Google Scholar 

  • Kueh J.S.H., Bright S.W.J. 1982. Biochemical and genetic analysis of three proline accumulating barley mutants. Plant Sci Lett 27: 233–241

    CAS  Google Scholar 

  • Lahaye P.A., Epstein E. 1971. Calcium and salt toleration by bean plants. Physiologia Plantarum 25: 223–218

    Google Scholar 

  • Leigh R.A. 2001. Potassium homeostasis and membrane transport. J Plant Nutr Soil Sci 164: 193–198

    CAS  Google Scholar 

  • Lilley J.M., Ludlow M.M., McCouch S.R., O’Toole J.C. 1996. Locating QTLs for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47:1427–1436

    CAS  Google Scholar 

  • Lu Z., Tamar K., Neumann P.M., Nevo E. 1999. Physiological characterization of drought tolerance in wild barley (Hordeum spontaneum)from the Judean Desert. Barley Genetics Newsletter 29: 36–39

    Google Scholar 

  • Lynch J., Lauchli A. 1985. Salt stress disturbs the calcium nutrition of barley (Hordeum vulgare L.). The New Phytologist 99: 345–354

    CAS  Google Scholar 

  • Lynch J., Lauchli A. 1988. Salinity affects intracellular calcium in corn root protoplasts. Plant Physiology 87: 351–356

    PubMed  CAS  Google Scholar 

  • Lynch J., Thiel G., Lauchli A. 1988. Effects of salinity on the extensibility and Ca availability in the expanding region of growing barley leaves. Botanica Acta 101: 355–361

    CAS  Google Scholar 

  • Maas E.V., Hoffman G. J. 1977. Crop salt tolerance–current assessment. Journal of the Irrigation and Drainage Division 103: 115–134

    Google Scholar 

  • Maathuis F. J.M., Amtmann A. 1999. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84: 123–133

    CAS  Google Scholar 

  • Maestri E., MalcevschiA., Massari A., Marmiroli N. 2002. Genomic analysis of cultivated barley (Hordeum vulgare) using sequence-tagged molecular markers. Estimates of divergence based on RFLP and PCR markers derived from stress-responsive genes, and simple-sequence repeats (SSRs). Mol Genet Genomics 267: 186–201

    PubMed  CAS  Google Scholar 

  • Malkit A., Sadka A., Fisher M., Goldshlag P., Gokhman I., Zamir A. 2002. Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant Alga Dunaliella salina. Plant Physiol 129: 1320–1329

    Google Scholar 

  • Mano Y., Takeda K. 1996. Genetical studies on salt tolerance at germination in recombinant, inbred, iso-genic and doubted haploid lines of barley (Hordeum vulgare L.). Bull Res. Ins Okayama Univ 4: 79–88

    CAS  Google Scholar 

  • Mano Y., Takeda K. 1997. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94: 263–272

    Google Scholar 

  • Mano Y., Takeda K. 1998. Genetic resources of salt tolerance in wild Hordeum species. Euphytica 103: 137–141

    Google Scholar 

  • Mansour M.M.F., van Hasselt P.R., Kuiper P.J.C. 1994. Plasma membrane lipid alterations induced by NaCl in winter wheat roots. Physiol. Plant 92: 473–478

    CAS  Google Scholar 

  • Maser P., Eckelman B., Vaidyanathan R., Horie T., Fairbairn D. J., Kubo M., Yamagami M., Yamaguchi K., Nishimura M., Uozumi N., Robertson W., Sussman M. R., Schroeder J. I. 2002. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531: 157–161

    PubMed  CAS  Google Scholar 

  • Monforte A.J., Asins M.J., Carbonell E.A. 1997. Salt tolerance in Lycopersicon species 6. Genotype-bysalinity interaction in quantitative trait loci detection: constitutive and response QTLs. Theor Appl Genet 95: 706–713

    Google Scholar 

  • Morgan J.M., Tan M.K. 1996. Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol 23:803–806

    Article  CAS  Google Scholar 

  • Muench D.G., Good A.G. 1994. Hypoxically inducible barley alanine aminotransferase: cDNA cloning and expression analysis. Plant Mol Biol 24: 417–427

