Skip to main content

Abstract

Compared to conventional breeding approaches, the dissection of the genetic basis of quantitative traits into their single components (i.e. Quantitative Trait Loci: QTLs) provides a more direct access to valuable allelic diversity at the loci governing the adaptive response to drought and salinity. Genomics and post-genomics platforms offer unprecedented opportunities to map, clone and manipulate the suite of QTLs affecting tolerance to drought and salinity in model species and crops. New high-throughput platforms capable of reducing the cost of molecular profiling coupled with a rapidly expanding amount of sequence information will streamline QTL dissection and the identification of superior alleles to enhance tolerance to drought and/or salinity. Therefore, it is expected that yield improvement under drought and/or saline conditions will increasingly benefit from the manipulation of QTLs through marker-assisted selection and, following QTL cloning, genetic engineering. Approaches based on the screening of wild relatives will unveil new allelic variants lost during domestication and early selection. Allele mining (e.g. association mapping, TILLING) in germplasm and mutant collections coupled with marker-assisted backcrossing and/or genetic engineering will further expand the possibilities to improve elite materials. QTL-based modelling approaches will contribute to better understand ‘Genotype x Environment’ interactions and to single out the most promising genotypes based upon the available QTL information. The impact of QTL-based approaches on the release of improved cultivars more resilient to drought and salinity will depend on their successful integration with conventional breeding methodologies and a thorough understanding of the biochemical and physiological processes limiting yield under such adverse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosakawa, D., and Shinozaki, K., 1997, Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression, Plant Cell 9:1859–1868.

    PubMed  CAS  Google Scholar 

  • Alonso-Blanco, C., and Koornneef, M., 2000, Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci. 5:22–29.

    PubMed  CAS  Google Scholar 

  • Andersen, J. R., and Lubberstedt, T., 2003, Functional markers in plants, Trends Plant Sci. 8:554–560.

    PubMed  CAS  Google Scholar 

  • Araus, J. L., Slafer, G. A., Reynolds, M. P., and Royo, C., 2002, Plant breeding and drought in C3 cereals: what should we breed for? Ann. Bot. 89:925–940.

    PubMed  Google Scholar 

  • Baum, M., Grando, S., Backes, G., Jahoor, A., Sabbagh, A., and Ceccarelli, S., 2003, QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ textmultiply H. spontaneum 41–1, Theor. Appl. Genet. 107:1215–1225.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J. L., and Ma, J., 2003, The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis, Curr. Opin. Plant Biol. 6:128–133.

    PubMed  CAS  Google Scholar 

  • Birnbaum, K., Shasha, D. E., Wang, J. Y., Jung, J. W., Lambert, G. M., Galbraith, D. W., and Benfey, P. N., 2003, A gene expression map of the Arabidopsis root, Science 302:1956–1960.

    PubMed  CAS  Google Scholar 

  • Blum, A., 1988, Breeding for stress environments, CRC Press, Boca Raton.

    Google Scholar 

  • Blum, A., 1996, Crop responses to drought and the interpretation of adaptation, Plant Growth Regul. 20:135–148.

    CAS  Google Scholar 

  • Blum, A., Munns, R., Passioura, J. B., and Turner, N. C., 1996, Genetically engineered plants resistant to soil drying and salt stress: How to interpret osmotic relations? Plant Physiol. 110:1051–1053.

    PubMed  CAS  Google Scholar 

  • Bohnert, H. J., Gong, Q., Li, P., and Ma, S., 2006, Unraveling abiotic stress tolerance mechanisms -getting genomics going, Curr. Opin. Plant Biol. 9:180–188.

    PubMed  CAS  Google Scholar 

  • Borewitz, J. O., and Chory, J., 2004, Genomics tools for QTL analysis and gene discovery, Curr. Opin. Plant Biol. 7:132–136.

    Google Scholar 

  • Borsani, O., Cuartero, J., Valpuesta, V., and Botella, M. A., 2002, Tomato tosI mutation identifies a gene essential for osmotic tolerance and abscisic acid sensitivity, Plant J. 32:905–914.

    PubMed  CAS  Google Scholar 

  • Boyer, J. S., 1996, Advances in drought tolerance in plants, Adv. Agron. 56:187–218.

    Google Scholar 

  • Boyer, J. S., and Westgate, M. E., 2004, Grain yields with limited water, J. Exp. Bot. 55:2385–2394.

    PubMed  CAS  Google Scholar 

  • Bray, E. A., 2002, Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome, Plant Cell Environ. 25:153–161.

    PubMed  CAS  Google Scholar 

  • Breyne, P., and Zabeau, M. 2001 Genome-wide expression analysis of plant cell cycle modulated genes, Curr. Opin. Plant Biol. 4:136–142.

    Google Scholar 

  • Breyne, P., Dreesen, R., Cannoot, B., Rombaut, D., Vandepoele, K., Rombauts, S., Vanderhaeghen, R., Inze, D., and Zabeau, M., 2003, Quantitative cDNA-AFLP analysis for genome-wide expression studies, Mol. Genet. Genomics 269:173–179.

    PubMed  CAS  Google Scholar 

  • Buckler, E. S. I., and Thornsberry, J. M., 2002, Plant molecular diversity and applications to genomics, Curr. Opin. Plant Biol. 5:107–111.

    PubMed  CAS  Google Scholar 

  • Campos, H., Cooper, M., Edmeades, G. O., Loffler, C., Schussler, J. R., and Ibanez, M., 2006, Changes in drought tolerance in maize associated with fifty years of breeding for yield in the U.S. Corn Belt, Maydica 51:369–381.

    Google Scholar 

  • Champoux, M. C., Wang, G., Sarkarung, S., Mackill, D. J., O’Toole, J. C., Huang, N., and McCouch, S. R., 1995, Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers, Theor. Appl. Genet. 90:969–981.

    CAS  Google Scholar 

  • Chapman, S., Cooper, M., Podlich, D., and Hammer, G., 2003, Evaluating plant breeding strategies by simulating gene action and dryland environment effects, Agronomy J. 95:99–113.

    Article  Google Scholar 

  • Chen, C. W., Yang, Y. W., Lur, H. S., Tsai, Y. G., and Chang, M. C., 2006, A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development, Plant Cell Physiol. 47:1–13.

    PubMed  Google Scholar 

  • Chen, W., Provart, N. J., Glazebrook, J., Katagiri, F., Chang, H., Eulgem, T., Mauch, F., Luan, S., Zou, G., Whitham, S. A., Budworth, P. R., Tao, Y., Xie, Z., Chen, X., Lam, S., Kreps, J. A., Harper, J.F., Si-Ammour, A., Mauch-Mani, B., Heinlein, M., Kobayashi, K., Hohn, T., Dangl, J. L., Wang, X., and Zhu, T., 2002, Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses, Plant Cell 14:559–574.

    PubMed  CAS  Google Scholar 

  • Colmer, T. D., Flowers, T. J., and Munns, R., 2006, Use of wide crosses and wild relatives to improve salt tolerance of wheat, J. Exp. Bot. 57:1059–1078.

    PubMed  CAS  Google Scholar 

  • Colmer, T. D., Munns, R., and Flowers, T. J., 2005, Improving salt tolerance of wheat and barley: future prospects, Aust. J. Exp. Ag. 45:1425–1443.

    CAS  Google Scholar 

  • Comai, L., Young, K., Till, B. J., Reynolds, S. H., Greene, E. A., Codomo, C. A., Enns, L. C., Johnson, J. E., Burtner, C., Odden, A. R., and Henikoff, S., 2004, Efficient discovery of DNA polymorphisms in natural populations by Ecotilling, Plant J. 37:778–786.

    PubMed  CAS  Google Scholar 

  • Condon, A. G., Richards, R. A., Rebetzke, G. J., and Farquhar, G. D., 2002, Improving intrinsic water-use efficiency and crop yield, Crop Sci., 42:122–131.

    Article  PubMed  Google Scholar 

  • Consoli, L., Lefévre, C. L., Zivy, M., de Vienne, D., and Damerval, C., 2002, QTL analysis of proteome and transcriptome variations for dissecting the genetic architecture of complex traits in maize, Plant Mol. Biol. 48:575–581.

    PubMed  CAS  Google Scholar 

  • Cooper, M., Chapman, S. C., Podlich, D. W., and Hammer, G. L., 2002, The GP problem: quantifying gene-to-phenotype relationships, In Silico Biol. 2:151–164.

    PubMed  CAS  Google Scholar 

  • Coraggio, I., and Tuberosa, R., 2004, Improving crops’ tolerance to abiotic stresses, in: Handbook of Plant Biotechnology, P. Christou, and H. Klee, eds., John Wiley & Sons, Ltd., Chichester, pp. 413–468.

    Google Scholar 

  • Courtois, B., Shen, L., Petalcorin, W., Carandang, S., Mauleon, R., and Li, Z., 2003, Locating QTLs controlling constitutive root traits in the rice population IAC 165 textmultiply Co39, Euphytica 134:335–345.

    CAS  Google Scholar 

  • Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., and Munns, R., 2005, Control of sodium transport in durum wheat, Plant Physiol. 137:807–818.

    PubMed  CAS  Google Scholar 

  • Davis, G. L., McMullen, M. D., Baysdorfer, C., Musket, T., Grant, D., Staebell, M., Xu, G., Polacco, M., Koster, L., Melia-Hancock, S., Houchins, K., Chao, S., and Coe, E. H. J., 1999, A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736 locus map, Genetics 152:1137–1172.

    PubMed  CAS  Google Scholar 

  • de Vienne, D., Leonardi, A., Damerval, C., and Zivy, M., 1999, Genetics of proteome variation for QTL characterization: application to drought-stress responses in maize, J. Exp. Bot. 50:303–309.

    Google Scholar 

  • Duvick, D. N., 2005, Contribution of breeding to yield advances in maize, in: Advances in Agronomy, vol. 86, D. N. Sparks, ed., Academic Press, San Diego, pp. 83–145.

    Google Scholar 

  • Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T., 1989, Carbon isotope discrimination and photosynthesis, Ann. Rev. Plant Physiol. Plant Mol. Biol. 40:503–537.

    CAS  Google Scholar 

  • Fell, D. A., 2001, Beyond genomics, Trends Genet. 17:680–682.

    PubMed  CAS  Google Scholar 

  • Fiehn, O., 2002, Metabolomics - the link between genotypes and phenotypes, Plant Mol. Biol. 48: 155–171.

    Google Scholar 

  • Fitz Gerald, J. N., Lehti-Shiu, M. D., Ingram, P. A., Deak, K. I., Biesiada, T., and Malamy, J. E., 2006, Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity, Genetics 172:485–498.

    PubMed  CAS  Google Scholar 

  • Flint-Garcia, S. A., Thornsberry, J. M., and Buckler, E. S. IV, 2003, Structure of linkage disequilibrium in plants, Ann. Rev. Plant Biol. 54:357–374.

    CAS  Google Scholar 

  • Flowers, T. J., Koyama, M. L., Flowers, S. A., Sudhakar, C., Singh, K. P., and Yeo, A. R., 2000, QTL: their place in engineering salt tolerance of rice to salinity, J. Exp. Bot. 51:99–106.

    PubMed  CAS  Google Scholar 

  • Forster, B. P., Ellis, R. P., Moir, J., Talamè, V., Sanguineti, M. C., Tuberosa, R., This, D., Teulat-Merah, B., Ahmed, I. A., Mariy, S. A., Bahri, H., El Quahabi, M., Zoumarou-Wallis, N., El-Fellah, M., and Ben Salem, M., 2004, Genotype and phenotype associations with drought tolerance in barley tested in North Africa, Ann. Appl. Biol. 144:157–168.

    Google Scholar 

  • Forster, B. P., Ellis, R. P., Thomas, W. T. B., Newton, A. C., Tuberosa, R., This, D., El Enein, R. A., Bahri, M. H., and Ben Salem, M., 2000, The development and application of molecular markers for abiotic stress tolerance in barley, J. Exp. Bot. 51:19–27.

    PubMed  CAS  Google Scholar 

  • Giuliani, S., Clarke, J., Kreps, J. A., Sanguineti, M. C., Salvi, S., Landi, P., Zhu, T., and Tuberosa, R., 2005a, Microarray analysis of backcrossed-derived lines differing for root-ABA1, a major QTL controlling root characteristics and ABA concentration in maize, in: Proceedings of an International Congress “In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution”, 27–31 May 2003, Bologna, Italy, R. Tuberosa, R. L. Phillips and M. Gale, eds., Avenue media, Bologna, pp. 463–490.

    Google Scholar 

  • Giuliani, S., Sanguineti, M. C., Tuberosa, R., Bellotti, M., Salvi, S., and Landi, P., 2005b, Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes, J. Exp. Bot. 56:3061–3070.

    CAS  Google Scholar 

  • Gorantla, M., Babu, P. R., Lachagari, V. B. R., Feltus, F. A., Paterson, A. H., and Reddy, A. R., 2005, Functional genomics of drought stress response in rice: transcript mapping of annotated unigenes of an indica rice (Oryza sativa L. cv. Nagina 22), Curr. Sci. 89:496–514.

    CAS  Google Scholar 

  • Grandillo, S., and Tanksley, S. D., 2005, Advanced backcross QTL analysis: results and perspectives, in: Proceedings of an International Congress “In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution”, 27–31 May 2003, Bologna, Italy, R. Tuberosa, R. L. Phillips and M. Gale, eds., Avenue media, Bologna, pp. 115–132.

    Google Scholar 

  • Granier, C., Aguirrezabal, L., Chenu, K., Cookson, S. J., Dauzat, M., Hamard, P., Thioux, J. J., Rolland, G., Bouchier-Combaud, S., Lebaudy, A., Muller, B., Simonneau, T., and Tardieu, F., 2006, PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit, New Phytol. 169:623–635.

    PubMed  Google Scholar 

  • Guo, H. S., Xie, Q., Fei, J. F., and Chua, N. H., 2005, MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development, Plant Cell 17:1376–1386.

