Skip to main content

Oxygen Responses, Hemoglobin, And The Structure And Function Of Vesicles

  • Chapter
Book cover Nitrogen-fixing Actinorhizal Symbioses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeysekera, R. M., Newcomb, W., Silvester, W. B., and Torrey, J. G. (1990). A freeze-fracture electron microscopic study of Frankia in root nodules of Alnus incana grown at three oxygen tensions. Can. J. Microbiol., 36, 97–108.

    Google Scholar 

  • Akimov, V. N., and Drobitsa, S. V. (1992). Grouping of Frankia strains on the basis of DNA relatedness. Syst. Appl. Microbiol., 15, 372–379.

    CAS  Google Scholar 

  • Appleby, C. A. (1992). The origin and functions of haemoglobin in plants. Sci. Prog. Oxf., 76, 365–398.

    CAS  Google Scholar 

  • Baker, D. D., and Huss-Danell, K. (1986). Effects of oxygen and chloramphenicol on Frankianitrogenase activity. Arch. Microbiol., 144, 233–236.

    CAS  Google Scholar 

  • Beckwith, J., Tjepkema, J. D., Cashon, R. E., and Schwintzer, C. R. (2002). Hemoglobins in five genetically diverse Frankia strains. Can. J. Microbiol., 48, 1048–1055.

    PubMed  CAS  Google Scholar 

  • Benson, D. R., and Silvester, W. B. (1993). Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol. Rev., 57, 293–319.

    PubMed  CAS  Google Scholar 

  • Berg, R. H. (1983). Preliminary evidence for the involvement of suberization in infection of Casuarina. Can. J. Bot., 61, 2910–2918.

    CAS  Google Scholar 

  • Berg, R. H. (1994). Symbiotic vesicle ultrastructure in high pressure-frozen, freeze-substituted actinorhizae. Protoplasma, 183, 37–48.

    Google Scholar 

  • Berg, R. H. (1999). Frankia forms infection threads. Can. J. Bot., 77, 1327–1333.

    Google Scholar 

  • Berg, R. H., and McDowell, L. (1987). Endophyte differentiation in Casuarina actinorhizae. Protoplasma, 136,104–117.

    Google Scholar 

  • Berg, R. H., and McDowell, L. (1988). Cytochemistry of the wall of infected Casuarina actinorhizae. Can. J. Bot., 66, 2038–2047.

    Google Scholar 

  • Berg, R. H., Langenstein, B., and Silvester, W. B. (1999). Development in the Datisca-Coriaria nodule type. Can. J. Bot., 77, 1334-1350.

    Google Scholar 

  • Bergersen, F. J. (1982). Root nodules of legumes: Structure and function. Chichester, UK: Res. Stud. Press.

    Google Scholar 

  • Berry, A. M., Harriott, O. T., Moreau, R. A., Osman, S. F., Benson, D. R., and Jones, A. D. (1993). Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc. Natl. Acad. Sci. U.S.A., 90, 6091–6094.

    PubMed  CAS  Google Scholar 

  • Bond, G. (1952). Some features of the root growth in nodulated plants of Myrica gale L. Ann. Bot., 16, 467–475.

    Google Scholar 

  • Bond, G. (1957). Isotopic studies of nitrogen fixation in non-legume root nodules. Ann. Bot., 21, 513–521.

    Google Scholar 

  • Bond, G. (1961). The oxygen relation of nitrogen fixation in root nodules. Zeit. Alleg. Mikrobiol., 1, 93–99.

    CAS  Google Scholar 

  • Bond, G. (1974). Root nodule symbiosis with actinomycete-like organisms. In A. Quispel (Ed.), The biology of nitrogen fixation (pp. 342-378). Amsterdam, The Netherlands: North Holland Publications/American Elsevier.

    Google Scholar 

  • Bond, G., and MacConell, J. T. (1955). Nitrogen fixation in detached non-legume root nodules. Nature, 176, 606.

    Google Scholar 

  • Bramhill, D. (1997). Bacterial cell division. Ann. Rev. Cell Develop. Biol., 13, 395-424.

    CAS  Google Scholar 

  • Callaham, D., Del Tredici, P., and Torrey, J. G. (1978). Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science, 199, 899-902.

