Skip to main content

Boron Functions in Plants and Animals: Recent Advances in Boron Research and Open Questions

  • Conference paper
Book cover Advances in Plant and Animal Boron Nutrition

Abstract

Boron deficiency is a widespread problem for field crop production where large losses of yield occur annually both quantitatively (e.g. in southeast China over 40% yield reductions may occur in oilseed rape: Wei et al. 1998), as well as qualitatively (Stephenson and Gallagher 1987; Ram et al. 1989; Bell et al. 1990; Nyomora et al. 1997). Significant losses of yield or quality resulting from boron deficiency may occur as well in vegetable crops (e.g. Kotur 1991). Even eucalyptus trees in large areas of southern China (Dell and Malajczuk 1994), and pine trees in southeast Australia (Hopmans and Flinn 1984) may be severely affected by boron deficiency in both growth and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen D.J. and Ort D.R., 2001 Impacts of chilling temperatures on photosynthesis in warm-climate plants Trends in Plant Science 6(1): 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong T.A., Spears J.W., Crenshaw T.D., and Nielsen F.H., 2000 Boron supplementation of a semipurified diet for weanling pigs improves feed efficiency and bone strength characteristics and alters plasma lipid metabolites Journal of Nutrition 130: 2575–2581.

    PubMed  CAS  Google Scholar 

  • Bai Y.S. and Hunt C.D., 1996 Dietary boron enhances efficacy of cholecalciferol in broiler chicks Journal of Trace Elements in Experimental Medicine 9(3): 117–132.

    Article  CAS  Google Scholar 

  • Bakken N.A. and Hunt C.D., 2003 Dietary boron decreases peak pancreatic in situ insulin release in chicks and plasma insulin concentrations in rats regardless of vitamin D or magnesium status Journal of Nutrition 133(11): 3577–3583.

    PubMed  CAS  Google Scholar 

  • Baldock C., Rafferty J.B., Sedelnikova S.E., Baker P.J., Stuitje A.R., Slabas A.R., Hawkes T.R., and Rice D.W., 1996 A mechanism of drug action revealed by structural studies of enoyl reductase. Science 274(5295): 2107–2110.

    Article  PubMed  CAS  Google Scholar 

  • Barr R., Böttger M., and Crane F.L., 1993 The effect of boron on plasma membrane electron transport and associated proton secretion by cultured carrot cells. Biochemistry and Molecular Biology International 31(1): 31–39.

    PubMed  CAS  Google Scholar 

  • Barr R., Crane F.L., and Craig T.A., 1983 Transmembrane ferricyanide reduction in tobacco callus cells J Plant Growth Regul. 243–249.

    Google Scholar 

  • Bassil E., Hu H.N., and Brown P.H., 2004 Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant Physiology 136(2): 3383–3395.

    Article  PubMed  CAS  Google Scholar 

  • Bassler B.L., Wright M., Showalter R.E., and Silverman M.R., 1993 Intercellular Signaling in Vibrio-Harveyi Sequence and Function of Genes Regulating Expression of Luminescence. Molecular Microbiology 9(4): 773–786.

    Article  PubMed  CAS  Google Scholar 

  • Bassler B.L., Wright M., and Silverman M.R., 1994 Sequence and Function of Luxo, a Negative Regulator of Luminescence in Vibrio-Harveyi. Molecular Microbiology 12(3): 403–412.

    Article  PubMed  CAS  Google Scholar 

  • Behrendt U. and Zoglauer K., 1996 Boron controls suspensor development in embryogenic cultures of Larix decidua Physiologia Plantarum 97: 321–326.

    Article  CAS  Google Scholar 

  • Bell R.E., Rerkasem B., Keerati-Kasikorn P., Phetchawee S., Hiranburana N., Ratanarat S., Pongsakul P., and Loneragan J.F., 1990 Mineral Nutrition of Food Legumes in Thailand with Particular Reference to Micronutrients. ACIAR Technical Report 19.

    Google Scholar 

  • Benderdour M., Hess K., Gadet M.D., Dousset B., Nabet P., and Belleville F., 1997 Effect of boric acid solution on cartilage metabolism. Biochemical and Biophysical Research Communications 234(1): 263–268.

    Article  PubMed  CAS  Google Scholar 

  • Bennett A., Rowe R.I., Soch N., and Eckhert C.D., 1999 Boron stimulates yeast (Saccharomyces cerevisiae) growth. Journal of Nutrition 129: 2236–2238.

    PubMed  CAS  Google Scholar 

  • Berry S.C., Fink A.L., Shenvi A.B., and Kettner C.A., 1988 Interaction of Peptide Boronic Acids with Elastase - Circular-Dichroism Studies. Proteins-Structure Function and Genetics 4(3): 205–210.

