Skip to main content

Nitrogen Fixation: An Historical Perspective

  • Chapter
Catalysts for Nitrogen Fixation

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 1))

Abstract

All living things require a source of utilizable nitrogen to survive and grow. Utilizable nitrogen comes in a variety of forms, with ammonia (NH3 -) and nitrate (NO3 -) the most common. These and other related usable forms of nitrogen are most often the limiting factor for the growth of organisms; a situation that is clearly highlighted in production agriculture. The element nitrogen is not, however, in short supply on this planet, which is blessed with the equivalent of more than 1017 metric tons of nitrogen gas (N2), about 2% of which is free in the atmosphere. Unfortunately, the N2 molecule cannot be directly utilized by the vast majority of living organisms. To become available for use, N2 must first be “fixed” (converted to a usable form) by one of several alternative routes (Newton, 1996). The use of the term, fixation, to describe this conversion was instituted early on because it was unclear at that time if the process was oxidative or reductive, but whatever its chemical nature, the nitrogen became trapped (or fixed) in the product and was no longer gaseous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Albrecht, W. A. (1930). Dry inoculants for alfalfa. J. Amer. Soc. Agron., 22, 916–918.

    Article  Google Scholar 

  • Albrecht, W. A., and Klemme, A. W. (1939). Limestone mobilizes phosphates into Korean lespedeza. J. Amer. Soc. Agron., 31, 284–286.

    Article  CAS  Google Scholar 

  • Aldrich-Blake, R. N. (1932). The fixation of atmospheric nitrogen by bacteria living symbiotically in root nodules of Casuarina equisetifolia. Oxf. For. Mem. No. 14, 1–20.

    CAS  Google Scholar 

  • Allison, F. E. (1929). Can nodule bacteria of leguminous plants fix atmospheric nitrogen in the absence of the host? Jour. Agr. Research, 39, 893–924.

    CAS  Google Scholar 

  • Atwater, W. O. (1886). On the acquisition of atmospheric nitrogen by plants. Amer. Chem. J., 6, 1–24.

    Google Scholar 

  • Bach, A. N. Jermolieva, Z. V., and Stepanian, M. P. (1934). Fixation de l’azote atmospherique par l’intermediaire d’enzymes extraits de cultures de Azotobacter chroococcum. Compt. Rend. Acad. Sci. (USSR), 1, 22–24.

    Google Scholar 

  • Bach, M. K. (1957). Hydrazine and biological nitrogen fixation. Biochim. Biophys. Acta, 26, 104–113.

    Article  CAS  Google Scholar 

  • Beijerinck, M. W. (1888a-e). Die bakterien der papilionaceen-knollchen. Bot. Ztg., 46, 725–735; 741–750; 757–771; 781–790; 797–804.

    Google Scholar 

  • Beijerinck, M. W. (1890). Kunstliche infection von Vicia faba mit Bacillus radicicola: Ernahrungsbedingungen dieser bakterien. Bot. Ztg., 48, 837–843.

    Google Scholar 

  • Beijerinck, M. W. (1901). Uber oligonitrophile mikroben. Zentrbl. Bakteriol. Parasitenk., Abt. II, 7, 561–582.

    Google Scholar 

  • Benemann, J. R. (1973). Nitrogen fixation in termites. Science, 181, 164–165.

    Article  CAS  Google Scholar 

  • Bergersen, F. J. (1965). Ammonia-an early stable product of nitrogen fixation by soybean root nodules. Aust. J. Biol. Sci., 18, 1–9.

    CAS  Google Scholar 

  • Berthelot, M. (1885). Fixation directe de l’azote atmospherique libre par certaines terrains argileux. Compt. Rend. Acad. Sci. (Paris), 101, 775–784.

    Google Scholar 

  • Blom, J. (1931). Ein versuch, die chemischen vorgange bei der assimilation des molekularen stickstoffs durch mikroorganism zu erklaren. Zentrbl. Bakteriol. Parasitenk., Abt. II, 84, 60–86.

    CAS  Google Scholar 

  • Bond, G. (1959). Fixation of nitrogen in non-legume root-nodule plants. In H. K. Porter (Ed.), Utilization of nitrogen and its compounds by plants(pp. 59–72). London: Cambridge Univ. Press.

    Google Scholar 

  • Boussingault, J. B. (1837). Recherches chimiques sur la vegetation enterprises dans le but d’examiner si les plantes prennent de l’azote de l’atmosphere. Annls. Sci. nat., 10, 257.

    Google Scholar 

  • Boussingault, J. B. (1838). Recherches chimiques sur la vegetation enterprises dans le but d’examiner si les plantes prennent de l’azote de l’atmosphere. Ann. Chim. et Phys., ser.2, 67, 5–54.

    Google Scholar 

  • Bortels, H. (1930). Molybdan als katalysator bei der biologischen stickstoff-bindung. Arch. Mikrobiol., I,333–342.

    Article  Google Scholar 

  • Bortels, H. (1936). Weitere untersuchungen uber die bedeutung von molybdan, vanadium, wolfram, und andere erdaschenstoffen fur stickstoffbindende und andere mikroorganismen Zentbl. Bakteriol. Parasitenk, Abt. II, 95, 193–218.

    CAS  Google Scholar 

  • Bockman, O. C. (1997). Fertilizers and biological nitrogen fixation as sources of plant nutrients: Perspectives for future agriculture. Plant and Soil, 194, 11–14.

    Article  CAS  Google Scholar 

  • Bredemann, G. (1912). Untersuchengen uber das bakterien-impfpraparat “Hey Is Concentrated Nitrogen Producer”. Landw. Jahrb., 43, 669–694.

    Google Scholar 

  • Bulen, W. A., Bums, R. C, and LeComte, J. R. (1965). Nitrogen fixation: Hydrosulfite as electron donor with cell-free preparations of Azotobacter vinelandii and Rhodospirillum rubrum. Proc. Nat. Acad. Sci. U.S.A., 53, 532–539.

    Article  CAS  Google Scholar 

  • Bulen, W. A., and LeComte, J. R. (1966). The nitrogenase system from Azotobacter: Two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution, and ATP hydrolysis. Proc. Nat. Acad. Sci. U.S.A., 56, 979–986.

    Article  CAS  Google Scholar 

  • Burk, D. (1930). The influence of nitrogen gas upon the organic catalysis of nitrogen fixation by Azotobacter. J. Phys. Chem., 34, 1174–1194.

    Article  CAS  Google Scholar 

  • Burk, D. (1934). Azotase and nitrogenase in Azotobacter. Ergeb. Enzymforsch, 3, 23–56.

    CAS  Google Scholar 

  • Burk, D. (1937). On the biochemical mechanism of nitrogen fixation by living forms. Biokhimiya, 2, 312–331.

    CAS  Google Scholar 

  • Burk, D., and Burris, R. H. (1941). Biochemical nitrogen fixation. Ann. Rev. Biochem., 10, 587–618.

    Article  CAS  Google Scholar 

  • Burk, D., and Homer, C. K. (1935). Uber hydroxylamine, hydrazine, und amide als intermediarprodukte bei der N2-fixation durch Azotobakter. Naturwiss., 23, 259–260.

    Article  CAS  Google Scholar 

  • Burk, D., and Horner, C. K. (1936). The origin and significance of ammonia formed by Azotobacter. Soil Sci., 41, 81–122.

    Article  CAS  Google Scholar 

  • Burris, R. H. (1942). Distribution of isotopic nitrogen in Azotobacter vinelandii. J. Biol. Chem., 143, 509–517.

    CAS  Google Scholar 

  • Burris, R. H. (1956). Studies on the mechanism of biological nitrogen fixation. In W. D. McElroy and B. Glass (Eds.), A symposium on inorganic nitrogen metabolism(pp. 316–343). Baltimore: The Johns Hopkins Press.

    Google Scholar 

  • Burris, R. H., Magee, W. E., and Bach, M. K. (1955). The pN2 and the p02 function for nitrogen fixation by excised soybean nodules. Ann. Acad. Sci. Fenn., Ser. All, 60, 190–199.

    Google Scholar 

  • Burris, R. H., and Miller, C. E. (1941). Application of N15 to the study of biological nitrogen fixation. Science, 93, 114–115.

    Article  CAS  Google Scholar 

  • Burris, R. H., and Wilson, P. W. (1945). Biological nitrogen fixation. Ann. Rev. Biochem., 14, 685–708.

    Article  CAS  Google Scholar 

  • Burris, R. H., and Wilson, P. W. (1946). Characteristics of the nitrogen-fixing enzyme system in Nostoc muscorum. Bot. Gaz., 108, 254–262.

    Article  CAS  Google Scholar 

  • Burris, R. H., and Wilson, P. W. (1957). Methods for measurement of nitrogen fixation. Methods in Enzymology, 4, 355–366.