    PubMed  Google Scholar 

  • Calvert, H. E., Chaudhary, A. H., and Lalonde, M. (1979). Structure of an unusual root nodule symbiosis in a non-leguminous herbaceous dicotyledon. In J. C. Gordon, C. T. Wheeler, and D. A. Perry (Eds.), Symbiotic nitrogen fixation in the management of temperate forests (pp. 474-475). Corvallis, OR: Oregon State University Press.

    Google Scholar 

  • Christensen, E. S., Dennis, J. W., Peacock, W. J., Landsmann, J., and Marcker, K. A. (1991). Hemoglobin genes in non-legumes: Cloning and characterization of a Casuarina glauca hemoglobin gene. Plant Mol. Biol., 16, 339-344.

    PubMed  CAS  Google Scholar 

  • Dalton, H., and Postgate, J. R. (1969). Growth and physiology of Azotobacter chroococcum in continuous culture. J. Gen. Microbiol., 56, 307-319.

    CAS  Google Scholar 

  • Davenport, H. E. (1960). Haemoglobin in the root nodules of Casuarina cunninghamiana. Nature (London), 186, 653-654.

    CAS  Google Scholar 

  • Durand, J.-L., Sheehy, J. E., and Minchin, F. R. (1987). Nitrogenase activity, photosynthesis and nodule water potential in soybean plants experiencing water deprivation. J. Exp. Bot., 38, 311-321.

    CAS  Google Scholar 

  • Fernandez, M. P., Meugnier, H., Grimont, P. A. D., and Bardin, R. (1989). Deoxyribonucleic acid relatedness among members of the genus Frankia. Int. J. Syst. Bacteriol., 39, 424-429.

    Google Scholar 

  • Fessenden, R. J., Knowles, R., and Brouzes, R. (1973). Acetylene-ethylene assay studies on excised root nodules of Myrica asplenifolia. L. Soil Sci. Soc. Am. Proc., 37, 893-898.

    CAS  Google Scholar 

  • Fleming, A. I., Wittenberg, J. B., Wittenberg, B. A., Dudman, W. F., and Appleby, C. A. (1987). The purification, characterization and ligand-binding kinetics of hemoglobins from root nodules of the non-leguminous Casuarina glauca - Frankia symbiosis. Biochim. Biophys. Acta, 911, 209-220.

    CAS  Google Scholar 

  • Fontaine, M. S., Lancelle, S. A., and Torrey, J. G. (1984). Initiation and ontogeny of vesicles in cultured Frankiasp. strain HFPArI3. J. Bacteriol., 160, 921-927.

    PubMed  CAS  Google Scholar 

  • Gallon, J. R. (1981). The oxygen sensitivity of nitrogenase: A problem for biochemists and micro-organisms. Trends Biochem. Sci., 6, 19-23.

    CAS  Google Scholar 

  • Gauthier, D., Diem, H. G., and Dommergues, Y. (1981). In vitro nitrogen fixation by two actinomycete strains isolated from Casuarina nodules. Appl. Environ. Microbiol., 41, 306-308.

    PubMed  CAS  Google Scholar 

  • Gherbi, H., Duhoux, E., Franche, C., Pawlowski, K., Nassar, A., Berry, A. M., et al. (1997). Cloning of a full-length symbiotic hemoglobin cDNA and in situ localization of the corresponding mRNA in Casuarina glauca root nodule. Physiol. Plant., 99, 608-616.

    CAS  Google Scholar 

  • Goodchild, D. J., and Miller, C. (1997). Immunogold localisation of hemoglobin in Casuarina root nodules. Protoplasma, 198, 130-134.

    CAS  Google Scholar 

  • Hafeez, F., Akkermans, A. D. L., and Chaudhary, A. H. (1984a). Observations on the ultrastructure of Frankia sp. in root nodules of Datisca cannabina L. Plant Soil, 79, 383-402.

    Google Scholar 

  • Hafeez, F., Chaudhary, A. H., and Akkermans, A. D. L. (1984b). Physiological studies on N2-fixing root nodules of Datisca canabina L. and Alnus nitidaEndl. from Himalaya region in Pakistan. Plant Soil, 78, 129-146.

    CAS  Google Scholar 

  • Harris, S., and Silvester, W. B. (1994). Acetylene and argon-induced declines in nitrogenase activity in Coriaria arborea. Soil Biol. Biochem., 26, 641-648.

    CAS  Google Scholar 

  • Harris, S. L., and Silvester, W. B. (1992). Oxygen controls the development of Frankia vesicles in continuous culture. New Phytol., 121, 43-48.