    Article  CAS  Google Scholar 

  • Blaser-Grill J., Knoppik D., Amberger A., and Goldbach H.E., 1989 Influence of boron on the membrane potential in Elodea densa and Helianthus annuus roots and H+ extrusion of suspension cultured Daucus carota cells. Plant Physiology 90: 280–284.

    PubMed  CAS  Google Scholar 

  • Blevins D.G. and Lukaszewski K.M., 1998 Boron in plant structure and function. Annual Reviews in Plant Physiology and Plant Molecular Biology 49: 481–500.

    Article  CAS  Google Scholar 

  • Bolanos L., Cebrian A., Redondo-Nieto M., Rivilla R., and Bonilla I., 2001 Lectin-like glycoprotein PsNLEC-1 is not correctly glycosylated and targeted in boron deficient pea nodules. Molecular Plant-Microbe Interactions 14: 663–670.

    Article  PubMed  CAS  Google Scholar 

  • Bolanos L., Esteban E., Delorenzo C., Fernandezpascual M., Defelipe M.R., Garate A., and Bonilla I., 1994 Essentiality of boron for symbiotic dinitrogen fixation in pea (Pisum sativum) rhizobium nodules. Plant Physiology 104(1): 85–90.

    PubMed  CAS  Google Scholar 

  • Bolanos L., Mateo P., and Bonilla I., 1993 Calcium-mediated recovery of boron deficient Anabaena Sp PPCC 7119 grown under nitrogen fixing conditions. Journal of Plant Physiology 142(5): 513–517.

    CAS  Google Scholar 

  • Bolanos L., Redondo-Nieto M., El-Hamdaoui A., and Bonilla I., 2002 Interaction of boron and calcium in the Rhizobium-legume N2-fixing symbiosis. Boron Nutrition in Plants and Animals. H.E. Goldbach, et al. New York USA, Kluwer Academic/Plenum Publishers: 255–260.

    Google Scholar 

  • Bolanos L., Redondo-Nieto M., Rivilla R., Brewin N.J., and Bonilla I., 2004 Cell surface interactions of Rhizobium bacteroids and other bacterial strains with symbiosomal and peribacteroid membrane components from pea nodules. Molecular Plant-Microbe Interactions 17(2): 216–223.

    Article  PubMed  CAS  Google Scholar 

  • Bolaños L., Lukaszewski K., Bonilla I., and Blevins D., 2004 Why boron? Plant Physiol. Biochem. 42(11): 907–912.

    Google Scholar 

  • Bonilla I., Mergold-Villasenor C., Campos M.E., Sánchez N., Pérez H., López L., Castrejón L., Sánchez F., and Cassab G.I., 1997 The aberrant cell walls of boron-deficient bean root nodules have no covalently bound hydroxyproline-/ proline-rich proteins. Plant Physiology 115: 1329–1340.

    Article  PubMed  CAS  Google Scholar 

  • Brown D.A. and London E. 2000 Structure and function of sphingolipid- and cholesterol-rich membrane rafts. The Journal of Biological Chemistry 275(23): 17221–17224.

    Article  PubMed  CAS  Google Scholar 

  • Brown D.A. and Rose J.K., 1992 Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533–544.

    Article  PubMed  CAS  Google Scholar 

  • Brown P.H., Bellaloui N., Wimmer M.A., Bassil E.S., Ruiz J., Hu H., Pfeffer H., Dannel F., and Römheld V., 2002 Boron in plant biology. Plant Biology 4: 205–223.

    Article  CAS  Google Scholar 

  • Brown P.H. and Shelp B.J., 1997 Boron mobility in plants. Plant and Soil 193: 85–101.

    Article  CAS  Google Scholar 

  • Cakmak I., Kurz H., and Marschner H., 1995 Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiologia Plantarum 95: 11–18.

    Article  CAS  Google Scholar 

  • Cakmak I. and Römheld V., 1997 Boron deficiency-induced impairments of cellular functions in plants. Plant and Soil 193: 71–83.

    Article  CAS  Google Scholar 

  • Cao J.G. and Meighen E.A., 1989 Purification and Structural Identification of an Autoinducer for the Luminescence System of Vibrio-Harveyi. Journal of Biological Chemistry 264(36): 21670–21676.

    PubMed  CAS  Google Scholar 

  • Chen T.S.S., Chang C., and Floss H.G., 1980 Biosynthesis of the Boron-Containing Antibiotic Aplasmomycin Nuclear Magnetic-Resonance Analysis of Aplasmomycin and Desboroaplasmomycin. Journal of Antibiotics 33(11): 1316–1322.

    PubMed  CAS  Google Scholar 

  • Chen X., Schauder S., Potier N., Van Dorsselaer A., Pelczer I., Bassler B.L., and Hughson F.M., 2002 Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415.

    Google Scholar 

  • Cheng C. and Rerkasem B., 1993 Effects of Boron on Pollen Viability in Wheat. Plant and Soil 156: 313–315.

    Article  Google Scholar 

  • Cooling E.N. and Jones B.E., 1970 The importance of boron and NPK fertilisers to eucalypts in the southern Province, Zambia East African Agricultural and Forestry Journal 36: 185–194.

    Google Scholar 

  • Dannel F., Pfeffer H., and Römheld V., 2000 Characterization of root boron pools, boron uptake and boron translocation in sunflower using stable isotopes 10B and 11B. Australian Journal of Plant Physiology 27: 397–405.

    CAS  Google Scholar 

  • Dannel F., Pfeffer H., and Römheld V., 2002 Update on boron in higher plants - Uptake, primary translocation and compartmentation. Plant Biology 4: 193–204.

    Article  CAS  Google Scholar 

  • Dell B. and Malajczuk N., 1994 Boron Deficiency in Eucalypt Plantations in China. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 24(12): 2409–2416.

    Google Scholar 

  • Dordas C. and Brown P.H., 2000 Permeability of boric acid across lipid bilayers and factors affecting it. Journal of Membrane Biology 175: 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Dordas C., Chrispeels M.J., and Brown P.H., 2000 Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiology 124(3): 1349–1361.

    Article  PubMed  CAS  Google Scholar 

  • Du C.W., Wang Y.H., Xu F.S., Yang Y.H., and Wang H.Y., 2002 Study on the physiological mechanism of boron utilization efficiency in rape cultivars. Journal of Plant Nutrition 25(2): 231–244.

    Article  CAS  Google Scholar 

  • Eckhert C.D., 1998 Boron stimulates embryonic trout growth. J Nutr. 128: 2488–2493.

    PubMed  CAS  Google Scholar 

  • Eckhert C.D. and Rowe R.I., 1999 Embryonic dysplasia and adult retinal dystrophy in boron-deficient zebrafish. J Trace Elem Exp Med 12: 213–219.

    Article  CAS  Google Scholar 

  • El-Shintinawy F., 1999 Structural and functional damage caused by boron deficiency in sunflower leaves. Photosynthetica 36: 565–573.

    Article  CAS  Google Scholar 

  • Ferguson M.A.J. and Williams A.F., 1988 Cell-Surface Anchoring of Proteins Via Glycosyl-Phosphatidylinositol Structures Annual Review of Biochemistry 57: 285–320.

    Article  PubMed  CAS  Google Scholar 

  • Ferrol N. and Donaire J.P., 1992 Effect of boron on plasma membrane proton extrusion and redox activity in sunflower cells. Plant Science 86: 41–47.

    Article  CAS  Google Scholar 

  • Findeklee P. and Goldbach H.E., 1996 Rapid effects of boron deficiency on cell wall elasticity modulus in Cucurbita pepo roots. Bot Acta 109: 463–465.

    CAS  Google Scholar 

  • Fleischer A., O’Neill M.A., and Ehwald R., 1999 The pore size of non-graminaceaous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiology 121: 829–838.

    Article  CAS  PubMed  Google Scholar 

  • Fort D.J., Propst T.L., Stover E.L., and Strong P.L., 1998 Adverse reproductive and developmental effects in Xenopus from insufficient boron. Biological Trace Element Research 66: 237–259.

    PubMed  CAS  Google Scholar 

  • Fort D.J., Stover E.L., Strong P.L., Murray F.J., and Keen C.L., 1999 Chronic feeding of a low boron diet adversely affects reproduction and development in Xenopus laevis. Journal of Nutrition 129(11): 2055–2060.

    PubMed  CAS  Google Scholar 

  • Fricker W., Jarvis M.C., and Brett C.T., 2000 Turgor pressure, membrane tension and the control of exocytosis in higher plants. Plant, Cell and Environment 23: 999–1003.

    Article  Google Scholar 

  • Frommer W.B. and von Wiren N., 2002 Plant biology Ping-pong with boron. Nature 420(6913): 282–283.

    Article  PubMed  CAS  Google Scholar 

  • Garbett K., Darnall D.W., and Klotz I.M., 1971 The effects of bound anions on the reactivity of residues in hemerythrin. Arch. Biochem. Biophys. 142: 455–470.

    Article  PubMed  CAS  Google Scholar 

  • Goldbach H.E., 1985 Influence of boron nutrition on net uptake and efflux of 32P and 14C-glucose in Helianthus annuus roots and cell cultures of Daucus carota. Journal of Plant Physiology 118: 431–438.

    CAS  Google Scholar 

  • Goldbach H.E., 1997 A critical review on current hypotheses concerning the role of boron in higher plants: suggestions for further research and methodological requirements. J Trace and Microprobe Techniques 15(1): 51–91.

    CAS  Google Scholar 

  • Goldbach H.E., Blaser-Grill J., Lindemann N., Porzelt M., Hörrmann C., Lupp B., and Gessner B., 1991 Influence of boron on net proton release and its relation to other metabolic processes. Current Topics in Plant Biochemistry and Physiology. D.D. Randall et al. University of Missouri-Columbia. 10: 195–220.

    CAS  Google Scholar 

  • Goldbach H.E., Yu Q., Wingender R., Schulz M., Wimmer M., Findeklee P., and Baluska F., 2001 Rapid response reactions of roots to boron deprivation. Journal of Plant Nutrition and Soil Science 164: 173–181.

    Article  CAS  Google Scholar 

  • Hanson E. and Breen P. 1985 Effects of fall boron sprays and environmental factors on fruit set and boron accumulation in Italian prune flowers. J. Amer. Soc. Hort. Sci. 110: 389–392.

    CAS  Google Scholar 

  • Hausdorf G., Krüger K., Küttner G., Holzhütter H-G., Frömmel C., and Höhne W.E., 1987 Oxidation of a methionine residue in subtilisin-type proteinases by the hydrogen peroxide/borate system an active site-directed reaction. Biochimica et Biophysica Acta 952: 20–26.

    Google Scholar 

  • Hegsted M., Keenan M.J., Siver F., and Wozniak P., 1991 Effect of boron on vitamin D deficient rats. Biological Trace Element Research 28: 243–255.

    PubMed  CAS  Google Scholar 

  • Henzler T., Ye Q., and Steudle E., 2004 Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals. Plant Cell and Environment 27(9): 1184–1195.

    Article  CAS  Google Scholar 

  • Heyes J.A., White P.J., and Loughman B.C., 1991 The role of boron in some membrane characteristics of plant cells and protoplasts. Current Topics in Plant Biochemistry and Physiology. D D Randall et al. (Eds.), University of Missouri-Columbia. 10: 179–194.

    CAS  Google Scholar 

  • Hirsch A.M. and Torrey J.G., 1980 Ultrastructural changes in sunflower root cells in relation to boron deficiency and added auxin. Canadian Journal of Botany 58: 856–866.

    CAS  Google Scholar 

  • Hopmans P. and Flinn D.W., 1984 Boron Deficiency in Pinus-Radiata D Don and the Effect of Applied Boron on Height Growth and Nutrient-Uptake. Plant and Soil 79(2): 295–298.

    Article  CAS  Google Scholar 

  • Hu H. and Brown P.H., 1997 Absorption of boron by plant roots. Plant and Soil 193: 49–58.

    Article  CAS  Google Scholar 

  • Huang L., Bell R.W., and Dell B., 1999 Factors controlling equilibrium boron (B) concentration in nutrient solution buffered with B-specific resin (Amberlite IRA-743). Plant and Soil 208(2): 233–241.

    Article  CAS  Google Scholar 

  • Huang L., Bell R.W., and Dell B., 2001 Boron supply into wheat (Triticum aestivum L cv Wilgozne) ears whilst still enclosed within leaf sheaths Journal of Experimental Botany 52: 1731–1738.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L.B., Ye Z.Q., Bell R.W., and Dell B., 2005 Boron nutrition and chilling tolerance of warm climate crop species. Annals of Botany 96(5): 755–767.

    Article  PubMed  CAS  Google Scholar 

  • Hugly S., McCourt P., Browse J., Patterson G.W., and Somerville C., 1990 A Chilling Sensitive Mutant of Arabidopsis with Altered Steryl-Ester Metabolism. Plant Physiology 93(3): 1053–1062.

    PubMed  CAS  Google Scholar 

  • Hunt C.D., 2002 Boron-binding biomolecules: A key to understanding the beneficial physiological effects of dietary boron from prokaryotes to humans. Boron in plant and animal nutrition. H.E. Goldbach, et al. (Eds). New York, Kluwer Academic/Plenum Publ. 21–36.

    Google Scholar 

  • Hunt C.D., 2003 Dietary boron: An overview of the evidence for its roles in immune function. Trace Elem Exp Med. 16(4): 291–306.

    Article  CAS  Google Scholar 

  • Hunt C.D. and Nielsen F.H., 1981 Interaction between boron and cholecalciferol in the chick. Trace Element Metabolism in Man and Animals-4 J Gawthorne et al. (Eds). Canberra, Australian Academy of Science: 597–600.

    Google Scholar 

  • Iwai H., Masaoka N., Ishii T., and Satoh S., 2002 A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. Proc. Natl. Acad. Sci. 99: 16319–24

    Article  PubMed  CAS  Google Scholar 

  • Jackson J.F., 1989 Borate control of protein secretion from Petunia pollen exhibits critical temperature discontinuities. Sex. Plant Reprod. 2: 11–14.

    Article  Google Scholar 

  • Jamjod S., Niruntrayagul S., and Rerkasem B., 2004 Genetic control of boron efficiency in wheat (Triticum aestivum L.). Euphytica 135(1): 21–27.

    Article  CAS  Google Scholar 

  • Kastori R., Plesnicar M., Pankovic D., and Sakac Z., 1995 Photosynthesis, chlorophyll fluorescence and soluble carbohydrates in sunflower leaves as affected by boron deficiency. Journal of Plant Nutrition 18(9): 1751–1763.

    CAS  Google Scholar 

  • Kettner C.A., Bone R., Agard D.A., and Bachovchin W.W., 1988 Kinetic-Properties of the Binding of Alpha-Lytic Protease to Peptide Boronic Acids. Biochemistry 27(20): 7682–7688.

    Article  PubMed  CAS  Google Scholar 

  • Kettner C.A. and Shenvi A.B., 1984 Inhibition of the Serine Proteases Leukocyte Elastase, Pancreatic Elastase, Cathepsin-G, and Chymotrypsin by Peptide Boronic Acids. Journal of Biological Chemistry 259(24): 5106–5114.

    Google Scholar 

  • Kobayashi M., Matoh T., and Azuma J.-I., 1996 Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiology 110: 1017–1020.

    PubMed  CAS  Google Scholar 

  • Kohno J., Kawahata T., Otake T., Morimoto M., Mori H., Ueba N., Nishio M., Kinumaki A., Komatsubara S., and Kawashima K., 1996 Boromycin an anti-HIV antibiotic. Bioscience Biotechnology and Biochemistry 60(6): 1036–1037.

    Article  CAS  Google Scholar 

  • Kohorn B.D., (2000): Plasma membrane-cell wall contacts. Plant Physiology 124: 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Kolodny N.H. and Collins L.J., 1986 Proton and P-31 Nmr-Study of the Dependence of Diadenosine Tetraphosphate Conformation on Metal-Ions. Journal of Biological Chemistry 261(31): 4571–4575.

    Google Scholar 

  • Kouchi H. and Kumazawa K., 1976 Anatomical responses of root tips to boron deficiency. III Effect of boron dificiency on sub-cellular structure of root tips, particularly on morphology of cell wall and its related organelles. Soil Science and Plant Nutrition 22: 53–71.

    CAS  Google Scholar 

  • Lanoue L., Trollinger D.R., Strong P.L., and Keen C.L., 2000 Functional impairments in preimplantation mouse embryos following boron deficiency. FASEB J 14 A: 539.

    Google Scholar 

  • Lawrence K., Bhalla P., and Misra P.C., 1995 Changes in NAD(P)H-dependent redox activities in plasmalemma-enriched vesicles isolated from boron- and zinc-deficient chick pea roots. Journal of Plant Physiology 146: 652–657.

    CAS  Google Scholar 

  • Lee S.H., Chung G.C., and Steudle E., 2005 Low temperature and mechanical stresses differently gate aquaporins of root cortical cells of chilling-sensitive cucumber and -resistant figleaf gourd. Plant Cell and Environment 28(9): 1191–1202.

    Article  CAS  Google Scholar 

  • Ligterink W. and Hirt H., 2001 Mitogen-activated protein (MAP) kinase pathways in plants: versatile signalling tools International Review of Cytology 201: 209–275.

    PubMed  CAS  Google Scholar 

  • Lord E.M. and Mollet J.C., 2002 Plant cell adhesion: A bioassay facilitates discovery of the first pectin biosynthetic gene. PNAS 99(25): 15843–15845.

    Article  PubMed  CAS  Google Scholar 

  • Lovatt C.J., 1985 Evolution of xylem resulted in a requirement for boron in the apical meristems of vascular plants. The New Phytologist 99: 509–522.

    Article  CAS  Google Scholar 

  • Lowik C., 1992 Differentiation inducing factors: leukemia inhibitory factor and interleukin-6. Cytokines and Bone Metabolism. M Gowen Boca Raton, CRC Press: 299–324.

    Google Scholar 

  • Lu C. and Huang B., 2003 Effects of boron on membrane lipid peroxidation and endogenousprotective systems in leaves of Eucalyptus grandis X Eucalyptus urophylla under low temperature. Journal of Tropical and Subtropical Botany 11: 217–222.

    CAS  Google Scholar 

  • Lyons J.M., Graham D., and Raison J.K., 1979 Low temperature stress in crop plants: the role of the membrane. New York, Academic Press.