    PubMed  CAS  Google Scholar 

  • Gupta, P. K., and Rustgi, S., 2004, Molecular markers from the transcribed/expressed region of the genome in higher plants, Funct. Integr. Genomics 4:139–162.

    PubMed  CAS  Google Scholar 

  • Haley, C., and de Koning, D. J., 2006, Genetical genomics in livestock: potentials and pitfalls, Anim. Genet. 37:10–12.

    PubMed  CAS  Google Scholar 

  • Hammer, G., Cooper, M., Tardieu, F., Welch, S., Walsh, B., van Eeuwijk, F., Chapman, S., and Podlich, D., 2006, Models for navigating biological complexity in breeding improved crop plants, Trends Plant Sci. 11:587–593.

    PubMed  CAS  Google Scholar 

  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., and Bohnert, H. J., 2000, Plant cellular and molecular responses to high salinity, Ann. Rev. Plant Physiol. Plant Mol. Biol. 51:463–499.

    CAS  Google Scholar 

  • Hazen, S. P., Wu, Y. J., and Kreps, J. A., 2003, Gene expression profiling of plant responses to abiotic stress, Funct. Integr. Genomics 3:105–111.

    PubMed  CAS  Google Scholar 

  • Hilson, P., Allemeersch, J., Altmann, T., Aubourg, S., Avon, A., Beynon, J., Bhalerao, R. P., Bitton, F., Caboche, M., Cannoot, B., Chardakov, V., Cognet-Holliger, C., Colot, V., Crowe, M., Darimont, C., Durinck, S., Eickhoff, H., Falcon de Longevialle, A., Farmer, E. E., Grant, M., Kuiper, M. T. R., Lehrach, H., Léon, C., Leyva, A., Lundeberg, J., Lurin, C., Moreau, Y., Nietfeld, W., Paz-Ares, J., Reymond, P., Rouzè, P., Sandberg, G., Segura, M. D., Serizet, C., Tabrett, A., Taconnat, L., Thareau, V., Van Hummelen, P., Vercruysse, S., Vuylsteke, M., Weingartner, M., Weisbeek, P. J., Wirta, V., Wittink, F. R. A., Zabeau M., and Small I., 2004, Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse, Genome Res. 14:2176–2189.

    PubMed  CAS  Google Scholar 

  • Hirai, M. Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, D. B., Yamazaki, Y., Kanaya, S., Nakamura, Y., Kitayama, M., Suzuki, H., Sakurai, N., Shibata, D., Tokuhisa, J., Reichelt, M., Gershenzon, J., Papenbrock, J., and Saito, K., 2005, Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics, J. Biol. Chem. 280:25590–25595.

    PubMed  CAS  Google Scholar 

  • Hochholdinger, F., Sauer, M., Dembinsky, D., Hoecker, N., Muthreich, N., Saleem, M., and Yan, L., 2006, Proteomic dissection of plant development, Proteomics 6:4076–4083.

    PubMed  CAS  Google Scholar 

  • Hochholdinger, F., Woll, K., Guo, L., and Schnable, P. S., 2005, The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.), Proteomics 5:4885–4893.

    PubMed  CAS  Google Scholar 

  • Huang, S., Spielmeyer, W., Lagudah, E. S., James, R. A., Platten, J. D., Dennis, E. S., and Munns, R., 2006, A sodium transporter (HKT7) is a candidate for NaxI, a gene for salt tolerance in durum wheat, Plant Physiol. 142:1–11.

    Google Scholar 

  • Husain, S., von Caemmerer, S., and Munns, R., 2004, Control of salt transport from roots to shoots of wheat in saline soil, Funct. Plant Biol. 31:1115–1126.

    CAS  Google Scholar 

  • Inan, G., Zhang, Q., Li, P., Wang, Z., Cao, Z., Zhang, H., Zhang, C., Quist, T. M., Goodwin, S. M., Zhu, J., Shi, H., Damsz, B., Charbaji, T., Gong, Q., Ma S., Fredricksen, M., Galbraith, D. W., Jenks, M. A., Rhodes, D., Hasegawa, P. M., Bohnert, H. J., Joly, R. J., Bressan, R. A., and Zhu, J.-K., 2004, Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles, Plant Physiol. 135:1718–1737.

    PubMed  CAS  Google Scholar 

  • James, R. A., Davenport, R., and Munns, R., 2006, Physiological characterisation of two genes for Na+ exclusion in wheat: Nax1 and Nax2, Plant Physiol. 142:1537–1547.

    PubMed  CAS  Google Scholar 

  • Jeanneau, M., Gerentesb, D., Foueillassarc, X., Zivyd, M., Vidala, J., Toppand, A., and Perez, P., 2002a, Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4PEPC, Biochimie 84:1127–1135.

    CAS  Google Scholar 

  • Jeanneau, M., Vidal, J., Gousset-Dupont, A., Lebouteiller, B., Hodges, M., Gerentes, D., and Perez, P., 2002b, Manipulating PEPC levels in plants, J. Exp. Bot. 53:1837–1845.

    CAS  Google Scholar 

  • Johnson, W. C., Jackson, L. E., Ochoa, O., Peleman, J., St Clair, D. A., Michelmore, R. W., and van Wijk, R., 2000, Lettuce, a shallow-rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation, Theor. Appl. Genet. 101:1066–1073.

    CAS  Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K., 1999, Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor, Nat. Biotechnol. 17:287–291.

    PubMed  CAS  Google Scholar 

  • Kawaguchi, R., Girke, T., Bray, E. A., and Bailey-Serres, J., 2004, Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana, Plant J. 38:823–839.

    PubMed  CAS  Google Scholar 

  • Koiwa, H., Bressan, R. A., and Hasegawa, P. M., 2006, Identification of plant stress-responsive determinants in Arabidopsis by large-scale forward genetic screens, J. Exp. Bot. 57:1119–1128.

    PubMed  CAS  Google Scholar 

  • Korol, A. B., Ronin, Y. I., Itskovich, A. M., Peng, J., and Nevo, E., 2001, Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits, Genetics 157:1789–1803.

    PubMed  CAS  Google Scholar 

  • Koyama, M. L., Levesley, A., Koebner, R. M. D., Flowers, T. J., and Yeo A. R., 2001, Quantitative trait loci for competent physiological traits determining salt tolerance in rice, Plant Physiol. 125:406–422.

    PubMed  CAS  Google Scholar 

  • Landi, P., Sanguineti, M. C., Liu, C., Li, Y., Wang, T. Y., Giuliani, S., Bellotti, M., Salvi, S., and Tuberosa, R., 2007, Root-ABA1 QTL affects root lodging, grain yield and other agronomic traits in maize grown under well-watered and water-stressed conditions, J. Exp. Bot. 58:319–326.

    PubMed  CAS  Google Scholar 

  • Landi, P., Sanguineti, M. C., Salvi, S., Giuliani, S., Bellotti, M., Maccaferri, M., Conti, S., and Tuberosa, R., 2005, Validation and characterization of a major QTL affecting leaf ABA concentration in maize, Mol. Breed. 15:291–303.

    CAS  Google Scholar 

  • Laurie, S., Feeney, K. A., Maathuis, F. J., Heard, P. J., Brown, S. J., and Leigh, R. A., 2002, A role for HKT1 in sodium uptake by wheat roots, Plant J. 32:139–149.

    PubMed  CAS  Google Scholar 

  • Lebreton, C., Lazic-Jancic, V., Steed, A., Pekic, S., and Quarrie, S.A., 1995, Identification of QTL for drought responses in maize and their use in testing causal relationships between traits, J. Exp. Bot. 46:853–865.

    CAS  Google Scholar 

  • Lee, M., 1995, DNA markers and plant breeding programs, Adv. Agron. 55:265–344.

    CAS  Google Scholar 

  • Li, Zichao, Mu, P., Li, C., Zhang, H., Li, Z., Gao, Y., and Wang, X., 2005, QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments, Theor. Appl. Genet. 110:1244–1252.

    PubMed  CAS  Google Scholar 

  • Li, Zhikang, Fu, B.-Y., Gao, Y.-M., Xu, J.-L., Ali, J., Lafitte, H. R., Jiang, Y.-Z., Rey, J. D., Vijayakumar, C. H. M., Maghirang, R., Zheng, T.-Q., and Zhu, L.-H., 2005, Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.), Plant Mol. Biol. 59:33–52.

    PubMed  CAS  Google Scholar 

  • Lindsay, M. P., Lagudah, E. S., Hare, R. A., and Munns, R., 2004, A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat, Funct. Plant Biol. 31:1105–1114.

    CAS  Google Scholar 

  • Liu, J., Raveendran, M., Mushtaq, R., Ji, X., Yang, X., Bruskiewich, R., Katiyar, S., Cheng, S., Lafitte, R., and Bennett, J., 2005, Proteomic analysis of drought-responsiveness in rice: OsADF5, in: Proceedings of an International Congress “In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution”, 27–31 May 2003, Bologna, Italy, R. Tuberosa, R. L. Phillips and M. Gale, eds., Avenue media, Bologna, pp. 491–505.

    Google Scholar 

  • Loudet, O., Gaudon, V., Trubuil, A., and Daniel-Vedele, F., 2005, Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family, Theor. Appl. Genet. 110:742–753.

    PubMed  CAS  Google Scholar 

  • Ludlow, M. M., and Muchow, R. C., 1990, A critical evaluation of traits for improving crop yields in water-limited environments, Adv. Agron. 43:107–153.

    Article  Google Scholar 

  • Maccaferri, M., Sanguineti, M. C., and Tuberosa, R., 2005, Analysis of linkage disequilibrium in a collection of elite durum wheat genotypes, Mol. Breed. 15:271–289.

    CAS  Google Scholar 

  • Maccaferri, M., Sanguineti, M. C., Natoli, V., Araus-Ortega, J. L., Ben Salem, M., Bort, J., Chenenaoui, S., Deambrogio, E., Garcia del Moral, L., de Montis, A., El-Ahmed, A., Maalouf, F., Machlab, H., Moragues, M., Motawaj, J., Nachit, M., Nserallh, N., Ouabbou, H., Royo, C., and Tuberosa, R., 2006, A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies, Plant Gen. Res. 4:79–85.

    Article  CAS  Google Scholar 

  • Maggio, A., Zhu, J.-K., Hasegawa, P. M., and Bressan, R. A., 2006, Osmogenetics: Aristotle to Arabidopsis, Plant Cell 18:1542–1557.

    PubMed  CAS  Google Scholar 

  • Markandeya, G., Babu, P. R., Lachagari, V. B. R., Feltus, F. A., Paterson, A. H., and Reddy, A.R., 2005, Functional genomics of drought stress response in rice: transcript mapping of annotated unigenes of an indica rice (Oryza sativa L. cv. Nagina 22), Curr. Sci. 89:496–514.

    Google Scholar 

  • Martínez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.-K., Pardo, J. M., and Quinterno, F. J., 2006, Conservation of the SOS salt tolerance pathway in rice, Plant Physiol. 143:1001–1012. First published on December 8, 2006; 10.1104/pp.106.092635.

    PubMed  Google Scholar 

  • Maser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D. J., Kubo, M., Yamagami, M., Yamaguchi, K., Nishimura, M., Uozumi, N., Robertson, W., Sussman, M. R., and Schroeder, J. I., 2002, Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1, FEBS Lett. 531:157–161.

    PubMed  CAS  Google Scholar 

  • Masle, J., Gilmore, S. R., and Farquhar, G. D., 2005, The ERECTA gene regulates plant transpiration efficiency in Arabidopsis, Nature 436:866–870.

    PubMed  CAS  Google Scholar 

  • McCallum, C. M., Comai, L., Greene, E. A., and Henikoff, S., 2000, Targeted screening for induced mutations, Nat. Biotechnol. 18:455–457.

    PubMed  CAS  Google Scholar 

  • McLaughlin, J. E., and Boyer, J. S., 2004, Sugar-responsive gene expression, invertase activity, and senescence aborting maize ovaries at low water potentials. Ann. Bot. 94:675–689.

    PubMed  CAS  Google Scholar 

  • Mizoguchi, T., Ichimura, K., Yoshida, R., and Shinozaki, K., 2000, MAP Kinase cascade in Arabidopsis: their role in stress and hormone response, Results Probl. Cell Differ. 27:29–38.

    PubMed  CAS  Google Scholar 

  • Moncada, P., Martinez, C., Borrero, J. M. C., Gauch, H. J., Guimaraes, E., Tohme, J., McCouch, S., 2001, Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment, Theor. Appl. Genet. 102:41–52.

    CAS  Google Scholar 

  • Morgante, M., and Salamini, F., 2003, From plant genomics to breeding practice, Curr. Opin. Biotech. 14:214–219.

    PubMed  CAS  Google Scholar 

  • Morgenthal, K., Weckwerth, W., and Steuer, R., 2006, Metabolomic networks in plants: transitions from pattern recognition to biological interpretation, BioSystems 83:108–117.

    PubMed  CAS  Google Scholar 

  • Mouchel, C. F., Briggs, G. C., and Hardtke, C. S., 2004, Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root, Genes Dev. 18:700–714.

    PubMed  CAS  Google Scholar 

  • Mouchel, C. F., Osmont, K. S., and Hardtke, C. S., 2006, BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth, Nature 43:458–461.

    Google Scholar 

  • Munns, R. 2005, Genes and salt tolerance: bringing them together, New Phytol. 167:645–663.

    PubMed  CAS  Google Scholar 

  • Munns, R., and Richards, R. A. 2007, Recent advances in breeding wheat for drought and salt stresses, in: Advances in molecular-breeding toward drought and salt tolerant crops, M. A. Jenks, P. M. Hasegawa, and S. Mohan Jain, eds., Springer, pp. 565–586.

    Google Scholar 

  • Munns, R., Hare, R. A., James, R. A., and Rebetzke, G. J., 2000, Genetic variation for improving the salt tolerance of durum wheat, Aust. J. Ag. Res. 51:69–74.

    CAS  Google Scholar 

  • Munns, R., James, R. A., and Läuchli, A., 2006, Approaches to increasing the salt tolerance of wheat and other cereals, J. Exp. Bot. 57:1025–1043.

    PubMed  CAS  Google Scholar 

  • Munns, R., Rebetzke, G. J., Husain, S., James, R. A., and Hare, R. A., 2003, Genetic control of sodium exclusion in durum wheat, Aust. J. Ag. Res. 54:627–635.

    CAS  Google Scholar 

  • Musket, T., Davis, D., Gerau, M., Schroeder, S., Sanchez-Villeda, H., Spollen, W., Springer, G., Poroyko, V., Bohnert, H., Hejlek, L., Sharp, R., Nguyen, H., and Davis, G., 2005, A maize root transcriptome map, 47th Annual Maize Meeting, Lake Geneva, Wisconsin, USA, pp. 106.

    Google Scholar 

  • Nakazono, M., Qiu, F., Borsuk, L. A., and Schnable, P. S., 2003, Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize, Plant Cell 15:583–596.

    PubMed  CAS  Google Scholar 

  • Nettleton, D., and Wang, D., 2006, Selective transcriptional profiling for trait-based eQTL mapping, Anim. Genet. 37:13–17.

    PubMed  CAS  Google Scholar 

  • Nguyen, H. T., and Blum, A., 2004, Physiology and Biotechnology Integration for Plant Breeding, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Nguyen, H. T., Babu, R. C., and Blum, A., 1997, Breeding for drought resistance in rice: physiology and molecular genetics considerations, Crop Sci. 37:1426–1434.

    Article  Google Scholar 

  • Okushima, Y., Overvoorde, P. J., Arima, K., Alonso, J. M., Chan, A., Chang, C., Ecker, J. R., Hughes, B., Lui, A., Nguyen, D., Onodera, C., Quach, H., Smith, A., Yu, G., and Theologis, A., 2005, Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19, Plant Cell 17:444–463.

    PubMed  CAS  Google Scholar 

  • Oono, Y., Seki, M., Nanjo, T., Narusaka, M., Fujita, M., Satoh, R., Satou, M., Sakurai, T., Ishida, J., Akiyama, K., Lida, K., Maruyama, K., Satoh, S., Yamaguchi-Shinozaki, K., and Shinozaki, K., 2003, Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray, Plant J. 34:868–887.

    PubMed  CAS  Google Scholar 

  • Ozturk, Z. N., Talamè, V., Deyholos, M., Michalowski, C. B., Galbraith, D. W., Gozukirmizi, N., Tuberosa, R., and Bohnert, H. J., 2002, Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley, Plant Mol. Biol. 48:551–573.

    CAS  Google Scholar 

  • Pakniyat, H., Powell, W., Baird, E., Handley, L. L., Robinson, D., Scrimgeour, C. M., Nevo, E., Hackett, C. A., Caligari, P. D. S., and Forster, B. P., 1997, AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography, Genome 40: 332–341.

    CAS  PubMed  Google Scholar 

  • Passioura, J. B., 2002, Environmental biology and crop improvement, Funct. Plant Biol. 29:537–546.

    Google Scholar 

  • Passioura, J. B., 2007, The drought environment: physical, biological and agricultural perspectives, J. Exp. Bot. 58:113–118.

    PubMed  CAS  Google Scholar 

  • Passioura, J. B., Spielmeyer, W. I., and Bonnett, D. G., 2007, Requirements for success in marker-assisted breeding for drought-prone environments in: Advances in molecular-breeding toward drought and salt tolerant crops, M. A. Jenks, P. M. Hasegawa, and S. Mohan Jain, eds., Springer, pp. 479–500.

    Google Scholar 

  • Peleman, J. D., and Van der Voort, J. R., 2003, Breeding by design, Trends Plant Sci. 8:330–334.

    PubMed  CAS  Google Scholar 

  • Pelleschi, S., Guy, S., Kim, J. Y., Pointe, C., Mahe, A., Barthes, L., Leonardi, A., and Prioul, J. L., 1999, Ivr2, a candidate gene for a QTL of vacuolar invertase activity in maize leaves. Gene-specific expression under water stress, Plant Mol. Biol. 39:373–380.

    PubMed  CAS  Google Scholar 

  • Pelleschi, S., Leonardi, A., Rocher, J. P., Cornic, G., de Vienne, D., Thévenot, C., and Prioul, J. L., 2006, Analysis of the relationships between growth, photosynthesis and carbohydrate metabolism using quantitative trait loci (QTLs) in young maize plants subjected to water deprivation, Mol. Breed. 17:21–39.

    CAS  Google Scholar 

  • Pflieger, S., Lefebvre, V., and Causse, M. 2001, The candidate gene approach in plant genetics: a review, Mol. Breed. 7:275–291.

    CAS  Google Scholar 

  • Price, A. H., 2006, Believe it or not, QTLs are accurate! Trends Plant Sci. 11:213–216.

    PubMed  CAS  Google Scholar 

  • Price, A., Steele, K., Gorham, J., Bridges, J., Moore, B., Evans, J., Richardson, P., and Jones, R., 2002, Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes I. Root distribution, water use and plant water status, Field Crop Res. 76:11–24.

    Google Scholar 

  • Pritchard, J. K., Stephens, M., Rosenberg, N. A., and Donnelly, P., 2000, Association mapping in structured populations, Am. J. Hum. Genet. 67:170–181.

    PubMed  CAS  Google Scholar 

  • Qi, L. L., Echalier, B., Chao, S., Lazo, G. R., Butler, G. E., Anderson, O. D., Akhunov, E. D., Dvoák, J., Linkiewicz, A. M., Ratnasiri, A., Dubcovsky, J., Bermudez-Kandianis, C. E., Greene, R. A., Kantety, R., La Rota, C. M., Munkvold, J. D., Sorrells, S. F., Sorrells, M. E., Dilbirligi, M., Sidhu, D., Erayman, M., Randhawa, H. S., Sandhu, D., Bondareva, S. N. K., Gill, S., Mahmoud, A. A., Ma, X.-F., Miftahudin, Gustafson, J. P., Conley, E. J., Nduati, V., Gonzalez-Hernandez, J. L., Anderson, J. A., Peng, J. H., Lapitan, N. L. V., Hossain, K. G., Kalavacharla, V., Kianian, S. F., Pathan, M. S., Zhang, D. S., Nguyen, H. T., Choi, D.-W., Fenton, R. D., Close, T. J., McGuire, P. E., Qualset, C. O., and Gill B. S., 2004, A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat, Genetics 168:701–712.

    PubMed  CAS  Google Scholar 

  • Qiu, Q.-S., Guo, Y., Quintero, F. J., Pardo, J. M., Schumaker, K. S., and Zhu, J.-K., 2004, Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway, J. Biol. Chem. 279:207–215.

    PubMed  CAS  Google Scholar 

  • Quarrie, S. A., 1991, Implications of genetic differences in ABA accumulation for crop production, in: Abscisic acid: physiology and biochemistry, W. J. Davies and H. G. Jones, eds., Bios Scientific Publishers, Oxford, pp. 227–243.