    CAS  Google Scholar 

  • Hartwig, U., Boller, D., and Nosberger, J. (1987). Oxygen supply limits nitrogenase activity of clover nodules after defoliation. Ann. Bot., 59, 285-291.

    CAS  Google Scholar 

  • Hill, D. R., Belbin, T. J., Thorsteinsson, M. V., Bassam, D., Brass, S., Ernst, A., et al. (1996). GlbN (Cyanoglobin) is a peripheral membrane protein that is restricted to certain Nostoc spp. J. Bacteriol., 178, 6587-6598.

    PubMed  CAS  Google Scholar 

  • Hunt, S., King, B. J., Canvin, D. T., and Layzell, D. L. (1987). Steady and non-steady state gas exchange characteristics of soybean nodules in relation to the oxygen diffusion barrier. Plant Physiol., 84,164-172.

    PubMed  CAS  Google Scholar 

  • Huss-Danell, K. (1997). Actinorhizal symbioses and their N2 fixation. New Phytol., 136, 375-405.

    CAS  Google Scholar 

  • Huss-Danell, K., and Bergman, B. (1990). Nitrogenase in Frankia from root nodules of Alnus incana (L.) Moench: Immunolocalization of the Fe- and MoFe-proteins during vesicle differentiation. New Phytol., 116, 443-455.

    Google Scholar 

  • Jacobsen-Lyon, K., Jensen, E. O., Jorgensen, J.-E., Marcker, K. A., Peacock, W. J., and Dennis, E. S. (1995). Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca.Plant Cell, 7, 213-223.

    PubMed  CAS  Google Scholar 

  • Jensen, B. B., and Cox, R. P. (1983). Effect of oxygen concentration on dark nitrogen fixation and respiration in cyanobacteria. Arch. Microbiol., 135, 287-292.

    CAS  Google Scholar 

  • Johnson, G., Tjepkema, J. D., and Schwintzer, C. R. (1997). The acetylene-induced decline in nitrogenase activity in Elaeagnus umbellata. Plant Soil, 191, 157-161.

    CAS  Google Scholar 

  • King, B. J., Hunt, S., Weagle, G., Walsh, K.B., Pottier, R. H., Canvin, D. T., et al. (1988). Regulation of oxygen concentration in soybean nodules observed by in situ spectroscopic measurement of leghemoglobin concentration. Plant Physiol., 87, 296-299.

    PubMed  CAS  Google Scholar 

  • Kortt, A. A., Inglis, A. S., Fleming, A. I., and Appleby, C. A. (1988). Amino acid sequence of hemoglobin I from root nodules of the non-leguminous Casuarina-Frankia symbiosis. FEBS Lett., 231, 341-346.

    CAS  Google Scholar 

  • Lalonde, M. (1979). Immunological and ultrastructural demonstration of nodulation of the European Alnus glutinosa (L.) Gaertn. host plant by an actinomycetal isolate from the North American Comptonia peregrina (L.) Coult. root nodule. Bot. Gaz., 140 (Suppl.), S35-S43.

    Google Scholar 

  • Lamont, H. C., Silvester, W. B., and Torrey, J. G. (1988). Nile red fluorescence demonstrates lipid in the envelope of vesicles from N2-fixing cultures of Frankia. Can. J. Microbiol., 34, 656-660.

    CAS  Google Scholar 

  • Lancelle, S. A., Torrey, J. G., Helper, P. K., and Callaham, D. A. (1985). Ultrastructure of freeze-substituted Frankia strain HFPCcI3, the actinomycete isolated from root nodules of Casuarina cunninghamiana. Protoplasma, 127, 64-72.

    Google Scholar 

  • Lopez, M. F., Young, P., and Torrey, J. G. (1986). A comparison of carbon source utilization for growth and nitrogenase activity in two Frankia isolates . Can. J. Microbiol., 32, 353-358.

    CAS  Google Scholar 

  • MacConnell, J. T. (1959). The oxygen factor in the development and function of the root nodules of alder. Ann. Bot., 23,261-268.

    CAS  Google Scholar 

  • Meesters, T. M. (1987). Localization of nitrogenase in vesicles of Frankia sp. CcI7 by immunogold labelling on ultrathin sections. Arch. Microbiol., 146,327-331.

    Google Scholar 

  • Meesters, T. M., van Vliet, W. M., and Akkermans, A. D. L. (1987). Nitrogenase is restricted to the vesicles in Frankia strain EAN1pec. Physiol. Plant., 70, 267-271.