    Google Scholar 

  • Majewska-Sawka A. and Nothnagel E.A., 2000 The multiple roles of arabinogalactan proteins in plant development. Plant Physiology 122: 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Matoh T., 1997 Boron in plant cell walls. Plant and Soil 193: 59–70.

    Article  CAS  Google Scholar 

  • Matsunaga T., Ishii T., Matsumoto S., Higuchi M., Darvill A., Albersheim P., and O’Neill M.A., 2004 Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. Implications for the evolution of vascular plants. Plant Physiology 134(1): 339–351.

    Article  PubMed  CAS  Google Scholar 

  • McLennan A.G., 1992 Dinucleoside phosphates an introduction. Ap4A and other dinucleoside polyphosphates. A.G. McLennan. Boca Raton, CRC Press: 1–9.

    Google Scholar 

  • Miller M.B. and Bassler B.L., 2001 Quorum sensing in bacteria. Annual Review of Microbiology 55: 165–199.

    Article  PubMed  CAS  Google Scholar 

  • Mok K.C., Wingreen N.S., and Bassler B.L., 2003 Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. Embo Journal 22(4): 870–881.

    Article  PubMed  CAS  Google Scholar 

  • Moore B.S. and Hertweck C., 2002 Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Natural Product Reports 19(1): 70–99.

    Article  PubMed  CAS  Google Scholar 

  • Morris C.E. and Homann U., 2001 Cell surface regulation and membrane tension. Journal of Membrane Biology 179: 79–102.

    PubMed  CAS  Google Scholar 

  • Mühling K.H., Wimmer M., and Goldbach H.E., 1998 Apoplastic and membrane-associated Ca2+ in leaves and roots as affected by boron deficiency. Physiol Plantarum 102: 179–184.

    Article  Google Scholar 

  • Nachiangmai D., Dell B., Bell R., Huang L.B., and Rerkasem B., 2004 Enhanced boron transport into the ear of wheat as a mechanism for boron efficiency. Plant and Soil 264(1–2): 141–147.

    Article  CAS  Google Scholar 

  • Newnham R.E., 2002 How boron is being used in medical practice. Boron in Plant and Animal Nutrition. H.E. Goldbach, et al. New York, Kluwer Academic Publishers: 59–62.

    Google Scholar 

  • Nielsen F.H., 2000: The emergence of boron as nutritionally important throughout the life cycle. Nutrition 16: 512–514.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi K., Ishii T., Matsunaga T., Kakegawa K., Hayashi H., and Fujiwara T., 2003: Biochemical properties of the cell wall in the Arabidopsis mutant bor1–1 in relation to boron nutrition. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung und Bodenkunde 166(2): 175–178.

    Article  CAS  Google Scholar 

  • Nyomora A.M.S., Brown P.H., and Freeman M., 1997 Fall foliar-applied boron increases tissue boron concentration and nut set of almond. J. Amer. Soc. Hort. Sci. 122: 405–410.

    CAS  Google Scholar 

  • Obermeyer G., Kriechbaumer R., Strasser D., Maschessnig A., and Bentrup F-W., 1996 Boric acid stimulates the plasma membrane H+-ATPase of ungerminated lily pollen grains. Physiologia plantarum 98: 281–290.

    Article  CAS  Google Scholar 

  • O’Neill M., Eberhard S., Albersheim P., and Darvill A., 2001 Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294(5543): 846–849.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill M.A., Ishii T., Albersheim P., and Darvill A.G., 2004 Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annual Review of Plant Biology 55: 109–139.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill M.A., Warrenfeltz D., Kates K., Pellerin P., Doco T., Darvill A.G., and Albersheim P., 1996 Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by aborate ester. The Journal of Biological Chemistry 271(37): 22923–22930.

    Article  PubMed  CAS  Google Scholar 

  • Park M., Ko S.B.H., Choi J.Y., Muallem G., Thomas P.J., Pushkin A., Lee M.S., Kim J.Y., Lee M.G., Muallem S., and Kurtz I., 2002 The cystic fibrosis transmembrane conductance regulator interacts with and regulates the activity of the HCO3 - salvage transporter human Na+-HCO3- cotransport isoform 3 Journal of Biological Chemistry 277(52): 50503–50509.

    Article  PubMed  CAS  Google Scholar 

  • Park M., Li Q., Shcheynikov N., Zeng W.Z., and Muallem S., 2004 NaBC1 is a ubiquitous electrogenic Na+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Molecular Cell 16(3): 331–341.

    Article  PubMed  CAS  Google Scholar 

  • Parr A.J. and Loughman B.C., 1983 Boron and membrane function in plants. Metals and micronutrients: uptake and utilization by plants. D.A. Robb, et al. New York, Academic Press: 87–107.