    Article  Google Scholar 

  • Carnahan, J. E., Mortenson, L. E., Mower, H., and Castle, J. C. (1960). Nitrogen fixation in cell-free extracts of Clostridium pasteurianum. Biochim. Biophys. Acta, 44, 520–535.

    Article  CAS  Google Scholar 

  • Chisnell, J. R., Premakumar, R., and Bishop, P. E. (1988). Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J. Bacteriol, 170, 27–33.

    CAS  Google Scholar 

  • Conway, E. J. (1947). Micro-diffusion analysis and volumetric error, 2 nd ed. London: Crosby Lockwood and Son Ltd.

    Google Scholar 

  • Cox, R. M. (1965). Biochemical studies on nitrogen fixation in Anabaena cylindrica. Ph.D. thesis, University of London.

    Google Scholar 

  • Credyt, B. (1915). Untersuchungen uber die kalkempfindlichkeit der lupine und ihre bekampfung. Jour. Landw., 63, 125–191.

    Google Scholar 

  • Diamond, J. (1999). Guns, germs, and steel. New York: W.W. Norton & Co.

    Google Scholar 

  • Dilworth, M. J. (1966). Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim. Biophys. Acta, 127, 285–294.

    Article  CAS  Google Scholar 

  • Dobereiner J., Day, J. M., and Dart, P. J. (1972). Nitrogenase activity and oxygen sensitivity of the Paspalum notatum-Azotobacter paspali association. J. Gen. Microbiol., 71, 103–116.

    Article  CAS  Google Scholar 

  • Drewes, K. (1928). Über die assimilation des luftstickstoffs durch blaualgen. Zentrbl. Bakteriol. Parasitenk., Abt.11, 76, 88–101.

    CAS  Google Scholar 

  • Evans, W. E., and Keister, D. L. (1976). Reduction of acetylene by stationary cultures of free-living Rhizobium sp. under atmospheric oxygen levels. Can. J. Microbiol., 22, 949–952.

    Article  CAS  Google Scholar 

  • Fellers, C. R. (1918). The effect of inoculation, fertilizer treatment, and certain minerals on the yield, composition, and nodule formation of soybeans. Soil Sci., 6, 81–129.

    Article  CAS  Google Scholar 

  • Fred, E. B., Baldwin, I. L., and McCoy, E. (1932). Root nodule bacteria and leguminous plants. Madison: Univ. Wisconsin Press.

    Google Scholar 

  • Fred, E. B., and Wilson, P. W. (1934). On photosynthesis and free nitrogen assimilation by leguminous plants. Proc. Nat. Acad. Sci. U.S.A., 20, 403–409.

    Article  CAS  Google Scholar 

  • Fried, M., and Broeshart, H. (1975). An independent measurement of the amount of nitrogen fixed by a legume crop. Plant and Soil, 43, 707–711.

    Article  Google Scholar 

  • Garcia-Rivera, J., and Burris, R. H. (1962). Intermediates in biological nitrogen fixation. Federation Proc, 21, 399.

    Google Scholar 

  • Greiner, L. M., Walker, R. H., and Brown, P. E. (1937). A greenhouse study of the effects of fine limestone applied in the row with legume seed on acid soils. J. Amer. Soc. Agron., 29, 157–165.

    Article  CAS  Google Scholar 

  • Hardy, R. W. F., Holsten, R. D., Jackson, E. K., and Burns, R. C. (1968). The acetylene-ethylene assay for N2 fixation: Laboratory and field evaluation. Plant Physiol, 43, 1185–1207.

    Article  CAS  Google Scholar 

  • Hart, M. H. (1979). Was the pre-biotic atmosphere of the earth heavily reducing? Origins of Life, 9, 261–275.

    Article  CAS  Google Scholar 

  • Hartleb, R. (1901). Method for inoculating seeds with microorganisms. U.S. PatentNo.614, 765.

    Google Scholar 

  • Hellriegel, H. (1887). Welche stickstoffquellen stehen der pflanze zu gebote? Landw. Vers. Sta., 33, 464–465.

    Google Scholar 

  • Hellriegel, H., and Wilfarth, H. (1888). Untersuchungen ilber die stickstoffndhrung der Gramineen und Leguminosen. Beil. Ztscher. Ver. Dt. Zucklnd.

    Google Scholar 

  • Hennecke, H, Kaluza, K., Thony, B., Fuhrmann, M., Ludwig, W., and Stackebrandt, E. (1985). Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen-fixing bacteria. Arch. Microbiol., 142, 342–348.

    Article  CAS  Google Scholar 

  • Hoch, G. E., Little, H. N., and Burris, R. H. (1957). Hydrogen evolution from soybean root nodules. Nature, 179, 430–431.

