Skip to main content

Magnetoelectric Interaction in Crystals Observed by Nonlinear Magneto-Optics

  • Conference paper
Magnetoelectric Interaction Phenomena in Crystals

Part of the book series: NATO Science Series ((NAII,volume 164))

Abstract

Optical second harmonic generation was employed to investigate linear and higher-order magnetoelectric (ME) effects in magnetic oxides. The characteristic degrees of freedom of optical experiments reveal aspects of ME behavior which are not accessible by alternative techniques. ME 180° domains have been observed in Cr2O3 in the absence and presence of a magnetic field. Their transformation properties were used to determine the magnetic structure in the spinflop phase. A hidden magnetic phase transition was identified in the hexagonal rare-earth manganites which is triggered by a linear ME interaction rooting microscopically in 3d - 4f superexchange. Higher-order ME interactions lead to a clamping of antiferromagnetic to ferroelectric domain walls in YMnO3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Curie, J. Physique 3, 393 (1894).

    MATH  Google Scholar 

  2. T. H. O’Dell, The Electrodynamics of Magneto-Electric Media, (North-Holland, Amsterdam, 1970).

    Google Scholar 

  3. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, (Elsevier, Oxford, 1985).

    Google Scholar 

  4. I. E. Dzyaloshinskii, Soy. Phys. JETP 10, 628 (1959).

    Google Scholar 

  5. D. N. Astrov, Soy. Phys. JETP 11, 708 (1960).

    Google Scholar 

  6. G. T. Rado and V.J. Folen, Phys. Rev. Lett. 7, 310 (1961).

    Article  ADS  Google Scholar 

  7. G. T. Rado, Phys. Rev. Lett. 6, 609 (1961).

    Article  ADS  Google Scholar 

  8. R. M. Hornreich and S. Shtrikman, Phys. Rev. 161, 506 (1967).

    Article  ADS  Google Scholar 

  9. B.B. Krichevtsov, V.V. Pavlov und R.V. Pisarev, JETP Lett. 44, 10 (1986).

    Google Scholar 

  10. B. B. Krichevtsov, V. V. Pavlov, and R. V. Pisarev, Soy. Phys. JETP 67, 378 (1988).

    Google Scholar 

  11. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).

    Article  Google Scholar 

  12. M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, Nature 419, 818 (2002).

    Article  ADS  Google Scholar 

  13. J. van Suchtelen; Philips Res. Rep. 27, 28 (1972).

    Google Scholar 

  14. C.-W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, Y. H. Lin, L. J. Dong, and C. X. Xiong. Appl. Phys. Lett. 81, 3831 (2002).

    Article  ADS  Google Scholar 

  15. I. E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957).

    Google Scholar 

  16. T. Moriya, Phys. Rev. 120, 91 (1960).

    Article  ADS  Google Scholar 

  17. Y. R. Shen, The Principles of Nonlinear Optics, (Wiley, New York, 1984).

    Google Scholar 

  18. P. S. Pershan, Phys. Rev. 130, 919 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. R. R. Birss, Symmetry and Magnetism, (North Holland, Amsterdam, 1966).

    Google Scholar 

  20. S. Leute, Th. Lottermoser, and D. Fröhlich, Opt. Lett. 24, 1520 (1999).

    Article  ADS  Google Scholar 

  21. M. Fiebig, D. Fröhlich, Th. Lottermoser, and S. Kallenbach, Opt. Lett. (2003).

    Google Scholar 

  22. L. M. Corliss, J. M. Hastings, R. Nathans, and G. Shirane, J. Appl. Phys. 36, 1099 (1965).

    Article  ADS  Google Scholar 

  23. S. Foner, Phys. Rev. 130, 183 (1963).

    Article  ADS  Google Scholar 

  24. J. Ohtani and K. Kohn, J. Phys. Soc. Jpn. 53, 3744 (1984).

    Article  ADS  Google Scholar 

  25. H. Wiegelmann, A. G. M Jansen, P. Wyder, J. P. Rivera, and H. Schmid, Ferroelectrics 162, 141 (1994).

    Article  Google Scholar 

  26. Y. E Popov, Z. A. Kazeĭ, and A. M. Kadomtseva, JETP Lett. 55, 234 (1992).

    ADS  Google Scholar 

  27. D. V. Belov, G. P. Vorob’ev, A. M. Kadomtseva, and Y. F. Popov, JETP Lett. 58, 579 (1993).

    ADS  Google Scholar 

  28. M. Fiebig, D. Fröhlich, B. B. Krichevtsov, and R.V. Pisarev, Phys. Rev. Lett. 73, 2127 (1994).

    Article  ADS  Google Scholar 

  29. M. Fiebig, D. Fröhlich, and H. J. Thiele, Phys. Rev. B 54, 12681 (1996).

    Article  Google Scholar 

  30. G. A. Smolenskii and I. E. Chupis, Soy. Phys. Usp. 25, 475 (1982).

    Article  ADS  Google Scholar 

  31. Numerical Data and Functional Relationships, Landolt-Börnstein, New Series, Group III, Vol. 16a (Springer, Berlin, 1981).

    Google Scholar 

  32. N. Fujimura, T. Ishida, T. Yoshimura, and T. Ito, Appl. Phys. Lett. 69, 1011 (1996).

    Article  ADS  Google Scholar 

  33. W. C. Koehler, H. L. Yakel, E. O. Wollan, and J. W. Cable, (Proc. of the 4th Conf. on Rare-Earth Res., Phoenix, Arizona, 1965), pp. 63 — 75;

    Google Scholar 

  34. W. C. Koehler, H. L. Yakel, E. O. Wollan, and J. W. Cable, Phys. Lett. 9, 93 (1964).

    Article  ADS  Google Scholar 

  35. R. Pauthenet and C. Veyret, J. de Physique 31, 65 (1970). [Due to a misprint, Curie temperatures for the rare-earth ordering are not listed correctly.]

    Article  Google Scholar 

  36. H. W. Xu, J. Iwasaki, T. Shimizu, H. Satoh, and N. Kamegashira, J. Alloys and Comp. 221, 274 (1995).

    Article  Google Scholar 

  37. E. F. Bertaut, M. Mercier, and R. Pauthenet, Phys. Lett. 5, 27 (1963).

    Article  ADS  Google Scholar 

  38. N. Iwata and K. Kohn, J. Phys. Soc. Japan 67, 3318 (1998). [In the whole paper, the results for ErMn03 and HoMn03 have to be exchanged.]

    Article  ADS  Google Scholar 

  39. H. Sugie, N. Iwata, and K. Kohn, J. Phys. Soc. Jpn. 71, 1558 (2002).

    Article  ADS  Google Scholar 

  40. Th. Lonkai, private communication.

    Google Scholar 

  41. M. Fiebig, Th. Lottermoser, and R. V. Pisarev, J. Appl. Phys. 93, 8194 (2003).

    Article  ADS  Google Scholar 

  42. G. E. Bacon, Neutron Diffraction, (Clarendon Press, Oxford, 1975), pp. 487.

    Google Scholar 

  43. M. Fiebig, D. Fröhlich, K. Kohn, S. Leute, Th. Lottermoser, V. V. Pavlov, and R. V. Pisarev, Phys. Rev. Lett. 84, 5620 (2000).

    Article  ADS  Google Scholar 

  44. M. Fiebig, C. Degenhardt, and R. V. Pisarev, Phys. Rev. Lett. 88, 027203 (2002).

    Article  ADS  Google Scholar 

  45. A. V. Goltsev, R. V. Pisarev, Th. Lottermoser, and M. Fiebig, Phys. Rev. Lett. 90, 177204 (2003).

    Article  ADS  Google Scholar 

  46. K. Aizu, Phys. Rev. B 2, 754 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Fiebig, M. (2004). Magnetoelectric Interaction in Crystals Observed by Nonlinear Magneto-Optics. In: Fiebig, M., Eremenko, V.V., Chupis, I.E. (eds) Magnetoelectric Interaction Phenomena in Crystals. NATO Science Series, vol 164. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2707-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2707-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2389-7

  • Online ISBN: 978-1-4020-2707-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics