Skip to main content

Recent Advances in Breeding Maize for Drought and Salinity Stress Tolerance

  • Chapter
Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops

Abstract

Maize production losses due to drought and salinity prominently affect economies and the livelihoods of millions of people, given the global and regional importance of maize and its pronounced susceptibility to these stress factors. Climate change and accelerating competition for irrigation water are expected to further increase the need for adaptive strategies. There is vast evidence for genetic approaches being able to significantly improve the drought and salinity tolerance of maize. Field-based breeding approaches have resulted in average breeding gains of around 100 kg ha-1 yr-1 under drought conditions, and there are first reports on transgenic drought and salinity tolerance mechanisms increasing maize grain yields under laboratory and field conditions. Drought and salinity tolerance are based on complex genetic systems and successful genetic enhancement programs need to consider gene-by-gene, gene-by environment and gene-by-developmental stage interactions. In the case of drought, field-based and transgenic approaches have resulted in the improvement of diverse and potentially additive tolerance mechanisms. Increasing yields and yield stability of maize in the face of climate change and scarcity of irrigation water will therefore likely be the most successful if complementary investments in field-based and transgenic breeding approaches are being made

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrama, H.A.S. and M. E. Moussa. 1996 Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euph. 91: 89–97.

    Article  CAS  Google Scholar 

  • Ashraf, M., and T. McNeilly , 1989. Effect of salinity on some cultivars of maize. Maydica 34: 179–189.

    Google Scholar 

  • Ashraf, M. and T. McNeilly , 1990. Improvement of salt tolerance in maize by selection and breeding. Plant Breed 104: 101–107.

    Article  Google Scholar 

  • Bänziger, M., G.O. Edmeades, and S. Quarrie . 1997. Drought stress at seedling stage - are there genetic solutions? pp 348–354 In G.O. Edmeades, M. Bänziger, H. R. Mickelson, and C.B. Peña-Valdivia (eds.) Developing Drought and Low N-Tolerant Maize. Proceedings of a Symposium, March 25–29, 1996, CIMMYT, El Batán, Mexico. Mexico D.F., CIMMYT.

    Google Scholar 

  • Bänziger, M., G.O. Edmeades, D. Beck , and M. Bellon . 2000. Breeding for drought and nitrogen stress tolerance in maize. CIMMYT Special Publication. Mexico, D.F.: CIMMYT. 68 p.

    Google Scholar 

  • Bänziger, M., P.S. Setimela, D. Hodson , and B. Vivek . 2006. Breeding for improved drought tolerance in maize adapted to southern Africa. Agricultural Water Management 80: 212–224.

    Article  Google Scholar 

  • Barker, T. , H. Campos, M. Cooper, D. Dolan, G.O. Edmeades, J. Habben, J. Schussler, D. Wright, C. Zinselmeier , 2005. Improving drought tolerance in maize. Plant Breed. Rev. 25: 173–253.

    CAS  Google Scholar 

  • Beltrão, J. and J.B. Asher. 1997. The effect of salinity on corn yield using the CERES-maize model. Irrig. Drain. Syst. 11: 15–28.

    Article  Google Scholar 

  • Betran, F.J., D. Beck, M. Bänziger, and G. O. Edmeades. 2003. Genetic analysis of inbred and hybrid grain yield under Stress and nonstress environments in tropical maize. Crop Sci. 43:807–817.

    Article  Google Scholar 

  • Bolaños, J., and G.O. Edmeades. 1993a. Eight cycles of selection for drought tolerance in tropical maize. I. Responses in grain yield, biomass and radiation interception. Field Crops Res. 31:233–252.

    Article  Google Scholar 

  • Bolaños, J., and G.O. Edmeades. 1993b. Eight cycles of selection for drought tolerance in tropical maize. II. Responses in reproductive behavior. Field Crops Res. 31:253–268.

    Article  Google Scholar 

  • Bolaños, J., G.O. Edmeades and L. Martinez. 1993. Eight cycles of selection for drought tolerance in tropical maize. III. Responses in drought-adaptive physiological and morphological traits. Field Crops Res. 31:269–286.

    Article  Google Scholar 

  • Bolaños, J., and G.O. Edmeades. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res. 48: 65–80.

    Article  Google Scholar 

  • Bruce, W.B., G.O. Edmeades and T.C. Barker. 2002. Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot. 53: 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Campos, H., M. Cooper, J.E. Habben, G.O. Edmeades, J.R. Schussler. 2004. Improving drought tolerance in maize: a view from industry. Field Crops Res. 90: 19–34.

    Article  Google Scholar 

  • Chapman, S.C., and G.O. Edmeades. 1999. Selection improves drought tolerance in tropical maize populations: II. Direct and correlated responses among secondary traits. Crop Sci. 39:1315–1324.

    Article  Google Scholar 

  • Colmer T.D., R. Munns , and T.J. Flowers. 2005. Improving salt tolerance of wheat and barley: future prospects. Austr. J. Exp. Agric. 45: 1425–1443.

    Article  CAS  Google Scholar 

  • Cramer, G.R. 2002. Sodium-calcium interactions under salinity stress. p. 205–228. In A. Lauchli and U. Luttge (eds) Salinity: Environment - Plants – Molecules. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Cramer, G. R. and D.C. Bowman. 1991. Kinetics of maize leaf elongation. I. Increased yield threshold limits short-term, steady-state elongation rates after exposure to salinity, J. Exp. Bot. 42: 1417–1426.

    Article  Google Scholar 

  • Cramer G.R., G.J. Alberico, and C. Schidt . 1994. Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Austr. J. of Plant Physiol. 21: 675–692.

    CAS  Google Scholar 

  • Cushman, J.C. and H.J. Bohnert. 2000. Genomic approaches to plant stress tolerance. Current Opinion Plant Biol 2000, 3:117–124.

    Article  CAS  Google Scholar 

  • Duvick, D.N. 1997. What is yield? p. 332–335. In G.O. Edmeades, M. Bänziger, H. R. Mickelson, and C.B. Peña-Valdivia (eds.) Developing Drought and Low N-Tolerant Maize. Proceedings of a Symposium, March 25–29, 1996, CIMMYT, El Batán, Mexico. Mexico D.F., CIMMYT.

    Google Scholar 

  • Duvick, D.N. and K. G. Cassman. 1999. Post–green revolution trends in yield potential of temperate maize in the North-Central United States. Crop Sci. 39:1622–1630.

    Article  Google Scholar 

  • Edmeades, G.O., J. Bolaños, M. Hernandez , and S. Bello ., 1993. Causes for silk delay in lowland tropical maize. Crop Sci. 33: 1029–1035.

    Article  Google Scholar 

  • Edmeades, G.O., J. Bolaños, and S.C. Chapman. 1997. Value of secondary traits in selecting for drought tolerance in tropical maize. In G.O. Edmeades, M. B änziger, H.R. Mickelson, and C.B. Peña-Valdivia, (eds.). Developing Drought- and Low N-Tolerant Maize. Proceedings of a Symposium, March 25–29, 1996, CIMMYT, El Batán, Mexico. Mexico, D.F.: CIMMYT.

    Google Scholar 

  • Edmeades, G.O., J. Bolaños, S.C. Chapman, H.R. Lafitte, and M. Bänziger. 1999. Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Sci. 39:1306–1315.

    Article  Google Scholar 

  • Edmeades, G.O., G.S. McMaster, J.W. White, and H. Campos. 2004. Genomics and the physiologist: bridging the gap between genes and crop response. Field Crops Res. 90: 5–18.

    Article  Google Scholar 

  • Edmeades, G.O., M. Bänziger, H. Campos, and J.R. Schussler. 2006. Improving tolerance to abiotic stresses in staple crops: a random or planned process? p. 293–309. In: K.R. Lamkey and M. Lee (Eds) Plant Breeding: The Arnel R. Hallauer International Symposium. Blackwell Publishing, Ames IA.

    Google Scholar 

  • Falcon, W.P. and R.L. Naylor. 1998. The maize transition in Asia: Unlocking the controversy. Amer. J Agri. Econ. 80: 960–968.

    Article  Google Scholar 

  • Falconer, D.S. 1989. Introduction to Qunatitative Genetics. 3rd ed. John Wiley and Sons, New York NY.

    Google Scholar 

  • FAO, 2000. Extent and causes of salt-affected soils in participating countries. FAO Rome, Italy. www.fao.org.

    Google Scholar 

  • FAOSTAT. 2006. Food and Agriculture Organization of the United Nations. FAO Rome, Italy. http://faostat.fao.org.

    Google Scholar 

  • Feng, G.L., A. Meiri, and J. Letey. 2003. Evaluation of a model for irrigation management under saline conditions: II. Salt distribution and rooting pattern effects. Soil Sci. Soc. Am. J. 67: 77–80.

    Article  CAS  Google Scholar 

  • Flowers, T.J. 2004. Improving crop salt tolerance. J. Exp. Bot. 55: 307–319.

    Article  PubMed  CAS  Google Scholar 

  • Fortmeier, R., and S. Schubert. 1995. Salt tolerance of maize (Zea mays L.): the role of sodium exclusion. Plant, Cell and Environment 18: 1041–1047.

    Article  CAS  Google Scholar 

  • Grant, R. F., B.S. Jackson, J.R. Kiniry, and G.F. Arkin. 1989. Water deficit timing effects on yield components in maize. Agron. J. 81: 61–65.

    Article  Google Scholar 

  • Grattan, S.R., and C.M. Grieve. 1999. Mineral nutrient acquisition and response by plants grown in saline environments. pp. 203–229. In M. Pessarakli (ed.) Handbook of plant and crop stress. Marcel Dekker, New York.

    Google Scholar 

  • Hasegawa, P.M., R. A. Bressan, J.K. Zhu, and H.J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Ann. Rev. Plant Physiol. Plant Mol. Biol. 51: 463–499.

    Article  CAS  Google Scholar 

  • Heard, J., T.R. Adams, G. Anstrom, R. Benson, D. Nelson, D. Warner, O. Ratcliffe, R. Creelman, and S. Dotson. 2005. Increasing yield stability in corn under drought conditions: new insights from transgenic studies. Abstract L 8.02 In InterDrought-II The 2nd International Conference on Integrated Approaches to Sustain and IMporve Plant Production under Drought Stress: Final Program and Abstract Book. Avenue media, Bologna, Italy.

    Google Scholar 

  • Heisey, P.W., and G.O. Edmeades. 1999. Maize production in drought-stressed environments: Technical options and research resource allocation. Part 1 of CIMMYT 1997/1998 World Facts and Trends; Maize Production in Drought-Stressed Environments: Technical Options and Research Resource Allocation. Mexico, D.F.: CIMMYT.

    Google Scholar 

  • Holmberg, N., and N. Vulgo. 1998. Improving stress tolerance in plants by gene transfer. Trends in Plant Science 3: 61–66.

    Article  Google Scholar 

  • Ingram, J., and D. Bartels. 1996. The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol. Plant Mol. Biol. 47: 377–403.

    Article  CAS  Google Scholar 

  • Jeanneau, M., D. Gerentes, X. Foueillassar, M. Zivy, J. Vidal, A. Toppan and P. Perez. 2002. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4–PEPC. Biochimie. 84:1127–35.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, S.S., and J. L. Gaedelmann. 1989. Influence of water stress on grain yield response to recurrent selection in maize. Crop Sci. 29:558–564.

    Article  Google Scholar 

  • Jones, J.B. 2003. Agronomic Handbook: Management of Crops, Soils and Their Fertility. CRC Press. Boca Raton, London, New York, Washington. p. 450.

    Google Scholar 

  • Jones, P.G. and P.K. Thornton. 2003. The potential impact of climate change on maize production in Africa and Latin America in 2055. Global Environmental Change 13:51–59.

    Article  Google Scholar 

  • Katerji, N., J.W. van Hoorn, A. Hamdy, and M. Mastrorilli. 2000. Salt tolerance classification of crops according to soil salinity and to water stress day index. Agric. Water Manag. 43: 99–109

    Article  Google Scholar 

  • Khan, A.A., S.A. Rao, and T. McNeilly. 2003. Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphyt. 131: 81–89.

    Article  CAS  Google Scholar 

  • Lebreton C, Laziejancie V., Steed A, Pekic S, Quarrie, S.A. 1995. Identification of QTL for drought responses in maize and their testing casual relationships betweentraits. Journal of Experimental Botany 46:853–865.