    CAS  Google Scholar 

  • Minchin, F. R., Sheehy, J. E., and Witty, J. F. (1986). Further errors in the acetylene reduction assay: effects of plant disturbance. J. Exp. Bot., 37, 1581-1591.

    CAS  Google Scholar 

  • Minchin, F. R., Witty, J. F., Sheehy, J. E., and Muller, M. (1983). A major error in the acetylene reduction assay: Decrease in nodular nitrogenase activity under assay conditions. J. Exp. Bot., 34,641-649.

    CAS  Google Scholar 

  • Mirza, M. S., Pawlowski, K., Hafeez, F. Y., Chaudhary, A. H., and Akkermans, A. D. L. (1994). Ultrastructure of the endophyte and localization of nifH transcripts in root nodules of Coriaria nepalensis wall by in situhybridization. New Phytol., 126, 131-136.

    Google Scholar 

  • Murry, M. A., Fontaine, M. S., and Tjepkema, J. D. (1984a). Oxygen protection of nitrogenase in Frankiasp. HFPArI3. Arch. Microbiol., 139, 162-166.

    CAS  Google Scholar 

  • Murry, M. A., Fontaine, M. S., and Torrey, J. G. (1984b). Growth kinetics and nitrogenase induction in Frankia sp. HFPArI3 grown in batch culture. Plant Soil, 78, 61-78.

    CAS  Google Scholar 

  • Murry, M. A., Zhang, Z., and Torrey, J. G. (1985). Effect of O2 on vesicle formation, acetylene reduction, and O2-uptake kinetics in Frankia sp. HFPCcI3 isolated from Casuarina cunninghamiana. Can. J. Microbiol., 31, 804-809.

    PubMed  CAS  Google Scholar 

  • Newcomb, W., and Pankhurst, C. E. (1982). Fine structure of actinorhizal root nodules of Coriaria arborea (Coriariaceae). N. Z. J. Bot., 20, 93-103.

    Google Scholar 

  • Newcomb, W., and Wood, S. M. (1987). Morphogenesis and fine structure of Frankia (Actinomycetales): the microsymbiont of nitrogen-fixing actinorhizal root nodules. Int. Rev. Cytol., 109, 1-88.

    PubMed  CAS  Google Scholar 

  • Noridge, N. A., and Benson, D. R. (1986). Isolation and nitrogen-fixing activity of Frankia sp. strain CpI1 vesicles. J. Bacteriol., 166, 301-305.

    PubMed  CAS  Google Scholar 

  • Ouellet, H., Oellet, Y., Richard, M., Labarre, M., Wittenberg, B., Wittenberg, J., et al. (2002). Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc. Natl. Acad. Sci. U.S.A., 99, 5902-5907.

    PubMed  CAS  Google Scholar 

  • Parsons, R., Silvester, W. B., Harris, S., Gruijters, W. T. M., and Bullivant, S. (1987). Frankia vesicles provide inducible and absolute oxygen protection for nitrogenase. Plant Physiol., 83, 728-73.

    PubMed  CAS  Google Scholar 

  • Pathania, R., Navani, N. K., Rajamohan, G., and Dikshit, K. L. (2002). Mycobacterium tuberculosis hemoglobin associates with membranes and stimulates cellular respiration of recombinant Escherichia coli. J. Biol. Chem., 277, 15293-15302.

    PubMed  CAS  Google Scholar 

  • Pathirana, S. M., and Tjepkema, J. D. (1995). Purification of hemoglobin from the actinorhizal root nodules of Myrica gale L. Plant Physiol., 107, 827-831.

    PubMed  CAS  Google Scholar 

  • Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., et al.(2000). A novel two-over-two-helical sandwich fold is characteristic of the truncated hemoglobin family. EMBO J., 19, 2424-2434.

    PubMed  CAS  Google Scholar 

  • Poole, R. K., and Hughes, M. N. (2000). New functions for the ancient globin family: Bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol., 36, 775-783.

    PubMed  CAS  Google Scholar 

  • Potts, M., Angeloni, S. V., Ebel, R. E., and Bassam, D. (1992). Myoglobin in a cyanobacterium. Science, 256, 1690-1692.