    Article  CAS  Google Scholar 

  • Holm-Hansen, O, Gerloff, G. C, and Skoog, F. (1954). Cobalt as an essential element for blue-green algae. Plant Physiol., 7, 665–667.

    Article  CAS  Google Scholar 

  • Hoogerheide, J. C, and Kocholaty, W. (1938). Metabolism of the strict anaerobes (genus: Clostridium): II. Reduction of amino-acids with gaseous hydrogen by suspensions of CI. sporogenes. Biochem. J., 32, 949–957.

    CAS  Google Scholar 

  • Hopkins, E. W. (1929). Studies of nitrogen fixation by root nodule bacteria of the Leguminosae. Soil Sci., 28, 433–447.

    Article  CAS  Google Scholar 

  • Hurwitz, C, and Wilson, P. W. (1940). Direct estimation of biological nitrogen fixation: A gasometric method. Ind. and Eng. Chem., Anal. Ed., 12, 31–33.

    Article  CAS  Google Scholar 

  • Jakobsons, A., Zell, E. A., and Wilson, P. W. (1962). A re-investigation of the calcium requirement of Azotobacter vinelandii using purified media. Arch. Mihrobiol., 41, 1–10.

    Article  CAS  Google Scholar 

  • Jodin, C. R. (1862). Du role physiologique de l’azote, faisant suite a un precedent travail presente a l’academie dans la seance du 28 avril 1862. Comp. Rend. Acad. Sci. (Paris), 55, 612–615.

    Google Scholar 

  • Kamen, M. D., and Gest, H. (1949). Evidence for a nitrogenase system in the photosynthetic bacterium Rhodosprillum rubrum. Science, 109, 560.

    CAS  Google Scholar 

  • Kjeldahl, J. (1883). Neue methode zur bestimmung des stickstoffs in organischen korpen. Z Anal. Chem., 22, 366–382.

    Google Scholar 

  • Kliewer, M., and Evans, H. J. (1963). Cobamide coenzyme contents of soybean nodules and nitrogen fixing bacteria in relation to physiological conditions. Plant Physiol, 38, 99–104.

    Article  CAS  Google Scholar 

  • Koch, B., and Evans, H. J. (1966). Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol, 41, 1748–1750.

    Article  CAS  Google Scholar 

  • Kostytschew, S., Ryskaltschuk, A., and Schwezowa, O. (1926). Biochemische untersuchungen über Azotobacter agilis. Zeit. Physiol. Chem. Hoppe-Seylers, 154, 1–17.

    Article  Google Scholar 

  • Kurz, W. G. W., and LaRue, T. A. (1975). Nitrogenase activity in rhizobia in absence of plant host. Nature, 256, 407–409.

    Article  CAS  Google Scholar 

  • Laurent, E. (1901). Observations sur le developpement des nodosites radicals chez les legumineuses. Compt. Rend. Acad. Sci. (Paris), 133, 1241–1243.

    CAS  Google Scholar 

  • Lawes, J. B., and Gilbert, J. H. (1851). Agricultural chemistry especially in relation to the mineral theory of Baron Liebig. J. R. Agric. Soc., 12, 1–41.

    Google Scholar 

  • Lawes, J. B., and Gilbert, J. H. (1855). Reply to Baron Liebig’s “Principles of Agricultural Chemistry”. J. R. Agric. Soc., 16, 1–90.

    Google Scholar 

  • Levine, J. S., and Augustsson, T. R. (1983). The photochemistry of biogenis gases in the early and present atmosphere. Origins of Life, 15, 299–318.

    Google Scholar 

  • Lind, C. J., and Wilson, P. W. (1941). Mechanism of biological nitrogen fixation. VIII. Carbon monoxide as an inhibitor for nitrogen fixation by red clover. J. Am. Chem. Soc., 63, 3511–3514.

    Article  CAS  Google Scholar 

  • Lineweaver, H., Burk, D., and Deming, W. E. (1934). The dissociation constant of nitrogen-nitrogenase in Azotobacter. J. Amer. Chem. Soc., 56, 225–230.

    Article  CAS  Google Scholar 

  • Lipman, C. B. (1911). Nitrogen fixation by yeasts and other fungi. J. Biol Chem., 10, 169–182.

    Google Scholar 

  • Lohnis, M. P. (1930). Can Bacterium radicicola assimilate nitrogen in the absence of the host plant? Soil Sci., 29, 37–57.

    Article  CAS  Google Scholar 

  • Mayer, S. W., Kelly, F. H., and Morton, M. E. (1955). Ammonia determination and sample preparation for mass spectrometry by a micro diffusion method. Anal. Chem., 27, 837–838.

    Article  CAS  Google Scholar 

  • McComb, J. A., Elliot, J., and Dilworth, M. J. (1975). Acetylene reduction by Rhizobium in pure culture. Nature, 256,409–410.

    Article  CAS  Google Scholar 

  • Merkenschlager, F. (1921). Die chlorose der lupinen auf kalkboden. Fuhlung’s Landw. Ztg., 70, 19–24.

    Google Scholar 

  • Metcalfe, G., Chayen, S., Roberts, E. R., and Wilson, T. G. G. (1954). Nitrogen fixation by soil yeasts. Nature, 774,841–842.

    Article  Google Scholar 

  • Meyerhof, O., and Burk, D. (1928). Uber die fixation des luftstickstoffs durch Azotobacter. Ztschr. Phys. Chem., 139,117–142.

    CAS  Google Scholar 

  • Miflin, B. J., and Lea, P. J. (1976). The genetic manipulation of plants and its application to agriculture: A summary of current progress and future possibilities. In P. J. Lea, G. R. Stewart, G.R. (Eds.), The genetic manipulation of plants and its application to agriculture(pp. 295–313). Oxford: Oxford University Press.

    Google Scholar 

  • Molnar, D., Burris, R. H., and Wilson, P. W. (1948). The effect of various gases on nitrogen fixation by Azotobacter.J. Am. Chem. Soc., 70, 1713–1716.

    Article  CAS  Google Scholar 

  • Moore, G. T. (1902). Bacteria and the nitrogen problem. U.S. Dept. Agr. Yearbook, 333–342.

    Google Scholar 

  • Moore, G. T. (1905). Beneficial bacteria for leguminous crops. U.S. Dept. Agr., Farmers Bull., 214, 48pp.

    Google Scholar 

  • Mortenson, L. E. (1961). A simple method for measuring nitrogen fixation by cell-free enzyme preparations of Clostridium pasteurianum. Anal. Biochem., 2, 216–220.

    Article  CAS  Google Scholar 

  • Mortenson, L. E. (1964). Ferredoxin and ATP, requirements for nitrogen fixation in cell-free extracts of Clostridium pasteurianum. Proc. Natl. Acad. Sci. U.S.A., 53, 272–279.

    Article  Google Scholar 

  • Mortenson, L. E. (1966). Components of cell-free extracts of Clostridium pasteurianum required for ATP-dependent H2 evolution from dithionite and forN2 fixation. Biophys. Biochim. Acta, 127, 18–25.

    Article  CAS  Google Scholar 

  • Mozen, M. M., and Burris, R. H. (1954). The incorporation of l5N-labeled nitrous oxide by nitrogen-fixing agents. Biochim. Biophys. Acta, 14, 577–578.

    Article  CAS  Google Scholar 

  • Murray, P. A., and Zinder, S. H. (1984). Nitrogen fixation by a methanogenic archebacterium. Nature, 312, 284–286.

    Article  CAS  Google Scholar 

  • Nicholas, D. J. D. (1963). The biochemistry of nitrogen fixation. Symp. Soc. Gen. Microbiol., 13, 92–98.

    Google Scholar 

  • Nobbe, F., and Hiltner, L. (1896a). Bodenimpfung füur anbau von leguminosen. Sachs. Landw. Ztschr., 44, 90–92.

    Google Scholar 

  • Nobbe, F., and Hiltner, L. (1896b). Improvements relating to the inoculation of soil for the cultivation of leguminous plants. British Patent No. 11, 460.

    Google Scholar 

  • Nobbe, F., and Hiltner, L. (1896c). Inoculation of the soil for cultivating leguminous plants. U.S. PatentNo. 570,813.

    Google Scholar 

  • Nobbe, F., Schmid, E., Hiltner, L., and Hotter, E. (1892). Uber die pysiologische bedeutung der wurzlknollchen von Elaeagnus angustifolius. Landw. Vers. Sta., 41, 138–140.

    Google Scholar 

  • Newton, W. E. (1993). Nitrogenases: Distribution, composition, structure, and function. In R. Palacios, J. Mora, and W. E. Newton (Eds.), New horizons in nitrogen fixation(pp. 5–18). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Newton, W. E. (1996). Nitrogen fixation. In J. I. Kroschwitz (Exec. Ed.), Kirk-Othmer Encyclopedia of chemical technology, 4th edit., vol. 17(pp. 172–204). New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Newton, W. E. (2000). Nitrogen fixation in perspective. In F. O. Pedrosa, M. Hungria, M. G. Yates, and W. E. Newton (Eds.), Nitrogen fixation: From molecules to crop productivity(pp. 3–8). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Nutman, P. S. (1987). Centenary lecture on nitrogen fixation. Phil. Trans. R. Soc. Lond, B317, 69–106.