    Article  CAS  Google Scholar 

  • Löffler, C.M., J. Wei, T. Fast, J. Gogerty, S. Langton, M. Bergman, B. Merrill, and M. Cooper. 2005. Classification of Maize Environments Using Crop Simulation and Geographic Information Systems. Crop Sci. 45:1708–1716.

    Article  Google Scholar 

  • Maas, E.V., and G.J. Hoffman. 1977. Crop salt tolerance, current assessment. J. Irrig. Drain. Div. ASCE 103, 115–134.

    Google Scholar 

  • Maiti, R.K., L.E. Delgado Amaya, S. Ibarra Cardona, A.M. Ontiveros Dimas, M. De La Rosa-Ibarra, and H. De Leon Castillo. 1996. Genotypic variability in maize cultivars (Zea mays L.) for resistance to drought and salinity at the seedling stage. J. Plant Physiol. 148 741–744.

    Google Scholar 

  • Mladenova, Y.I. 1990. Influence of salt stress on primary metabolism of Zea mays L. seedlings of model genotypes. Plant and Soil 123: 217–222.

    CAS  Google Scholar 

  • Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell and Env. 25: 239–250.

    Article  CAS  Google Scholar 

  • Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167: 645–663.

    Article  PubMed  CAS  Google Scholar 

  • Munns, R. 1993. Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant Cell Env. 16: 15–24.

    Article  CAS  Google Scholar 

  • Munns, R., and H.M. Rawson. 1999. Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Austr. J. Plant Physiol. 26: 459–464.

    Article  Google Scholar 

  • Munns, R., R. A. James, and A. Läuchli. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57: 1025–1043.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, P. 1997. Salinity resistance and plant growth revisited. Plant Cell Env. 20: 1193–1198.

    Article  CAS  Google Scholar 

  • Prine, G.M., 1971. A critical period for ear development in maize. Crop Sci. 11: 782–786.

    Article  Google Scholar 

  • Quan, R., M. Shang, H. Zhang, Y, Zhao, and J. Zhang. 2004. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotech. J. 2: 477

    Article  CAS  Google Scholar 

  • Quisenberry, J.E. 1982. Breeding for drought resistance and plant water use efficiency. p. 193–212. In M.N. Christiansen and C.F. Lewis (ed.) Breeding plants for less favorable environments. John Wiley and Sons, New York.

    Google Scholar 

  • Rao, S.A., and T. McNeilly 1999. Genetic basis of variation for salt tolerance in maize (Zea mays L). Euphyt. 108: 145–150.

    Article  Google Scholar 

  • Reif, J. C., X. C. Xia, A. E. Melchinger, M. L. Warburton, D. A. Hoisington, D. Beck, M. Bohn and M. Frisch. 2004. Genetic Diversity Determined within and among CIMMYT Maize Populations of Tropical, Subtropical, and Temperate Germplasm by SSR Markers. Crop Sci. 44:326–334.

    Article  CAS  Google Scholar 

  • Richards RA. 1993. Should selection for yield in saline regions be made on saline or non-saline soils? Euphytica 32, 431–438.

    Article  Google Scholar 

  • Ribaut, J.M. D. A. Hoisington, J. A. Deutsch, C. Jiang and D. Gonzalez-de-Leon. 1996. Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor. App Gen: 92, 905–914.

    Google Scholar 

  • Ribaut, J.M. C. Jiang, D. Gonzalez-de-Leon, G.O. Edmeades, and D. A. Hoisington. 1997. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor. App Gen: 94, 887–896.

    Google Scholar 

  • Ribaut J.M., M. Bänziger, F.J. Betrán, C. Jiang, G.O. Edmeades, K. Dreher, and D. Hoisington. 2002. Use of molecular markers in plant breeding: drought tolerance improvement in tropical maize. pp. 85–99. In M.S. Kang (ed) Quantitative Genetics, Genomics and Plant Breeding. Wallingford, UK: CAB International.

    Google Scholar 

  • Ribaut J.-M., M. Bänziger, T. Setter, G. Edmeades, and D. Hoisington. 2004a. Genetic Dissection of Drought Tolerance in Maize: A Case Study. In H. Nguyen and A. Blum (eds.), Physiology and Biotechnology Integration for Plant Breeding. New York: Marcel Dekker, Inc. Pp. 571–611.

    Google Scholar 

  • Ribaut, J.M., M.C. Sawkins, M Bänziger, M. Vargas, E. Huerta , C. Martinez, and M. Moreno. 2004b. Marker-assisted selection in tropical maize based on consensus map, perspectives, and limitations. p. 267–268. In D. Poland, M. Sawkins, J.-M. Ribaut, and D. Hoisington (eds.). 2004. Resilient Crops for Water Limited Environments: Proceedings of a Workshop Held at Cuernavaca, Mexico, 24–28 May 2004. Mexico D.F.: CIMMYT.

    Google Scholar 

  • Saneoka H, C. Nagasaka, D.T. Hahn, W.J. Yang, G.S. Premachandra, R.J. Joly, and D. Rhodes. 1995. Salt tolerance of glycinebetaine-defcient and containing maize lines. Plant Physiol. 107: 631–638.

    PubMed  CAS  Google Scholar 

  • Setimela, P. Z. Chitalu, J. Jonazi, A. Mambo, D. Hodson and M. Bänziger. 2005. Environmental classification of maize-testing sites in the SADC region and its implication for collaborative maize breeding strategies in the subcontinent. Euphytica 145. 123–132.

    Article  Google Scholar 

  • Shou, H., P. Bordallo, and K. Wang. 2004. Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J. Exp. Bot. 55: 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, T.R. and R. C. Muchow. 2001. System analysis of plant traits to increase grain yield on limited water supplies. Agron. J. 93:263–270.

    Article  Google Scholar 

  • Sinclair1, T.R., and L. C. Purcell. 2005. Is a physiological perspective relevant in a ‘genocentric’ age? J. Exp. Bot. 56: 2777–2782.

    Article  Google Scholar 

  • Sumer A, C. Zörb, F. Yan and S. Schubert. 2004. Evidence of sodium toxicity for the vegetative growth of maize (Zea mays L.) during the first phase of salt stress. J. Appl. Bot. 78; 135–139.

    Google Scholar 

  • Tollenaar, M., and J. Wu. 1999. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci. 39:1597–1604.

    Article  Google Scholar 

  • Troyer A.F. 1996. Breeding widely adapted, popular maize hybrids. Euphytica 92:163–174.

    Article  Google Scholar 

  • US Salinity Laboratory, 2006. Salt Tolerance Databases: Fiber, Grain and Special Crops. http://www.ussl.ars.usda.gov/pls/caliche/SALTT42A.

    Google Scholar 

  • Warner, D.C., J. Heard, R. Bensen, and D. Nelson. 2005. Development of transgenes for improvement of drought stress tolerance in maize. Abstracts 2005 International Annual Meetings. ASA-CSSA-SSSA, Madison, WI.

    Google Scholar 

  • Westgate, M.E., and J.S. Boyer. 1986. Reproduction at low silk and pollen water potentials in maize Crop Sci. 26: 951–956.

    Google Scholar 

  • Westgate, M.E., and J.S. Boyer. 2004. Grain yields with limited water. J. Exp. Bot. 55: 2385–2394.

    Article  PubMed  Google Scholar 

  • World Food Program, 2006. WFP in Africa: Facts, figures and partners. WFP Liaison Office to the AU and ECA, Addis-Ababa, Ethiopia.

    Google Scholar 

  • Yamaguchi, T. and E. Blumwald. 2005. Developing salt-tolerant crop plants: challenges and opportunities. TRENDS in Plant Sci. 10: 615–620.

    Article  CAS  Google Scholar 

  • Yin, X.Y., A. F. Yang, K.W. Zhang and J. R. Zhang. 2004. Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Botanica Sinica 46: 854–861.

    CAS  Google Scholar 

  • Z hang, J., H Nguyen and A Blum. 2000. Genetic analysis of osmotic adjustment in crop plants. J. Exp Bot. 50: 291–302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bänziger, M., Araus, JL. (2007). Recent Advances in Breeding Maize for Drought and Salinity Stress Tolerance. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_23

Download citation

Publish with us

Policies and ethics