    Google Scholar 

  • Quesada, V., Garcia-Martinez, S., Piqueras, P., Ponce, M. R., and Micol, J. L., 2002, Genetic architecture of NaCl tolerance in Arabidopsis, Plant Physiol. 130:951–963.

    PubMed  CAS  Google Scholar 

  • Quesada, V., Ponce, M.R., and Micol, J.L., 2000, Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana, Genetics 154:421–436.

    PubMed  CAS  Google Scholar 

  • Rafalski, A., and Morgante, M., 2004, Corn and humans: recombination and linkage disequilibrium in two genomes of similar size, Trends Genet. 20:103–111.

    PubMed  CAS  Google Scholar 

  • Remington, D. L., Thornsberry, J. M., Matsuoka, Y., Wilson, L. M., Whitt, S. R., Doebley, J., Kresovich, S., Goodman, M. M., Buckler, E. S. IV, 2001, Structure of linkage disequilibrium and phenotypic associations in the maize genome, P. Natl. Acad. Sci. USA 98:11479–11484.

    CAS  Google Scholar 

  • Ren, Z.-H., Gao, J.-P., Li, L.-G., Cai, X.-L., Huang, W., Chao, D.-Y., Zhu, M.-Z., Wang, Z.-Y., Luan, S., and Lin, H.-X., 2005, A rice quantitative trait locus for salt tolerance encodes a sodium transporter, Nat. Genet. 37:1141–1146.

    PubMed  CAS  Google Scholar 

  • Rensink, W. A., 2005, Microarray expression profiling resources for plant genomics, Trends Plant Sci. 10:603–609.

    PubMed  CAS  Google Scholar 

  • Reymond, M., Muller, B., and Tardieu, F., 2004, Dealing with the genotypexenvironment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters, J. Exp. Bot. 55:2461–2472.

    PubMed  CAS  Google Scholar 

  • Reymond, M., Muller, B., Leonardi, A., Charcosset, A., and Tardieu, F., 2003, Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit, Plant Physiol. 131:664–675.

    PubMed  CAS  Google Scholar 

  • Ribaut, J. M., and Hoisington, D., 1998, Marker-assisted selection: new tools and strategies, Trends Plant Sci. 3:236–239.

    Google Scholar 

  • Ribaut, J. M., Banziger, M., Betran, J., Jiang, C., Edmeades, G. O., Dreher, K., and Hoisington, D., 2002, Use of molecular markers in plant breeding: drought tolerance improvement in tropical maize, in: it Quantitative Genetics, Genomics, and Plant Breeding, M. S. Kang, ed., CABI Publishing, Wallingford, pp. 85–99.

    Google Scholar 

  • Richards, R. A., 1996, Defining selection criteria to improve yield under drought, Plant Growth Regul. 20:157–166.

    CAS  Google Scholar 

  • Richards, R. A., 2000, Selectable traits to increase crop photosynthesis and yield of grain crops, J. Exp. Bot. 51:447–458.

    PubMed  CAS  Google Scholar 

  • Richards, R. A., 2006, Physiological traits used in the breeding of new cultivars for water-scarce environments., Agr. Water Manage. 80:197–211.

    Google Scholar 

  • Richards, R. A., Rebetzke, G. J., Condon, A. G., and van Herwaarden, A. F., 2002, Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals, Crop Sci. 42:111–121.

    Article  PubMed  Google Scholar 

  • Robertson, D. S., 1985, A possible technique for isolating genic DNA for quantitative traits in plant, J. Theor. Biol. 117:1–10.

    CAS  Google Scholar 

  • Rodryguez-Navarro, A., and Rubio, F., 2006, High-affinity potassium and sodium transport systems in plants, J. Exp. Bot. 57:1149–1160.

    Google Scholar 

  • Sakurai, N., and Shibata, D., 2006, KaPPA-View for integrating quantitative transcriptomic and metabolomic data on plant metabolic pathway maps, J. Pestic. Sci. 31:293–295.

    CAS  Google Scholar 

  • Salekdeh, G. H., Siopongco, J., Wade, L. J., Ghareyazie, B., and Bennett, J., 2002, A proteomic approach to analyzing drought- and salt-responsiveness in rice, Field Crops Res. 76:199–219.

    Google Scholar 

  • Salvi, S., and Tuberosa, R., 2005, To clone or not to clone plant QTLs: present and future challenges, Trends Plant Sci. 10:297–304.

    PubMed  CAS  Google Scholar 

  • Salvi, S., Costrini, P., Reynard, J. S., Zhao, Q., and Tuberosa, R., 2005, Mapping major QTLs for seminal root traits and flowering time using an introgression library in maize, Volume of Abstracts of Plant GEMs 4, Amsterdam, The Netherlands, p. 148.

    Google Scholar 

  • Salvi, S., Sponza, G., Morgante, M., Fengler, K., Meeley, R., Ananiev, E., Svitashev, S., Bruggemann, E., Niu, X., Li, B., Hainey, C. F., Rafalski, A., Tingey, S. V., Tomes, D., Miao, G.-H., Phillips, R. L., and Tuberosa. R., 2007, Conserved non-coding genomic sequences controlling flowering time differences in maize, P. Natl. Acad. Sci 104:11376–11381.

    Google Scholar 

  • Salvi, S., Tuberosa, R., Chiapparino, E., Maccarerri, M., Veillet, S., Van Beuningen, L., Isaac, P., Edwards, K., Phillips, R. L., 2002, Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize, Plant Mol. Biol. 48:601–613.

    PubMed  CAS  Google Scholar 

  • Sanchez, A. C., Subudhi, P. K., Rosenow, D. T., and Nguyen, H. T., 2002, Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench), Plant Mol. Biol. 48:713–726.

    PubMed  CAS  Google Scholar 

  • Sanguineti, M. C., Duvick, D. N., Smith, S., Landi, P., and Tuberosa, R., 2006, Effects of long-term selection on seedling traits and ABA accumulation in commercial maize hybrids, Maydica 51: 329–338.

    Google Scholar 

  • Sauer, M., Jakob, A., Nordheim, A., and Hochholdinger, F., 2006, Proteomic analysis of shoot-borne root initiation in maize (Zea mays L.), Proteomics 6:2530–2541.

    PubMed  CAS  Google Scholar 

  • Sawkins, M. C., Farmer, A. D., Hoisington, D., Sullivan, J., Tolopko, A., Jiang, Z., and Ribaut, J. M., 2004, Comparative map and trait viewer (CMTV): an integrated bioinformatic tool to construct consensus maps and compare QTL and functional genomics data across genomes and experiments, Plant Mol. Biol. 56:465–480.

    PubMed  CAS  Google Scholar 

  • Schadt, E. E., Monks, S.A., Drake, T. A., Lusis, A. J., Che, N., Colinayo, V., Ruff, T. G., Milligan, S. B., Lamb, J. R., Cavet, G., Linsley, P. S., Mao, M., Stoughton, R. B., and Friend, S.H., 2003, Genetics of gene expression surveyed in maize, mouse and man, Nature 422:297–302.

