Skip to main content

Auxin and Cell Elongation

  • Chapter
Plant Hormones

Abstract

One of the most dramatic and rapid hormone responses in plants is the induction by auxin of rapid cell elongation in isolated stem and coleoptile sections. The response begins within 10 minutes after the addition of auxin, results in a 5-10 fold increase in the growth rate, and persists for hours or even days (22). It is hardly surprising that this may be the most studied hormonal response in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bates GW, Goldsmith MHM (1983) Rapid response of the plasmamembrane potential in oat coleoptiles to auxin and other weak acids. Planta 159: 231-237

    Article  CAS  Google Scholar 

  2. Behringer FJ, Cosgrove DJ, Reid JB, Davies PJ (1990) Physical basis for altered stem elongation rates in internode length mutants of Pisum. 94: 166-173

    CAS  Google Scholar 

  3. Bergfeld R, Speth V, Schopfer P (1988) Reorientation of microfibrils and microtubules at the outer epidermal wall of maize coleoptiles during auxin-mediated growth. Bot Acta 101: 31-41

    Google Scholar 

  4. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of walls during growth. Plant J. 3: 1-30

    Article  CAS  PubMed  Google Scholar 

  5. Chen R, Rosen E, Masson PH (1999) Gravitropism in higher plants. Plant Physiol 120: 343-350

    Article  CAS  PubMed  Google Scholar 

  6. Claussen M, Lüthen H, Blatt M, Böttger M (1997) Auxin-induced growth and its linkage to potassium channels. Planta 201: 227-234

    Article  CAS  Google Scholar 

  7. Cleland RE (1971) Cell wall extension. Annu Rev Plant Physiol 22: 197-222

    Article  CAS  Google Scholar 

  8. Cleland RE (1972) The dosage response curve for auxin-induced cell elongation: a reevaluation. Planta 104: 1-9

    Article  CAS  Google Scholar 

  9. Cleland RE (1977) Rapid stimulation of K+-H+ exchange by a plant growth hormone. Biochem Biophys Res Comm 69: 333-338

    Article  Google Scholar 

  10. Cleland RE (1977) The control of cell enlargement. In DH Jenning ed, Integration of activity in the higher plant, Cambridge Press, Cambridge, pp 101-115

    Google Scholar 

  11. Cleland RE (1983) The capacity for acid-induced wall loosening as a factor in the control of Avena coleoptile cell elongation. J Exp Bot 34: 676-680

    Article  CAS  Google Scholar 

  12. Cleland RE (1987) The mechanism of wall loosening and wall extension. In DJ Cosgrove, DP Knievel, eds, Physiology of Cell Expansion during Plant Growth. Amer Soc Plant Physiol, Rockville, pp 18-27

    Google Scholar 

  13. Cleland RE (1991) The outer epidermis of Avena and maize coleoptiles is not a unique target for auxin in elongation growth. Planta 186: 75-80

    CAS  PubMed  Google Scholar 

  14. Cleland RE (1992) Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima. Plant Physiol 99: 1556-1561

    Article  CAS  PubMed  Google Scholar 

  15. Cleland RE (2002) The role of the apoplastic pH in cell wall extension and cell enlargement. In Z. Rengel, ed, Handbook of Plant Growth. pH as the Master Variable. Dekker, New York, pp 131-148

    Google Scholar 

  16. Cleland RE, Cosgrove DJ, Tepfer M (1987) Long-term acid-induced wall extension in an in-vitro system. Planta 170: 379-385

    Article  CAS  PubMed  Google Scholar 

  17. Cosgrove DJ (1993) Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol 124: 1-23

    Article  CAS  PubMed  Google Scholar 

  18. Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular basis of extensible cell walls and cell enlargement. Plant Cell 9: 1031-1041

    Article  CAS  PubMed  Google Scholar 

  19. Cosgrove DJ, Cleland RE (1983) Osmotic properties of pea internodes in relation to growth and auxin action. Plant Physiol 72: 332-338

    Article  CAS  PubMed  Google Scholar 

  20. Cross JW, Briggs WR, Dohrmann UC, Ray PM (1978) Auxin receptors of maize coleoptile membranes do not have ATPase activity. Plant Physiol 61: 581-584

    Article  CAS  PubMed  Google Scholar 

  21. Dharmasiri S, Estelle M (2002) The role of regulated protein degredation in auxin responses. Plant Mol Biol 49: 401-409

    Article  CAS  PubMed  Google Scholar 

  22. Evans ML (1985) The action of auxin on plant cell elongation. Critical Rev Plant Sci 2: 317-365

    Article  CAS  Google Scholar 

  23. Evans ML, Ishikawa H, Estelle MA (1994) Responses of Arabidopsis roots to auxin studied with high termporal resolution – comparison of wild-type and auxin-response mutants. Planta 194: 215-222

    Article  CAS  Google Scholar 

  24. Felle H (1988) Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta 174: 495-499

    Article  CAS  Google Scholar 

  25. Gehring CA, Irving HR, Parish RW (1990) Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc Natl Acad Sci US 87: 9645-9649

    Article  CAS  Google Scholar 

  26. Hager A, Debus G, Edel H-G, Stransky H., Serrano R. (1991) Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane H+-ATPase. Planta 185: 527-537

    Article  CAS  Google Scholar 

  27. Hager A, Menzel H, Krauss A (1971) Versuche und Hypothese zur Primarwirkung des Auxins beim Streckungswachstum. Planta 100: 47-75

    Article  CAS  Google Scholar 

  28. Jahn T, Palmgren MG (2002) H+-ATPases in the plasma membrane: physiology and molecular biology. In Z Rengel, ed, Handbook of Plant Growth. pH as the Master Variable. Dekker, New York, pp 1-22

    Google Scholar 

  29. Kaku T, Tabuchi A, Wakabayashi K, Kamisaka S, Hoson T (2002) Action of xyloglucan hydrolase within the native cell wall architecture and its effect on cell wall extensibility in Azuki Bean epicotyls . Plant Cell Physiol 43: 21-26

    Article  CAS  PubMed  Google Scholar 

  30. Kutschera U, Schopfer P (1985) Evidence against the acid growth theory of auxin action. Planta 163: 483-493.

    Article  CAS  Google Scholar 

  31. Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8: 264-275

    Article  CAS  PubMed  Google Scholar 

  32. Lüthen H, Böttger M (l993) The role of protons in the auxin-induced root growth inhibition – a critical reexamination. Bot Acta 106: 58-63

    Google Scholar 

  33. Masuda Y, Yamamoto R (1972) Control of auxin-induced stem elongation by the epidermis. Physiol Plant 27: 109-115

    Article  CAS  Google Scholar 

  34. McKay MJ, Ross JJ, Lawrence NL, Cramp RE, Beveridge CA, Reid JB (1994) Control of internode length in Pisum sativum. Further evidence for the involvement of indole-3- acetic acid. Plant Physiol 106: 1521-1526

    CAS  PubMed  Google Scholar 

  35. McQueen-Mason SJ, Fry SC, Durachko DM, Cosgrove DJ (1993) The relationship between xyloglucan endotransglycosylase and in-vitro cell wall extension in cucumber hypocotyls. Planta 190: 327-331

    Article  CAS  PubMed  Google Scholar 

  36. Okamoto-Nakazato A (2002) A brief note on the study of yieldin, a wall-bound protein that regulates the yield threshold of the cell wall. J Plant Res 115: 309-313

    Article  CAS  PubMed  Google Scholar 

  37. Palmgren MG, Sommarin M, Ulvskov P, Jorgensen PL (1988) Modulation of plasma membrane H+-ATPase from oat roots by lysophosphotidylcholine, free fatty acids and phospholipase A2. Physiol Plant 74: 11-19

    Article  CAS  Google Scholar 

  38. Patrick JW (1982) Hormone control of assimilate transport. In PF Wareing ed, Plant Growth Substances 1982, Academic Press, New York, pp 669-678

    Google Scholar 

  39. Philippar K, Fuchs I, Lüthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Böttger M, Becker D, Hedrich R (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Nat Acad Sci US 96: 12186-12191

    Article  CAS  Google Scholar 

  40. Ray PM (1977) Auxin-binding sites of maize coleoptiles are localized on membranes of the endoplasmic reticulum. Plant Physiol 59: 594-599.

    Article  CAS  PubMed  Google Scholar 

  41. Rayle DL, Cleland RE (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46: 250-253

    Article  CAS  PubMed  Google Scholar 

  42. Rayle DL, Cleland RE (1972) The in-vitro acid-growth response: relation to in-vivo growth responses and auxin action. Planta 104: 282-296

    Article  CAS  Google Scholar 

  43. Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99: 1271-1274

    Article  CAS  PubMed  Google Scholar 

  44. Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday JK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis Plant Physiol 2000 122: 481-490

    Article  CAS  PubMed  Google Scholar 

  45. Rober-Kleber N, Albrechtová JTP, Fleig S, Huck N, Michalke W, Wagner E, Speth V, Neuhaus G, Fischer-Iglesias C (2003) Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiol 131: 1302-1312

    Article  CAS  PubMed  Google Scholar 

  46. Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A (2000) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214: 8921-828

    Google Scholar 

  47. Stevenson TT, Cleland RE (1981) Osmoregulation in the Avena coleoptile in relation to growth. Plant Physiol 67: 749-753

    Article  CAS  PubMed  Google Scholar 

  48. Virk SS, Cleland RE (1988) Calcium and the mechanical properties of soybean hypocotyl cell walls: possible role of calcium and protons in wall loosening. Planta 176: 60-67

    Article  CAS  Google Scholar 

  49. Yang T, Davies PJ, Reid JB (1996) Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. Plant Physiol 110: 1029-1034

    CAS  PubMed  Google Scholar 

  50. Yuan S, Wu Y, Cosgrove DJ (2001) A fungal endoglucanase with plant cell wall extension activity. Plant Physiol 127: 324-333

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Cleland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cleland, R.E. (2010). Auxin and Cell Elongation. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_10

Download citation

Publish with us

Policies and ethics