    PubMed  CAS  Google Scholar 

  • Ramandeep, Hwang, K. W., Raje, M., Kim, K.-J., Stark, B. C., Dikshit, K. L., and Webster, D. A. (2001). Vitreoscilla hemoglobin. Intracellular localization and binding to membranes. J. Biol. Chem., 276, 24781-24789.

    PubMed  CAS  Google Scholar 

  • Ritchie, N. J., and Myrold, D. D. (1999). Phylogenetic placement of uncultured Ceanothus microsymbionts using 16S rRNA gene sequences. Can. J. Bot., 77, 1208-1213.

    CAS  Google Scholar 

  • Robson, R. L., and Postgate, J. R. (1980). Oxygen and hydrogen in biological nitrogen fixation. Annu. Rev. Microbiol., 34, 183-207.

    PubMed  CAS  Google Scholar 

  • Rosendahl, L., and Huss-Danell, K. (1988). Effects of elevated oxygen tensions on acetylene reduction in Alnus incana-Frankia symbioses. Physiol. Plant., 74, 89-94.

    CAS  Google Scholar 

  • Schröder, P. (1989). Aeration of the root system in Alnus glutinosa L. Gaertn. Ann. Sci. For., 46, 310-314.

    Google Scholar 

  • Schuller, K. A., Minchin, F. R., and Gresshoff, P. M. (1988). Nitrogenase activity and oxygen diffusion in nodules of soybean cultivar Bragg and a supernodulating mutant: Effects of nitrate. J. Exp. Bot., 204, 865-878.

    Google Scholar 

  • Schwintzer, C. R. (1985). Effect of spring flooding on endophyte differentiation, nitrogenase activity, root growth and shoot growth in Myrica gale. Plant Soil, 87, 109-124.

    CAS  Google Scholar 

  • Schwintzer, C. R., and Tjepkema, J. D. (1994). Factors affecting the acetylene to 15N2 conversion ratio in root nodules of Myrica gale L. Plant Physiol., 106, 1041-1047.

    PubMed  Google Scholar 

  • Schwintzer, C. R., and Tjepkema, J. D. (1997). Field nodules of Alnus incana ssp. rugosa and newline Myrica gale exhibit pronounced acetylene- induced declines in nitrogenase activity. Can. J. Bot., 75, 1415-1423.

    CAS  Google Scholar 

  • Sellstedt, A., Reddell, P., Rosbrook, P. A., and Ziehr, A. (1991). The relations of haemoglobin and lignin-like compounds to acetylene reduction in symbiotic Casuarina. J. Exp. Bot., 42, 1331-1337.

    CAS  Google Scholar 

  • Sellstedt, A., Redell, P., and Rosbrook, P. A. (1991). The occurrence of haemoglobin and hydrogenase in nodules of twelve Casuarina-Frankia symbiotic associations. Physiol. Plant., 82, 458-464.

    CAS  Google Scholar 

  • Silvester, W. B., Silvester, J. K., and Torrey, J. G. (1988b). Adaptation of nitrogenase to varying oxygen tension and the role of the vesicle in root nodules of Alnus incanassp. rugosa. Can. J. Bot., 66, 1772-1779.

    Google Scholar 

  • Silvester, W. B., Whitbeck, J., Silvester, J. K., and Torrey, J. G. (1988a). Growth, nodule morphology and nitrogenase activity of Myrica gale grown with roots at various oxygen levels. Can. J. Bot., 66, 1762-1771.

    Google Scholar 

  • Silvester, W., Langenstein, B., and Berg, R. H. (1999). Do mitochondria provide the oxygen diffusion barrier in root nodules of Coriaria and Datisca? Can. J. Bot., 77, 1358-1366.

    Google Scholar 

  • Silvester, W. B., and Harris, S. L. (1989). Nodule structure and nitrogenase activity of Coriaria arborea in response to varying pO2. Plant Soil, 118, 97-109.

    CAS  Google Scholar 

  • Silvester, W. B., and Winship, L. J. (1990). Transient responses of nitrogenase to acetylene and oxygen by actinorhizal nodules and cultured Frankia. Plant Physiol., 92, 480-486.

    PubMed  CAS  Google Scholar 

  • Silvester, W. B., Harris, S. L., and Tjepkema, J. D. (1990). Oxygen regulation and hemoglobin. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 157-176). San Diego, CA: Academic Press.

    Google Scholar 

  • Stewart, W. D. P., Fitzgerald, G. P., and Burris, R. H. (1967). In situ studies on N2 fixation using the acetylene reduction technique. Proc. Natl. Acad. Sci., 68, 2071-2078.

    Google Scholar 

  • Suharjo, U. K. J., and Tjepkema, J. D. (1995). Occurrence of hemoglobin in the nitrogen-fixing root nodules of Alnus glutinosa L. Physiol. Plant., 95, 247-252.

    CAS  Google Scholar 

  • Tisa, L. S., and Ensign. J. C. (1987). Isolation and nitrogenase activity of vesicles from Frankiasp. strain EAN1pec. J. Bacteriol., 169, 5054-5059.

    PubMed  CAS  Google Scholar 

  • Tjepkema, J. D. (1978). The role of oxygen diffusion from the shoots and the nodule roots in nitrogen fixation by root nodules of Myrica gale. Can. J. Bot., 56, 1365-1371.

    CAS  Google Scholar 

  • Tjepkema, J. D. (1979). Oxygen relations in leguminous and actinorhizal nodules. In J. C. Gordon, C. T. Wheeler, and D. A. Perry (Eds.), Symbiotic nitrogen fixation in the management of temperate forests (pp. 175-186). Corvallis, OR: Oregon State University Press.

    Google Scholar 

  • Tjepkema, J. D. (1983a). Oxygen concentration within the nitrogen fixing root nodules of Myrica gale L. Am. J. Bot., 70, 59-63.

    Google Scholar 

  • Tjepkema, J. D. (1983b). Hemoglobins in the nitrogen-fixing root nodules of actinorhizal plants. Can. J. Bot., 61, 2924-2929.

    CAS  Google Scholar 

  • Tjepkema, J. D. (1997). C2H2 and Ar induce rapid declines in nitrogenase activity and CO2 evolution in nodules of Datisca glomerata. Physiol. Plant., 99, 648-652.

    CAS  Google Scholar 

  • Tjepkema, J. D., and Asa, D. J. (1987). Total and CO-reactive heme content of actinorhizal nodules and the roots of some non-nodulated plants. Plant Soil, 100, 225-236.

    CAS  Google Scholar 

  • Tjepkema, J. D., and Murry, M. A. (1989). Respiration and nitrogenase activity in nodules of Casuarina cunninghamiana and culture of Frankia HFP020203: Effects of temperature and partial pressure of O2. Plant Soil, 118, 111-118.

    Google Scholar 

  • Tjepkema, J. D., and Schwintzer, C. R. (1992). Factors affecting the acetylene-induced decline during nitrogenase assays in root nodules of Myrica gale L. Plant Physiol., 98, 1451-1459.

    PubMed  CAS  Google Scholar 

  • Tjepkema, J. D., and Winship, L. J. (1980). Energy requirement for nitrogen fixation in actinorhizal and legume root nodules. Science, 209, 279-281.

    PubMed  CAS  Google Scholar 

  • Tjepkema, J. D., and Yocum, C. S. (1973). Respiration and oxygen transport in soybean nodules. Planta, 115, 59-72.

    CAS  Google Scholar 

  • Tjepkema, J. D., and Yocum, C. S. (1974). Measurement of oxygen partial pressure within soybean nodules by oxygen microelectrodes. Planta, 119, 351-360.

    Google Scholar 

  • Tjepkema, J. D., Cashon, R. E., Beckwith, J., and Schwintzer, C. R. (2002). Hemoglobin in Frankia, a nitrogen-fixing actinomycete. Appl. Environ. Microbiol., 68, 2629-2631.

    PubMed  CAS  Google Scholar 

  • Tjepkema, J. D., Du, G., and Schwintzer, C. R. (1999). Response of respiration and nitrogenase activity in Datisca glomerata (Presl.) Baill. to changes in pO2. Can. J. Bot., 77, 1367-1372.

    CAS  Google Scholar 

  • Tjepkema, J. D., Ormerod, W., and Torrey J. G. (1980). Vesicle formation and acetylene reduction in Frankia sp. CpI1 cultured in defined nutrient media. Nature, 287,633-635.

    CAS  Google Scholar 

  • Tjepkema, J. D., Ormerod, W., and Torrey, J. G. (1981). Factors affecting vesicle formation and acetylene reduction (nitrogenase activity) in Frankiasp. CpI1. Can. J. Microbiol., 27,815-823.

    PubMed  CAS  Google Scholar 

  • Tjepkema, J. D., Pathirana, M. S., and Zeng, S. (1988a). The gas diffusion pathway and hemoglobin content in actinorhizal nodules. In H. Bothe, F.J. de Bruijn, and W.E. Newton (Eds.), Nitrogen fixation: Hundred years after(pp. 701). Stuttgart, Germany: Gustaf Fischer.

    Google Scholar 

  • Tjepkema, J. D., Schwintzer, C. R., and Monz, C. A. (1988b). Time course of acetylene reduction in nodules of five actinorhizal plants. Plant Physiol., 86, 581-583.

    CAS  Google Scholar 

  • Tjpekema, J. D., and Evans, H. J. (1975). Nitrogen fixation by free-living Rhizobium in a defined liquid medium. Biochem. Biophys. Res. Commun., 65, 625-628.

    Google Scholar 

  • Torrey, J. G. (1985). The site of nitrogenase in Frankia in free-living culture and in symbiosis. In H. J. Evans, P. J. Bottomley, and W. E. Newton (Eds.), Nitrogen fixation research progress (pp. 293-299). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Torrey, J. G., and Callaham, D. (1982). Structural features of the vesicle of Frankia sp. CpI1 in culture. Can. J. Microbiol., 28, 749-757.

    Google Scholar 

  • Waughman, G. J. (1972). The effect of varying oxygen tension, temperature and sample size on acetylene reduction by nodules of Alnusand Hippophae. Plant Soil, 37, 521-528.

    CAS  Google Scholar 

  • Waughman, G. J. (1977). The effect of temperature on nitrogenase activity. J. Exp. Bot., 28,949-960.

    CAS  Google Scholar 

  • Weber, R. E., and Vinogradov, S.N. (2001). Nonvertebrate hemoglobins: Functions and adaptations. Physiol. Rev., 81, 569-628.

    PubMed  CAS  Google Scholar 

  • Wheeler, C. T., Gordon, E. M., and Ching, T. M. (1979). Oxygen relations of the root nodules of Alnus rubra Bong. New Phytol., 82, 449-457.

    CAS  Google Scholar 

  • Winship, L. J., and Silvester, W. B. (1989). Modelling gas exchange by actionrhizal root nodules using network simulation analysis. In J. G. Torrey and L. J. Winship (Eds.), Applications of continuous and steady-state methods to root biology (pp. 121-146). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Winship, L. J., and Tjepkema, J. D. (1983). The role of diffusion in oxygen protection of nitrogenase in nodules of Alnus rubra. Can. J. Bot., 61, 2930-2936.

    CAS  Google Scholar 

  • Winship, L. J., and Tjepkema., J. D. (1985). Nitrogen fixation and respiration by root nodules of Alnus rubraBong.: Effects of temperature and oxygen concentration. Plant Soil, 87, 91-107.

    CAS  Google Scholar 

  • Wittenberg, J. B., Bolognesi, M., Wittenberg, B. A., and Guertin, M. (2002). Truncated hemoglobins: A new family of hemoglobin widely distributed in bacteria, unicellular eukaryotes, and plants. J. Biol. Chem., 277, 871-874.

    PubMed  CAS  Google Scholar 

  • Witty, J. F., Minchin, F. R., Sheehy, J. E., and Mingues, M. I. (1984). Acetylene-induced changes in the oxygen diffusion resistance and nitrogenase activity of legume root nodules. Ann. Bot., 53, 13-20.

    CAS  Google Scholar 

  • Zeng, S., and Tjepkema, J. D. (1995). The resistance of the diffusion barrier in nodules of Myrica galeL. Changes in response to temperature but not to partial presence of O2. Plant Physiol., 107, 1269-1275.

    PubMed  CAS  Google Scholar 

  • Zeng, S., and Tjepkema, J. D. (1994). The wall of the infected cell may be the major diffusion barrier in nodules of Myrica gale L. Soil Biol. Biochem., 26,633-639.

    Google Scholar 

  • Zeng, S., Tjepkema, J. D., and Berg, R. H. (1989). Gas diffusion pathway in nodules of Casuarina cunninghamiana. Plant Soil, 118, 119-123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Silvester, W.B., Berg, R.H., Schwintzer, C.R., Tjepkema, J.D. (2007). Oxygen Responses, Hemoglobin, And The Structure And Function Of Vesicles. In: Pawlowski, K., Newton, W.E. (eds) Nitrogen-fixing Actinorhizal Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3547-0_5

Download citation

Publish with us

Policies and ethics