    Article  Google Scholar 

  • Pagan, J. D., Child, J. J., Scowcroft, W. R., and Gibson, A. H. (1975). Nitrogen fixation by Rhizobium cultured on a defined medium. Nature, 256, 406–407.

    Article  CAS  Google Scholar 

  • Parker, C. A., and Scutt, P. B. (1960). The effect of oxygen on nitrogen fixation by Azotobacter. Biochim. Biophys. Acta, 38, 230–238.

    Article  CAS  Google Scholar 

  • Peoples, M. B., Boddey, R. M., and Herridge, D. F. (2002). Quantification of Nitrogen Fixation. In G. J. Leigh (Ed,), Nitrogen fixation at the millennium(pp. 357–389). Amsterdam: Elsevier Science.

    Chapter  Google Scholar 

  • Pfeiffer, T. H., and Blanck, E. (1914). Die kalkfeindlich keit der lupine. Mitt. Landw. Inst. Breslau, 7, 201–233.

    Google Scholar 

  • Postgate, J. R. (1974). Evolution within nitrogen-fixing systems. Symp. Soc. Gen. Microbiol., 24, 263–292.

    CAS  Google Scholar 

  • Postgate, J. R., and Eady, R. R. (1988). The evolution of biological nitrogen fixation. In H. Bothe, F. J. DeBruijn, and W. E. Newton (Eds.), Nitrogen fixation: Hundred years after(pp. 31–40). Stuttgart: Gustav Fischer.

    Google Scholar 

  • Prazmowski, A. (1890). Die wurzelknollchen der erbse. Landw. Versuchsstat. Sta., 37, 161–238.

    Google Scholar 

  • Prazmowski, A. (1891). Die wurzelknollchen der erbse. Landw. Versuchsstat. Sta., 38, 5–62.

    Google Scholar 

  • Prestwich, G. D., and Bentley, B. L. (1981). Nitrogen fixation by intact colonies of the termite Nasutitermes corniga. Oecologia, 49, 249–251.

    Article  Google Scholar 

  • Quispel, A. (1988). Hellriegel and Wilfarth’s discovery of (symbiotic) nitrogen fixation hundred years ago. In H. Bothe, F. J. DeBruijn, and W. E. Newton (Eds.), Nitrogen fixation: Hundred years after(pp. 3–12). Stuttgart: Gustav Fischer.

    Google Scholar 

  • Raven, J. A., and Sprent, J. I. (1989). Phototrophy, diazotrophy, and paleoatmospheres: Biological catalysis and the H, C, N, and O cycles. J. Geol. Sci., 146, 161–170.

    Article  Google Scholar 

  • Remy, T. (1902a-c). Uber die steigerung des stickstoffsammlungsvermogens der hulsenfriichte durch bakterielle hilfsmittel Deut. Landw. Presse, 29, 31–32; 37–38; 46–48.

    Google Scholar 

  • Repaske, R., and Wilson, P. W. (1952). Nitrous oxide inhibition of nitrogen fixation by Azotobacter. J. Am. Chem. Soc., 74, 3101–3103.

    Article  CAS  Google Scholar 

  • Ribbe, M., Gadkari, D., and Meyer, O. (1997). N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from 02 by a molybdenum-CO dehydrogenase. J. Biol. Chem., 272, 26627–26633.

    Article  CAS  Google Scholar 

  • Roberg, M. (1936). Beitrage zur biologie von Azotobakter: II. Der stickstoffgehalt der filtrate von azotobakterkulturen. Jahrb. Wiss. Bott., 82, 65–98.

    Google Scholar 

  • Rogers, T. H., and Sturkie, D. G. (1939). Effect of fertilizers and methods of their application on nodulation, growth, and nitrogen content of hairy vetch. J. Amer. Soc. Agron., 31, 141–148.

    Article  CAS  Google Scholar 

  • Salfeld, A. (1888a). Eine verwertung der Hellriegelschen versuche mit leguminosen im landwirtschaftlichen betreib. Deut. Landw. Presse, 15, 630–631.

    Google Scholar 

  • Salfeld, A. (1888b). Uber die verwertung dre Hellriegel’schen versuche mit leguminosen im landwirtschaftlichen betreib. Biedermann’s Zentbl, 18, 239–244.

    Google Scholar 

  • Salfeld, A. (1900). Welche wirkung hat atzkalk in hohem leichtem sandboden auf die leguminosenenpilze? Deut. Landw. Presse, 27, 931.

    Google Scholar 

  • Schanderl, H. (1947). Botanische bakteriologie und stickstoffhausalt der pflanzen. Stuttgart: Ulmer.

    Google Scholar 

  • Schindler, F. (1885). Uber die biologische bedeutung der wurzelknollchen bei den Papilionaceen. Jour. Landw., 33, 325–336.

    Google Scholar 

  • Scholz, W. (1933). Knollchenbildung und chlorose der gelben lupine (Lupinus luteus). Ztschr. Pflanzenernahr., Dungung u. Bodenk., 29A, 59–64.

    CAS  Google Scholar 

  • Simon, J. (1907). Die widerstandsfahigkeit der wurzelbakterien der leguminosen und ihre bedeutung für die bodenimpfung. Jahresber. Ver. Angew. Bot., 5, 132–160.

    Google Scholar 

  • Sloger, C, and Silver, W. S. (1967). Biological reductions catalyzed by symbiotic nitrogen-fixing tissues. Bacteriol. Proc, 112.

    Google Scholar 

  • Smil, V. (2001). Enriching the earth. Fritz Haber, Carl Bosch, and the transformation of world food production. Cambridge: MIT Press.

    Google Scholar 

  • Sprent, J. I., and Raven, J. A. (1985). Evolution of nitrogen-fixing symbioses. Proc. Roy. Soc. Edinburgh,B 85,215–231.

    Google Scholar 

  • Sprent, J. I., and Raven, J. A. (1992). Evolution of nitrogen-fixing symbioses. In G. Stacey, R. H. Burris, and H. J. Evans (Eds.), Biological nitrogen fixation(pp. 461–496). New York: Chapman and Hall.

    Google Scholar 

  • Stephenson, M. (1938). Bacterial metabolism, 2 mi ed. London: Longmans, Green and Co.

    Google Scholar 

  • Stewart, W. D. P., Fitzgerald, G. P., and Burris, R. H. (1967). In situ studies on nitrogen fixation using the acetylene reduction technique. Proc. Natl. Acad. Sci. U.S.A., 58, 2071–2078.

    Article  CAS  Google Scholar 

  • Toth, L., Wolsky, A., and Batyka, E. (1942). Nitrogen fixation from the air by aphids (Homoptera). Z. vergl. Physiol., 30, 61–13.

    Google Scholar 

  • Towe, K. M. (1983). Precambrian atmospheric oxygen and banded iron formations: A delayed ocean model. Precambrian Res., 20, 161–170.

    Article  CAS  Google Scholar 

  • Trumble, H. C, and Strong, T.H. (1938). The nitrogen accretion of pasture grasses when grown in association with legumes. Australia Council Sci. Ind. Research Bui, 105, 11–24.

    Google Scholar 

  • Turchin, F. V., Berseneva, Z. N., and Zhidkikh, G. G. (1963). Fixation of atmospheric nitrogen in vitro by enzymes isolated from legume nodules and higher plants uninoculated with bacteria. Doklady Akad. Nauk (USSR), 149, 731–742.

    CAS  Google Scholar 

  • Virtanen, A. I. (1938). Cattle fodder and human nutrition. London: Cambridge University Press.

    Google Scholar 

  • Virtanen, A. I. (1947). The biology and chemistry of nitrogen fixation by legume bacteria. Biol Rev., 22, 239–249.

    Article  CAS  Google Scholar 

  • Virtanen, A. I., and Miettinen, J. K. (1963). Biological nitrogen fixation. In F. C. Steward (Ed.), Plant physiology, a treatise, vol. 3(pp. 539–669). New York: Academic Press.

    Google Scholar 

  • Vogel, J. (1917). Einige versuche mir U-kulturen. Deut. Landw. Presse, 44, 522.

    CAS  Google Scholar 

  • Volski, M. I. (1959). Assimilation of nitrogen by animal organisms; chick embryos and bee pupae. Comp. Rend. Acad. Sci. (USSR), 128, 857–859.

    Google Scholar 

  • Waksman, S. A. (1927). Principles of soil microbiology. London: Bailliere, Tandall and Cox.

    Book  Google Scholar 

  • Wachtershauser, G. (1988). Before enzymes and templates: Theory of surface metabolism. Microbiol. Rev., 52, 452–484.