    PubMed  CAS  Google Scholar 

  • Schnable, P. S., Hochholdinger, F., and Nakazono, M., 2004, Global expression profiling applied to plant development, Curr. Opin. Plant Biol. 7:50–56.

    PubMed  CAS  Google Scholar 

  • Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., and Shinozaki, K., 2003, Molecular responses to drought, salinity and frost: common and different paths for plant protection, Curr. Opin. Biotech. 14:194–199.

    PubMed  CAS  Google Scholar 

  • Sergeeva, L. I., Keurentjes, J. J., Bentsink, L., Vonk, J., van der Plas, L. H., Koornneef, M., and Vreugdenhil, D., 2006, Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis, P. Natl. Acad. Sci. USA 103:2994–2999.

    CAS  Google Scholar 

  • Sharp, R. E., Poroyko, V., Hejlek, L. G., Spollen, W. G., Springer, G. K., Bohnert, H. J., and Nguyen, H.T., 2004, Root growth maintenance during water deficits: physiology to functional genomics, J. Exp. Bot. 55:2343–2351.

    PubMed  CAS  Google Scholar 

  • Shen, L., Courtois, B., McNally, K. L., Robin, S., and Li, Z., 2001, Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection, Theor. Appl. Genet. 103:75–83.

    CAS  Google Scholar 

  • Shinozaki, K., and Yamaguchi-Shinozaki, K., 1996, Molecular responses to drought and cold stress, Curr. Opin. Biotech. 7:161–167.

    PubMed  CAS  Google Scholar 

  • Shinozaki, K., and Yamaguchi-Shinozaki, K., 1997, Gene expression and signal transduction in water-stress response, Plant Physiol. 115:327–334.

    PubMed  CAS  Google Scholar 

  • Signora, L., de Smet, I., Foyer, C. H., and Zhang, H., 2001, ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis, Plant J. 28:655–662.

    PubMed  CAS  Google Scholar 

  • Slafer, G. A., 2003, Genetic basis of yield as viewed from a crop physiologist’s perspective, Ann. Appl. Biol. 142:117–128.

    Google Scholar 

  • Sorrells, M. E., La Rota, M., Bermudez-Kandianis, C. E., Greene, R. A., Kantety, R., Munkvold, J. D., Miftahudin, Mahmoud, A., Ma, X., Gustafson, P. J., Qi, L. L., Echalier, B., Gill, B. S., Matthews, D. E., Lazo, G. R., Chao, S., Anderson, O. D., Edwards, H., Linkiewicz, A. M., Dubcovsky, J., Akhunov, E. D., Dvorak, J., Zhang, D., Nguyen, H. T., Peng, J., Lapitan, N. L. V., Gonzalez-Hernandez, J. L., Anderson, J. A., Hossain, K., Kalavacharla, V., Kianian, S. F., Choi, D. W., Close, T. J., Dilbirligi, M., Gill, K. S., Steber, C., Walker-Simmons, M. K., McGuire, P. E., and Qualset, C. O., 2003, Comparative DNA sequence analysis of wheat and rice genomes, Genome Res. 13:1818–1827.

    PubMed  CAS  Google Scholar 

  • Steele, K. A., Price, A. H., Shashidha, H. E., and Witcombe, J. R., 2006, Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety, Theor. Appl. Genet. 112:208–221.

    PubMed  CAS  Google Scholar 

  • Stemple, D. L., 2004, TILLING: a high-throughput harvest for functional genomics, Nat. Rev. Genet. 5:145–150.

    PubMed  CAS  Google Scholar 

  • Stephanopoulos, G., Alper, H., and Moxley, J., 2004, Exploiting biological complexity for strain improvement through systems biology, Nat. Biotechnol. 22:1261–1267.

    PubMed  CAS  Google Scholar 

  • Steuer, R., Kurths, J., Fiehn, O., and Weckwerth, W., 2003, Observing and interpreting correlations in metabolomic networks, Bioinformatics 19:1019–1026.

    PubMed  CAS  Google Scholar 

  • Stockinger, E. J., Gilmour, S.J., and Thomashow, M.F., 1997, Arabidopsis thaliana CBF1 encodes an AP2 domain containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit, P. Natl. Acad. Sci. USA 94:1035–1040.

    CAS  Google Scholar 

  • Taji, T., Seki, M., Satou, M., Sakurai, T., Kobayashi, M., Ishiyama, K., Narusaka, Y., Narusaka, M., Zhu, J. K., and Shinozaki, K., 2004, Comparative genomics in salt tolerance between Arabidopsis and arabidopsis-related halophyte salt cress using Arabidopsis microarray, Plant Physiol. 135:1697–709.

    PubMed  CAS  Google Scholar 

  • Talamè V., Ozturk, N. Z., Bohnert, H. J., and Tuberosa, R., 2007, Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis, J. Exp. Bot. 58:229–240.

    PubMed  Google Scholar 

  • Talamè, V., Sanguineti, M. C., Chiapparino, E., Bahri, H., Ben Salem, M., Forster, B. P., Ellis, R. P., Rhouma, S., Zoumarou, W., Waugh, R., and Tuberosa, R., 2004, Identification of Hordeum spontaneum QTL alleles improving field performance of barley grown under rainfed conditions, Ann. Appl. Biol. 144:309–319.

    Google Scholar 

  • Tanksley, S. D., 1993, Mapping polygenes, Ann. Rev. Genet. 27:205–233.

    PubMed  CAS  Google Scholar 

  • Tanksley, S. D., and McCouch, S. R., 1997, Seed banks and molecular maps: unlocking genetic potential from the wild, Science 277:1063–1066.

    PubMed  CAS  Google Scholar 

  • Tanksley, S., and Nelson, J., 1996, Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines, Theor. Appl. Genet. 92:191–203.

    Google Scholar 

  • Tanksley, S., Grandillo, S., Fulton, T., Zamir, D., Eshed, T., Petiard, V., Lopez, J., and Beck, B.T., 1996, Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium, Theor. Appl. Genet. 92:213–224.

    CAS  Google Scholar 

  • Tester, M., and Davenport, R., 2003, Na+ tolerance and Na+ transport in higher plants, Ann. Bot. 91:503–527.

    PubMed  CAS  Google Scholar 

  • Tollenaar, M., and Wu, J., 1999, Yield improvement in temperate maize is attributable to greater stress tolerance, Crop Sci. 39:1597–1604.

    Article  Google Scholar 

  • Touzet, P., Winkler, R. G., and Helentjaris, T., 1995, Combined genetic and physiological analysis of a locus contributing to quantitative variation, Theor. Appl. Genet. 91:200–205.

    CAS  Google Scholar 

  • Trethowan, R. M., van Ginkel, M., and Rajaram, S., 2002, Progress in breeding for yield and adaptation in global drought affected environments, Crop Sci. 42:1441–1446.

    Article  Google Scholar 

  • Tuberosa, R., and Salvi, S., 2004, QTLs and genes for tolerance to abiotic stress in cereals, in: Cereal Genomics, R. Varshney and P. K. Gupta, eds., Kluwer Academic Publishers, Dordrecht, pp. 253–315.

    Google Scholar 

  • Tuberosa, R., and Salvi, S., 2006, Genomics approaches to improve drought tolerance in crops, Trends Plant Sci. 11:415–412.

    Google Scholar 

  • Tuberosa, R., Gill, B. S., and Quarrie, S. A., 2002a, Cereal genomics: ushering in a brave new world, Plant Mol. Biol. 48:445–449.

    CAS  Google Scholar 

  • Tuberosa, R., Salvi, S., Sanguineti, M. C., Landi, P., Maccaferri, M., and Conti, S., 2002b, Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize, Ann. Bot. 89: 941–963.

    Google Scholar 

  • Tuberosa, R., Sanguineti, M. C., Landi P., Salvi S., and Conti S., 1998, RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.), Theor. Appl. Genet. 97:744–755.

    CAS  Google Scholar 

  • Tuinstra, M. R., Ejeta, G., and Goldsbrough, P., 1998, Evaluation of near-isogenic sorghum lines contrasting for QTL markers associated with drought tolerance, Crop Sci. 38:835–842.

    Article  Google Scholar 

  • Turner, N. C., 1997, Further progress in crop water relations, Adv. Agron. 528:293–338.

    Google Scholar 

  • Utz, H. F., and Melchinger, A. E., 1996, PLABQTL: a program for composite interval mapping of QTL, J. Agric. Genomics 2:1–6.

    Google Scholar 

  • Varshney, R .K., Graner, A., and Sorrells, M. E., 2005, Genomics-assisted breeding for crop improvement, Trends Plant Sci. 10:621–30.

    PubMed  CAS  Google Scholar 

  • Vuylsteke, M., van den Daele, H., Vercauteren, A., Zabeau, M., and Kuiper, M., 2006, Genetic dissection of transcriptional regulation by cDNA-AFLP, Plant J. 45:439–446.

    PubMed  CAS  Google Scholar 

  • Waterhouse, P. M., and Helliwell, C. A., 2003, Exploring plant genomes by RNA-induced gene silencing, Nat. Rev. Genet. 4:29–38.

    PubMed  CAS  Google Scholar 

  • Wayne, M. L., and McIntyre, L., 2002, Combining mapping and arraying: an approach to candidate gene identification, P. Natl. Acad. Sci. USA 99:14903–14906.

    CAS  Google Scholar 

  • Wen, T. J., Hochholdinger, F., Sauer, M., Bruce, W., and Schnable, P. S., 2005, The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis, Plant Physiol. 138:1637–1643.

    PubMed  CAS  Google Scholar 

  • Werner, J., and Finkelstein, R. R., 1995, Arabidopsis mutants with reduced response to NaCl and osmotic stress, Physiol. Plant. 93:659–666.

    CAS  Google Scholar 

  • Woll, K., Borsuk, L. A., Stransky, H., Nettleton, D., Schnable, P. S., and Hochholdinger, F., 2005, Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1, Plant Physiol. 139:1255–1267.

    PubMed  CAS  Google Scholar 

  • Xiong, L., Wang, R.-G., Mao, G., and Koczan, J. M., 2006, Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid, Plant Physiol. 142:1065–1074.

    PubMed  CAS  Google Scholar 

  • Yamasaki, M., Tenaillon, M. I., Bi, I. V., Schroeder, S. G., Sanchez-Villeda, H., Doebley, J. F., Gaut, B. S., and McMullen, M. D., 2005, A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement, Plant Cell 17:2859–2872.

    PubMed  CAS  Google Scholar 

  • Yazaki, J., Kojima, K., Suzuki, K., Kishimoto, N., and Kikuchi, S., 2004, The Rice PIPELINE: a unification tool for plant functional genomics, Nucleic Acids Res. 32:383–387.

    Google Scholar 

  • Yin, X. Y., Stam, P., Kropff, M. J., and Schapendonk, A. H. C. M., 2003, Crop modeling, QTL mapping, and their complementary role in plant breeding, Agron. J. 95:90–98.

    Article  CAS  Google Scholar 

  • Yin, X., Struik, P. C., and Kropff, M. J., 2004, Role of crop physiology in predicting gene-to-phenotype relationships, Trends Plant Sci. 9:426–432.

    PubMed  CAS  Google Scholar 

  • Yu, L. X., and Setter, T. L., 2003, Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit, Plant Physiol. 131:568–582.

    PubMed  CAS  Google Scholar 

  • Zamir, D., 2001, Improving plant breeding with exotic genetic libraries, Nat. Rev. Genet. 2:983–989.

    PubMed  CAS  Google Scholar 

  • Zeng, Z. B., 1994, Precision mapping of quantitative trait loci, Genetics 136:1457–1468.

    PubMed  CAS  Google Scholar 

  • Zhang, W. X., Ruan, J. H., Ho, T. H. D., You, Y. S., Yu, T. T., and Quatrano, R. S., 2005, Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana, Bioinformatics 21:3074–3081.

    PubMed  CAS  Google Scholar 

  • Zheng, B. S., Yang, L., Zhang, W. P., Mao, C. Z., Wu, Y. R., Yi, K. K., Liu, F. Y., Wu, P., 2003, Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations, Theor. Appl. Genet. 107:1505–1515.

    PubMed  CAS  Google Scholar 

  • Zheng, H. G., Babu, R. C., Pathan, M. S., Ali, L., Huang, N., Courtois, B., and Nguyen, H.T., 2000, Quantitative trait loci for root-penetration ability and root thickness in rice: comparison of genetic backgrounds, Genome 43:53–61.

    PubMed  CAS  Google Scholar 

  • Zhu, J. K., 2001, Plant salt tolerance, Trends Plant Sci. 6:66–71.

    PubMed  CAS  Google Scholar 

  • Zhu, J. K., Hasegawa, P., and Bressan, R., 1997, Molecular aspects of osmotic stress in plants, Crit. Rev. Plant Sci. 16:253–277.

    CAS  Google Scholar 

  • Zhu, J., Chen, S., Alvarez, S., Asirvatham, V. S., Schachtman, D. P., Wu, Y., and Sharp, R. E., 2006, Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water-soluble and lightly ionically bound proteins, Plant Physiol. 140:311–325.

    PubMed  CAS  Google Scholar 

  • Zinselmeier, C., Jeong, B. R., and Boyer, J. S., 1999, Starch and the control of kernel number in maize at low water potentials, Plant Physiol. 121:25–36.

    PubMed  CAS  Google Scholar 

  • Zinselmeier, C., Sun, Y., Helentjaris, T., Beatty, M., Yang, S., Smith, H., and Habben, J., 2002, The use of gene expression profiling to dissect the stress sensitivity of reproductive development in maize, Field Crop Res. 75:111–121.

    Google Scholar 

  • Zivy, M., and de Vienne, D., 2000, Proteomics: a link between genomics, genetics and physiology, Plant Mol. Biol. 44:575–580.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Tuberosa, R., Salvi, S. (2007). Dissecting Qtls For Tolerance to Drought and Salinity. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_16

Download citation

Publish with us

Policies and ethics