    PubMed  CAS  Google Scholar 

  • Munns R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell and Environ 16: 15–24

    CAS  Google Scholar 

  • Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ 25: 239–250

    PubMed  CAS  Google Scholar 

  • Munns R., James R.A. 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil 253: 201–218

    CAS  Google Scholar 

  • Muramoto Y., Watanabe A., Nakamura T., Takabe T. 1999. Enhanced expression of a nuclease gene in leaves of barley plants under salt stress. Gene 234: 315–321

    PubMed  CAS  Google Scholar 

  • Narita Y., Taguchi H., Nakamura T., Ueda A., Shi W., Takabe T. 2004. Characterization of the salt-inducible methionine synthase from barley leaves. Plant Science 167: 1009–1016

    CAS  Google Scholar 

  • Noble C.L., Rogers M.E. 1992. Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant and Soil 146: 99–107

    CAS  Google Scholar 

  • Norberg P., Liljenberg C. 1991. Lipids of plasma membranes prepared from oat root cells: effect of induced water deficit tolerance. Plant Physiol 96: 1136–1141

    PubMed  CAS  Google Scholar 

  • Ouerghi Z., Cornic G., Roudani M., Ayadi A., Brulfert J. 2000. Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress. J Plant Physiol 156: 335–340

    CAS  Google Scholar 

  • Ozturk Z.N., Talame V., Deyholos M., Michalowski C.B., Galbraith D.W., Gozukirmizi N., Tuberosa R., Bohnert H.J. 2002. Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Molecular Biology 48: 551–573

    CAS  Google Scholar 

  • Pakniyat H., Handley L.L., Thomas W.T.B., Connolly T., Macaulay M., Caligari O.D.S., Forster B.P. 1997. Comparison of shoot dry weight, Na+ content and d13C values of Ali-E and other-dwarf mutants under salt-stress. Euphytica 94: 7–14

    CAS  Google Scholar 

  • Pillen K., Zacharias A., Lèon J. 2003. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 107:340–352

    PubMed  CAS  Google Scholar 

  • Poustini K., Siosemardeh A. 2004. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Research 85: 125–133

    Google Scholar 

  • Ramagopal S. 1988. Regulation of protein synthesis in root, shoot and embryonic tissues of germinating barley during salinity stress. Plant, Cell and Environment 11: 501–515

    CAS  Google Scholar 

  • Rasmuson D.E., Anderson J.E. 2002. Salinity affects development, growth, and photosynthesis in cheatgrass. Journal of Range Management 55: 80–87

    Google Scholar 

  • Rathore A.K., Sharma R.K., Lal P. 1977. Relative salt tolerance of different varieties of barley (Hordeum vulgare L.) at germination and seedling stage. Ann Arid Zone 16: 53–60

    Google Scholar 

  • Rhode D., Hanson A.D. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Ann Rev Plant Physiol Plant Mol Biol 44: 357–384

    Google Scholar 

  • Richards R.A. 1983. Should selection for yield in saline regions be made on saline or non-saline soil. Euphytica 32: 431–438

    Google Scholar 

  • Rodriguez E.M., Svensson J.T., Malatrasi M., Choi D.W., Close T.J. 2005. Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor Appl Genet 110: 852–858

    PubMed  CAS  Google Scholar 

  • Romagosa I., Araus J.L. 1991. Genotype-environment interaction for grain yield and 13C discrimination in barley. Barley Genetics VI 563–567

    Google Scholar 

  • Sayed J. 1985. Diversity of salt tolerance in a germplasm collection of wheat (Triticum aestivum). Theor Appl Genet 69:651–657

    Google Scholar 

  • Sayed O.H. 2003. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 41: 321–330

    CAS  Google Scholar 

  • Serafini-Fracassini D., Del Duca S., Beninati S. 1995. Plant transglutaminases. Phytochemistry 40: 355–365

    PubMed  CAS  Google Scholar 

  • Shabala S. 2000. Ionic and Osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant, Cell & Environment 23: 825–838

    CAS  Google Scholar 

  • Shabala S., Shabala L., Van Volkenburgh E. 2003. Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Functional Plant Biology 30: 507–514

    CAS  Google Scholar 

  • Shabala S.I. 2002. Screening plants for environmental fitness: chlorophyll fluorescence as a ‘’Holy Grail” for plant breeders. In: Hemantaranjan, A. (Ed.), Advances in Plant Physiology, vol. 5. Scientific Publishers, Jodhpur, India, pp. 287–340

    Google Scholar 

  • Shannon M.C. 1997. Adaptation of plants to salinity. Adv Agron 60: 76–199

    Google Scholar 

  • Shannon M.C., Noble C.L. 1990. Genetic approaches for developing economic salt-tolerant crops. In: K.K. Tanji (ed.) Agric. Salinity Assessment and Management. Manuals and Reports on Engineering Practice No. 71. Am Soc Civil Eng, New York. pp.161–185

    Google Scholar 

  • Shen Z., Shen Q., Liang Y., Liu Y. 1994. Effect of nitrogen the growth and photosynthetic activity of salt stress barley. J Plant Nutri 17: 787–799

    CAS  Google Scholar 

  • Shi W.M., Muramoto Y., Ueda A., Takabe T. 2001. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene 273: 23–27

    PubMed  CAS  Google Scholar 

  • Smillie R.M., Nott R. 1982. Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo. Plant Physiol 70: 1049–1054

    PubMed  CAS  Google Scholar 

  • Somerville C. 1995. Direct tests of the role of membrane lipidcomposition in low-temperature-induced photoinhibition andchilling sensitivity in plants and cyanobacteria. Proc Natl Acad Sci USA 92: 6215–6218

    PubMed  CAS  Google Scholar 

  • Stanca A.M., Romagosa I., Takeda K., Lundborg T., Terzi V., Cattivelli L. 2003. Diversity in abiotic stress tolerance. In: RV Bothmer, Hintum TV, Knupffer H and Sato K (eds), Diversity in barley. ELSEVIER, pp.307–361

    Google Scholar 

  • Szabolcs I. 1989. Salt-affected soil. CRC Press

    Google Scholar 

  • Tabor C.W., Tabor, H. 1984. Polyamines. Annu. Rev Biochem 53: 749–790

    PubMed  CAS  Google Scholar 

  • Tassoni A., Antognoni F., Bagni N. 1996. Polyamine binding to plasma membrane vesicles from zucchini hypocotyls. Plant Physiol 110: 817–824

    PubMed  CAS  Google Scholar 

  • Talame V., Sanguineti M.C., Chiapparino E., Bahri H., Salem M.B., Forster B.P., Ellis R.P., Rhouma S., Zoumarou W., Waugh R., Tuberosa R. 2004. Identification of Hordeum spontaneum QTL alleles improving field performance of barley grown under rainfed conditions. AnnAppl Biol144:309–319

    CAS  Google Scholar 

  • Teulat B., Rekika D., Nachit M.M., Monneveux P. 1997a. Comparative osmotic adjustments in barley and tetraploid wheats. Plant Breed 116:519–523

    CAS  Google Scholar 

  • Teulat B., Monneveux P., Wery J., Borries C., Souyris I., Charrier A., This D. 1997b. Relationships between relative water-content and growth parameters under water stress in barley: a QTL study. New Phytol 137:99–107

    Google Scholar 

  • Teulat B., This D., Khairallah M., Borries C., Ragot C., Sourdille P., Leroy P., Monneveux P., Charrier A. 1998. Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet 96:688–698

    CAS  Google Scholar 

  • Teulat B., Borries C., This D., 2001a. New QTLs identified for plant water-status, water soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet 103:161–170

    CAS  Google Scholar 

  • Teulat B., Merah O., Souyris I., This D. 2001b. QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theor Appl Genet 103:774–787

    CAS  Google Scholar 

  • Teulat B., Merah O., Sirault X., Borries C., Waugh R., This D. 2002. QTLs for grain carbon-isotope discrimination in field-grown barley. Theor Appl Genet 106:118–126

    PubMed  CAS  Google Scholar 

  • Teulat B., Zoumarou-Wallis N., Rotter B., Ben Salem M., Bahri H., This D. 2003. QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108:181–188

    PubMed  CAS  Google Scholar 

  • Tester M., Davenport R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann Bot 91: 503–527

    PubMed  CAS  Google Scholar 

  • Tondelli A., Francia E., Barabaschi D., Aprile A., Skinner J.S., Stockinger E.J., Stanca A.M., Pecchioni N. 2006. Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112: 445–454

    PubMed  CAS  Google Scholar 

  • von Well E., Fossey A. 1998. A comparative investigation of seed germination, metabolism and seedling growth between two polyploidy Triticum species. Euphytica 101:83–89

    Google Scholar 

  • Wang W., Vinocur B., Altman A. 2003 Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1–14

    PubMed  CAS  Google Scholar 

  • Wei W.X., Bilsborrow P., Hooley P., Fincham D., Foster B. 2001. Variation between two near isogenic barley (Hordeum vulgare) cultivars in expression of the B subunit of the vacuolar ATPase in response to salinity. Hereditas 135: 227–231

    PubMed  CAS  Google Scholar 

  • Whittaker A., Bochicchio A., Vazzana C., Lindsey G., Farrant J. 2001. Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa. J Exp Bot 52:961–969

    PubMed  CAS  Google Scholar 

  • Wierstra I., Kloppstech K. 2000. Differential effects of methyljasmonateon the expression of the early light-inducible proteins and other light-related genes in barley. Plant Physiol 124: 833–844

    PubMed  CAS  Google Scholar 

  • Wissenbach M., Uberlacker B., Vogt F., Becker D., Salamini F., Rohde W. 1993. Myb genes from Hordeum vulgare: tissuespecific expression of chimeric Myb promoter/Gus genes in transgenic tobacco. Plant J 4:411–422

    PubMed  CAS  Google Scholar 

  • Wolf O., Munns R., Tonnet M.L., Jeschke W.D. 1990. Concentrations and transport of solutes in xylem and phloem along the leaf axis of NaCl-treated Hordeum vulgare. Journal of Experimental Botany 41: 1133–1141

    CAS  Google Scholar 

  • Xu D., Duan X., Wang B., Hong B., Ho T.-H.D., Wu R. 1996. Expression of a late embryogenesis abundant protein gene, HVAJ, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yamaguchi M., Kasamo K. 2001. Modulation in the activity of purified tonoplast H+-ATPase by tonoplast glycolipids prepared from cultured rice (Oryza sativa L. var. Boro) cells. Plant Cell Physiol 42: 516–523

    PubMed  CAS  Google Scholar 

  • Yeo A.R., Flowers T.J. 1989. Selection for physiological characters – examples from breeding for salt tolerance. In: Jones, H.G., Flowers, T.J., Jones, M.B. , Plants under Stress Biochemistry, Physiology and Ecology and their Application to Plant Improvement. Cambridge University Press, Cambridge, pp. 217–234

    Google Scholar 

  • Zeh M., Leggewie G., Hoefgen R., Hesse H. 2002. Cloning and characterization of a cDNA encoding a cobalamin-independent methionine synthase from potato (Solanum tuberosum L.), Plant Mol Biol 48: 255–265

    PubMed  CAS  Google Scholar 

  • Zhao F.G., Qin P. 2005. Protective effects of exogenous fatty acids on root tonoplast function against salt stress in barley seedlings. Environmental and Experimental Botany 53: 215–223

    CAS  Google Scholar 

  • Zhao F.G., Sun C., Liu Y.L., Liu Z.P. 2000. Effects of salinity stress on the levels of covalently and noncovalently bound polyamines in plasma membrane and tonoplast isolated from leaves and roots of barley seedlings. Acta Bot Sin 42: 920–926

    CAS  Google Scholar 

  • Zhu J.K. 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124: 941–948

    PubMed  CAS  Google Scholar 

  • Zid E., Grignon C. 1985. Sodium-calcium interactions in leaves of Citrus aurantium grown in the presence of NaCl. Physiologie Vegetale 23: 895–203

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Li, C., Zhang, G., Lance, R. (2007). Recent Advances in Breeding Barley for Drought and Saline Stress Tolerance. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_24

Download citation

Publish with us

Policies and ethics