    Google Scholar 

  • Plesnicar M., Kastori R., Sakac Z., Pankovic D., and Petrovic N., 1997 Boron as limiting factor in photosynthesis and growth of sunflower plants in relation to phosphate supply. Agrochimica 41(3–4): 144–154.

    CAS  Google Scholar 

  • Pollard A.S., Parr A.J., and Loughman B.C., 1977 Boron in relation to membrane function in higher plants. Journal of Experimental Botany 28: 831–841.

    Article  CAS  Google Scholar 

  • Queiroz C.G.S., Alonso A., Mares-Guia M., and Magalhaes A.C., 1998 Chilling-induced changes in membrane fluidity and antioxidant enzyme activities in Coffea arabica L roots Biologia Plantarum 41(3): 403–413.

    Article  CAS  Google Scholar 

  • Ralston N.V.C. and Hunt C.D., 2000 Biological boron interactions: Charge and structure characteristics required for boroester formation with biomolecules. FASEB J. 14: A538.

    Google Scholar 

  • Ralston N.V.C. and Hunt C.D., 2001 Diadenosine phosphates and S-adenosylmethionine: novel boron binding biomolecules detected by capillary electrophoresis. Biochimica et Biophysica Acta 1527: 20–30.

    PubMed  CAS  Google Scholar 

  • Ram S., Bist L.D., and Sirohi S.C., 1989 Internal fruit necrosis of mango and its control. Acta Hort. 231: 805–813.

    Google Scholar 

  • Reuhs B.L., Glenn J., Stephens S.B., Kim J.S., Christie D.B., Glushka J.G., Zablackis E., Albersheim P., Darvill A.G., and O’Neill M.A., 2004 L-Galactose replaces L-fucose in the pectic polysaccharide rhamnogalacturonan II synthesized by the L-fucose-deficient mur1 Arabidopsis mutant. Planta 219(1): 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Ricardo A., Carrigan M.A., Olcott A.N., and Benner S.A., 2004 Borate minerals stabilize ribose. Science 303(5655): 196–196.

    Article  PubMed  CAS  Google Scholar 

  • Rowe R.I. and Eckhert C.D., 1999 Boron is required for zebrafish embryogenesis. Journal of Experimental Biology 202: 1649–1654.

    CAS  PubMed  Google Scholar 

  • Ryden P, Sugimoto-Shirasu K., Smith A.C., Findlay K., Reiter W.D., and McCann M.C., 2003 Tensile properties of Arabidopsis cell walls depend on both axyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes. Plant Physiology 132(2): 1033–1040.

    Article  PubMed  CAS  Google Scholar 

  • Sato K., Okazaki T., Maeda K., and Okami Y., 1978 New Antibiotics, Aplasmomycins-B and Aplasmomycins-C. Journal of Antibiotics 31(6): 632–635.

    PubMed  CAS  Google Scholar 

  • Schauder S. and Bassler B.L., 2001 The languages of bacteria. Genes & Development 15(12): 1468–1480.

    Article  CAS  Google Scholar 

  • Schon M.K., Novacky A., and Blevins D.G., 1990 Boron induces hyperpolarization of sunflower root cell membranes and increases membrane permeability to K+. Plant Physiology 93: 566–571.

    PubMed  CAS  Google Scholar 

  • Sherrier J.D, Prime T.A., and Dupree P., 1999 Glycosylphosphatidylinositol-anchored cell-surface proteins from Arabidopsis. Electrophoresis 20: 2027–2035.

    Article  PubMed  CAS  Google Scholar 

  • Stacey N.J., Roberts K., Carpita N.C., Wells B., and McCann M.C., 1995 Dynamic changes in cell surface molecules are very early events in the differentiation of mesophyll cells from Zinnia elegans into tracheary elements. Plant Journal 8: 891–906.

    CAS  Google Scholar 

  • Stephenson R.A. and Gallagher E.C., 1987 Effects of Foliar Boron Sprays on Yield and Quality of Macadamia Nuts. Scientia Horticulturae 32(1–2): 97–103.

    Article  Google Scholar 

  • Steudle E., 2000 Water uptake by roots: effects of water deficit. Journal of Experimental Botany 51(350): 1531–1542.

    Article  PubMed  CAS  Google Scholar 

  • Takano J., Miwa K., Wiren von N., and Fujiwara T., 2005a Boron dependent endocytosis and degradation of boron transporter AtBOR1. Plant and Cell Physiology 46: S151–S151.

    Google Scholar 

  • Takano J., Miwa K., Yuan L.X., Wiren von N., and Fujiwara T., 2005b Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proceedings of the National Academy of Sciences of the United States of America 102(34): 12276–12281.

    Article  CAS  Google Scholar 

  • Takano J., Noguchi K., Yasumori M., Kobayashi M., Gajdos Z., Miwa K., Hayashi H., Yoneyama T., and Fujiwara T., 2002 Arabidopsis boron transporter for xylem loading. Nature 420(6913): 337–340.

    Article  PubMed  CAS  Google Scholar 

  • Thompson G.A. and Okuyama H., 2000 Lipid-linked proteins of plants. Progress in Lipid Research 39: 19–39.

    Article  PubMed  CAS  Google Scholar 

  • Tyerman S.D., Bohnert H.J., Maurel C., Steudle E., and Smith J.A.C., 1999 Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. Journal of Experimental Botany 50: 1055–1071.

    Article  CAS  Google Scholar 

  • Tyerman S.D., Niemietz C.M., and Bramley H., 2002 Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell and Environment 25(2): 173–194.

    Article  CAS  Google Scholar 

  • van Duin M., Peters J.A., Kieboom A.P.G., and van Bekkum H., 1984 Studies on borate esters I Tetrahedron 40(15): 2901–2911.

    Article  Google Scholar 

  • Verstraeten S.V., Lanoue L., Keen C.L., and Oteiza P.I., 2005 Relevance of lipid polar headgroups on boron-mediated changes in membrane physical properties. Archives of Biochemistry and Biophysics 438(1): 103–110.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z.Y., Tang Y.L., Zhang F.S., and Wang H., 1999 Effect of boron and low temperature on membrane integrity of cucumber leaves. Journal of Plant Nutrition 22(3): 543–550.

    CAS  Google Scholar 

  • Watson P.A., 1991 Function follows form: generation of intracellular signals by cell deformation. FASEB J. 5: 2013–2019.

    PubMed  CAS  Google Scholar 

  • Wei Y.Z., Bell R.W., Yang Y., Ye Z.Q., Wang K., and Huang L.B., 1998 Prognosis of boron deficiency in oilseed rape (Brassica napus) by plant analysis. Australian Journal of Agricultural Research 49(5): 867–874.

    Article  CAS  Google Scholar 

  • Wimmer M., 2000 Untersuchungen zur Funktion von Bor im Apoplasten der Ackerbohne (Vicia faba L.). Bonn, Germany.

    Google Scholar 

  • Wimmer M.A., Bassil E.S., Brown P.H., and Läuchli A., 2005 Boron response in wheat is genotype dependent and related to boron uptake, translocation, allocation, plant phenological development and growth rate. Functional Plant Biology 32: 507–515.

    Article  CAS  Google Scholar 

  • Wimmer M.A., and Goldbach H.E., 1999 Influence of Ca2+ and pH on the stability of different boron fractions in intact roots of Vicia faba L Plant Biology 1: 632–637.

    CAS  Google Scholar 

  • Xu F.S, Wang Y.H., and Meng J., 2001 Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breeding 120(4): 319–324.

    Article  CAS  Google Scholar 

  • Ye Z.Q., Bell R.W., Dell B., and Huang L.B., 2000 Response of sunflower to boron supply at low root zone temperature. Communications in Soil Science and Plant Analysis 31(11–14): 2379–2392.

    Article  CAS  Google Scholar 

  • Ye Z.Q., Huang L.B., Bell R.W., and Dell B., 2003 Low root zone temperature favours shoot B partitioning into young leaves of oilseed rape (Brassica napus). Physiologia Plantarum 118(2): 213–220.

    Article  CAS  Google Scholar 

  • Yu Q., Baluska F., Jasper F., Menzel D., and Goldbach H.E., 2003 Short-term boron deprivation enhances levels of cytoskeletal proteins in maize, but not zucchini, root apices. Physiologia Plantarum 117(2): 270–278.

    Article  CAS  Google Scholar 

  • Yu Q., Hlavacka A., Matoh T., Volkmann D., Menzel D., Goldbach H.E., and Baluska F., 2002 Short-term boron deprivation inhibits endocytosis of cell wall pectins in meristematic cells of maize and wheat root apices. Plant Physiology 130(1): 415–421.

    Article  PubMed  CAS  Google Scholar 

  • Yu Q., Wingender R., Schulz M., Baluska F., and Goldbach H.E., 2001 Short-term boron deprivation induces increased levels of cytoskeletal proteins in Arabidopsis roots. Plant Biology 3(4): 335–340.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Goldbach, H.E., Huang, L., Wimmer, M.A. (2007). Boron Functions in Plants and Animals: Recent Advances in Boron Research and Open Questions. In: XU, F., et al. Advances in Plant and Animal Boron Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5382-5_1

Download citation

Publish with us

Policies and ethics