    CAS  Google Scholar 

  • Ward, H. M. (1887). On the tubercular swellings on the roots of Viciafaba. Phil. Trans. R. Soc. Lond., B 178,539–562.

    Google Scholar 

  • Waterbury, J. D., Calloway, C. B. and Turner, R. D. (1983). A cellulolytic nitrogen-fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia: Teredinidae). Science, 221, 1401–1403.

    Article  CAS  Google Scholar 

  • Waughman, G. J., French, J. R J. and Jones, K. (1981). Nitrogen fixation in some terrestrial environments. In W. J. Broughton (Ed.), Nitrogen fixation, vol. 1(pp. 135–192). Oxford: Clarendon Press.

    Google Scholar 

  • Wilson, J. K. (1917). Physiological studies of the Bacillus radicicola of the soybean (Soja max Piper) and of the factors influencing nodule production. Cornell Agr. Expt. Sta. Bui, 386, 369–413.

    Google Scholar 

  • Wilson, P. W. (1936). Mechanism of symbiotic nitrogen fixation: I. The influence of pN2. J. Amer. Chem. Soc, 55,1256–1261.

    Article  Google Scholar 

  • Wilson, P. W. (1939). The mechanism of symbiotic nitrogen fixation. Ergeb. Enzymforsch., 8, 13–54.

    CAS  Google Scholar 

  • Wilson, P. W., and Wyss, O. (1939). Discussion of paper of Dr. A. I. Virtanen. Third Comm. Intern. Soc. Soil. Sci. Trans., B, 13–18.

    Google Scholar 

  • Wilson, P. W. (1940). The biochemistry of symbiotic nitrogen fixation. Madison: Univ. Wiscons in Press.

    Google Scholar 

  • Wilson, P. W. (1952). The comparative biochemistry of nitrogen fixation. Adv. Enzymol, 13, 345–375.

    CAS  Google Scholar 

  • Wilson, P. W. (1958). Asymbiotic nitrogen fixation. In W. Ruhland (Ed.), Encyclopedia of plant physiology, vol. VIII(pp. 9–47). Springer-Verlag: Berlin.

    Google Scholar 

  • Wilson, P. W., and Burris, R. H. (1947). The mechanism of biological nitrogen fixation. Bacteriol. Rev., 77,41–73.

    Google Scholar 

  • Wilson, P. W., and Burris, R. H. (1953). Biological nitrogen fixation - A reappraisal. Ann. Rev. Microbiol, 7,415–432.

    Article  CAS  Google Scholar 

  • Wilson, P. W., Burris, R. H., and Coffee, W.B. (1943). Hydrogenase and symbiotic nitrogen fixation. J. Biol. Chem., 747,475–481.

    Google Scholar 

  • Wilson, P. W., Hopkins, E. W., and Fred, E. B. (1932). The biochemistry of nitrogen fixation by the Leguminosae: I. Nitrogen fixation studies of rhizobia apart from the host plant. Arch. Mikrobiol., 3, 322–340.

    Article  CAS  Google Scholar 

  • Winogradsky, S. (1893). Sur l’assimilation de l’azote gazeux de l’atmophere par les microbes. Comp. Rend. Acad. Sci. (Paris), 116, 1385–1388.

    Google Scholar 

  • Winogradsky, S. (1930). Sur la synthese de l’ammoniac par les Azotobacter du sol. Comp. Rend. Acad. Sci. (Paris), 190,661–665.

    CAS  Google Scholar 

  • Winogradsky, S. (1933). Sur le degagment de l’ammoniac par les nodosites des racines des legumineuses. Comp. Rend. Acad. Sci. (Paris), 197, 209–212.

    CAS  Google Scholar 

  • Winogradsky, S. (1936). Etudes sur la microbiologic du sol: VIII. Recherches sur les bacteries radicicoles des legumineuses. Ann. Inst. Pasteur, 56, 222–250.

    Google Scholar 

  • Young, J. P. W. (1992). Phylogenetic classification of nitrogen-fixing organisms. In G. Stacey, R. H. Burris, and H. J. Evans (Eds.), Biological nitrogen fixation(pp. 43–86). New York: Chapman and Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fisher, K., Newton, W.E. (2004). Nitrogen Fixation: An Historical Perspective. In: Smith, B.E., Richards, R.L., Newton, W.E. (eds) Catalysts for Nitrogen Fixation. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3611-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-3611-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6675-6

  • Online ISBN: 978-1-4020-3611-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics