Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 133))

  • 307 Accesses

Abstract

The field of ab initio molecular dynamics, in which finite temperature molecular dynamics trajectories are generated using forces obtained from electronic structure calculations performed “on the fly”, is a rapidly evolving and growing technology that allows chemical processes in condensed phases to be studied in an accurate and unbiased way. This article is intended to present the basics of the ab initio molecular dynamics method and to highlight some recent trends. Beginning with a derivation of the method from the Born-Oppenheimer approximation, issues including the density functional representation of electronic structure, basis sets, calculation of observables, and the Car-Parrinello extended Lagrangian algorithm and extensions of the latter are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. W. Rick and S. J. Stuart, Rev. Comp. Chem. 18, (2002).

    Google Scholar 

  2. A. Warshel and R. M. Weiss, J. Am. Chem. Soc. 102, 6218 (1980).

    Article  Google Scholar 

  3. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  ADS  Google Scholar 

  4. D. K. Remler and P. A. Madden, Mol. Phys. 70, 921 (1990).

    Article  ADS  Google Scholar 

  5. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Article  ADS  Google Scholar 

  6. G. Galli and M. Parrinello, Computer simulation in chemical physics, NATO ASI Series C 397, 261 (1993).

    Book  Google Scholar 

  7. M. E. Tuckerman, P. J. Ungar, T. von Rosenvinge, and M. L. Klein, J. Phys. Chem. 100, 12878 (1996).

    Article  Google Scholar 

  8. M. J. Gillan, Contemp. Phys. 38, 115 (1997).

    Article  ADS  Google Scholar 

  9. M. Parrinello, Solid State Commun. 102, 107 (1997).

    Article  ADS  Google Scholar 

  10. D. Marx and J. Flutter, In Modern Methods and Algorithms of Quantum Chemistry J. Grotendorst, ed. (PUBLISHER, Forschungszentrum, Juelich, NIC Series Vol. 1, 2000), pp. 301–449.

    Google Scholar 

  11. R. Car, Quant. Struct. Act. Rel. 21, 97 (2002).

    Article  Google Scholar 

  12. M. E. Tuckerman, J. Phys. Condens. Matter 14 (2002).

    Google Scholar 

  13. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

  14. R. Feynman, Statistical Mechanics. (Benjamin, Reading, (1972)).

    Google Scholar 

  15. D. Marx and M. Parrinello, Z. Phys. B 95, 143 (1994).

    Article  ADS  Google Scholar 

  16. D. Marx and M. Parrinello, J. Chem. Phys. 104, 4077 (1996).

    Article  ADS  Google Scholar 

  17. M. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello, J. Chem. Phys. 104, 5579 (1996).

    Article  ADS  Google Scholar 

  18. D. Marx, M. E. Tuckerman, and G. J. Martyna, Comp. Phys. Comm. 118, 166 (1999).

    Article  ADS  MATH  Google Scholar 

  19. K. Laasonen, M. Sprik, M. Parrinello, and R. Car, J. Chem. Phys. 99, 9080 (1993).

    Article  ADS  Google Scholar 

  20. E. S. Fois, M. Sprik, and M. Parrinello, Chem. Phys. Lett. 223, 411 (1994).

    Article  ADS  Google Scholar 

  21. M. Sprik, J. Hutter, and M. Parrinello, J. Chem. Phys. 105, 1142 (1996).

    Article  ADS  Google Scholar 

  22. P. L. Silvestrelli, M. Bernasconi, and M. Parrinello, Chem. Phys. Lett. 277, 478 (1997).

    Article  ADS  Google Scholar 

  23. B. L. Trout and M. Parrinello, Chem. Phys. Lett. 288, 343 (1998).

    Article  ADS  Google Scholar 

  24. L. D. Site, A. Alavi, and R. M. Lynden-Bell, Mol. Phys. 96, 1683 (1999).

    Article  ADS  Google Scholar 

  25. P. L. Silvestrelli and M. Parrinello, Phys. Rev. Lett. 82, 3308 (1999).

    Article  ADS  Google Scholar 

  26. M. Sprik, Chem. Phys. 258, 139 (2000).

    Article  ADS  Google Scholar 

  27. M. Krack and M. Parrinello, Phys. Chem. Chem. Phys. 2, 2105 (2000).

    Article  Google Scholar 

  28. B. G. Pfrommer, F. Mauri, and S. G. Louie, J. Am. Chem. Soc. 122, 123 (2001).

    Article  Google Scholar 

  29. P. L. Geissler, C. Dellago, D. Chandler, J. Hutter, and M. Parrinello, Science 291, 2121 (2001).

    Article  ADS  Google Scholar 

  30. E. Schwegler, G. Galli, F. Gygi, and R. Q. Hood, Phys. Rev. Lett. 87, 265501 (2001).

    Article  ADS  Google Scholar 

  31. S. Izvekov and G. A. Voth, J. Chem. Phys. 116, 10372 (2002).

    Article  ADS  Google Scholar 

  32. M. Diraison, G. J. Martyna, and M. E. Tuckerman, J. Chem. Phys. 111, 1096 (1999).

    Article  ADS  Google Scholar 

  33. E. Tsuchida, Y. Kanada, and M. Tsukada, Chem. Phys. Lett. 311, 236 (1999).

    Article  ADS  Google Scholar 

  34. Y. Liu and M. E. Tuckerman, J. Phys. Chem. B 105, 6598 (2001).

    Article  Google Scholar 

  35. J. A. Morrone and M. E. Tuckerman, J. Chem. Phys. 117, 4403 (2002).

    Article  ADS  Google Scholar 

  36. J. A. Morrone and M. E. Tuckerman, Chem. Phys. Lett. (submitted).

    Google Scholar 

  37. K. Laasonen and M. L. Klein, J. Am. Chem. Soc. 116, 11620 (1994).

    Article  Google Scholar 

  38. K. Laasonen and M. L. Klein, Mol. Phys. 88, 135 (1996).

    Article  ADS  Google Scholar 

  39. M. Sprik, J. Phys. Condensed Matter 8, 9405 (1996).

    Article  ADS  Google Scholar 

  40. K. Laasonen and M. L. Klein, J. Phys. Chem. A 101, 98 (1997).

    Article  Google Scholar 

  41. E. J. Meijer and M. Sprik, J. Am. Chem. Soc. 120, 6345 (1998).

    Article  Google Scholar 

  42. D. Kim and M. L. Klein, J. Phys. Chem. B 104, 10074 (2000).

    Article  Google Scholar 

  43. Z. Zhu and M. E. Tuckerman, J. Phys. Chem. B 106, 8009 (2002).

    Article  Google Scholar 

  44. B. Chen, J. M. Park, I. Ivanov, G. Tabacchi, M. L. Klein, and M. Parrinello, J. Am. Chem. Soc. 124, 8534 (2002).

    Article  Google Scholar 

  45. M. E. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, J. Phys. Chem. 99, 5749 (1995).

    Article  Google Scholar 

  46. M. E. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, J. Chem. Phys. 103, 150 (1995).

    Article  ADS  Google Scholar 

  47. D. Marx, M. E. Tuckerman, J. Hutter, and M. Parrinello, Nature 367, 601 (1999).

    Article  ADS  Google Scholar 

  48. D. Marx, M. E. Tuckerman, and M. Parrinello, J. Phys. Condens. Matt. 12, A153 (2000).

    Article  ADS  Google Scholar 

  49. M. E. Tuckerman, D. Marx, and M. Parrinello, Nature 417, 925 (2002).

    Article  ADS  Google Scholar 

  50. D. E. Sagnella, K. Laasonen, and M. L. Klein, Biophys. J. 71, 1172 (1996).

    Article  Google Scholar 

  51. H. S. Mei, M. E. Tuckerman, D. E. Sagnella, and M. L. Klein, J. Phys. Chem. B 102, 10446 (1998).

    Article  Google Scholar 

  52. M. Pavese, D. R. Berard, and G. A. Voth, Chem. Phys. Lett. 300, 93 (1999).

    Article  ADS  Google Scholar 

  53. L. Rosso and M. E. Tuckerman, J. Am. Chem. Soc. (submitted).

    Google Scholar 

  54. K. Laasonen, M. Parrinello, R. Car, C. Y. Lee, and D. Vanderbilt, Chem. Phys. Lett. 207, 208 (1993).

    Article  ADS  Google Scholar 

  55. K. Laasonen and M. L. Klein, J. Phys. Chem. 98, 10079 (1994).

    Article  Google Scholar 

  56. M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello, Science 275, 817 (1997).

    Article  Google Scholar 

  57. H. Arstila, K. Laasonen, and A. Laaksonen, J. Chem. Phys. 108, 1031 (1998).

    Article  ADS  Google Scholar 

  58. P. L. Geissler, C. Dellago, D. Chandler, J. Hutter, and M. Parrinello, Chem. Phys. Lett. 321, 225 (2000).

    Article  ADS  Google Scholar 

  59. C. Y. Lee, D. Vanderbilt, K. Laasonen, R. Car, and M. Parrinello, Phys. Rev. Lett. 69, 462 (1992).

    Article  ADS  Google Scholar 

  60. C. Y. Lee, D. Vanderbilt, K. Laasonen, R. Car, and M. Parrinello, Phys. Rev. B 47, 4863 (1993).

    Article  ADS  Google Scholar 

  61. M. Benoit, M. Bernasconi, and M. Parrinello, Phys. Rev. Lett. 76, 2934 (1996).

    Article  ADS  Google Scholar 

  62. M. Bernasconi, M. Benoit, M. Parrinello, G. L. Chiarotti, P. Focher, and E. Tosatti, Physica Scripta A 166, 98 (1996).

    Article  ADS  Google Scholar 

  63. M. Bernasconi, P. L. Silvestrelli, and M. Parrinello, Phys. Rev. Lett. 81, 1235 (1998).

    Article  ADS  Google Scholar 

  64. M. Benoit, D. Marx, and M. Parrinello, Nature 392, 258 (1998).

    Article  ADS  Google Scholar 

  65. M. Benoit, D. Marx, and M. Parrinello, Solid State Ionics 125, 23 (1999).

    Article  Google Scholar 

  66. Z. F. Liu, C. K. Siu, and J. S. Tse, Chem. Phys. Lett. 309, 335 (1999).

    Article  ADS  Google Scholar 

  67. A. Putrino and M. Parrinello, Phys. Rev. Lett. 88, 176401 (2002).

    Article  ADS  Google Scholar 

  68. J. Sarnthein, A. Pasquarello, and R. Car, Science 275, 1925 (1997).

    Article  Google Scholar 

  69. A. Pasquarello and R. Car, Phys. Rev. Lett. 79, 1766 (1997).

    Article  ADS  Google Scholar 

  70. M. Boero, A. Pasquarello, J. Sarnthein, and R. Car, Phys. Rev. Lett. 78, 887 (1997).

    Article  ADS  Google Scholar 

  71. A. Pasquarello, J. Sarnthein, and R. Car, Phys. Rev. B 57, 14133 (1998).

    Article  ADS  Google Scholar 

  72. A. Pasquarello and R. Car, Phys. Rev. Lett. 80, 5145 (1998).

    Article  ADS  Google Scholar 

  73. C. Massobrio, A. Pasquarello, and R. Car, J. Am. Chem. Soc. 121, 2943 (1999).

    Article  Google Scholar 

  74. F. Mauri, A. Pasquarello, B. G. Pfrommer, Y. G. Yoon, and S. G. Louie, Phys. Rev. B 62, R4786 (2000).

    Article  ADS  Google Scholar 

  75. M. Benoit, S. Ispas, and M. E. Tuckerman, Phys. Rev. B 64, 224205 (2001).

    Article  ADS  Google Scholar 

  76. C. J. Pickard and F. Mauri, Phys. Rev. Lett. 88, 086403 (2002).

    Article  ADS  Google Scholar 

  77. M. Boero, M. Parrinello, and K. Terakura, J. Am. Chem. Soc. 120, 2746 (1998).

    Article  Google Scholar 

  78. M. Boero, M. Parrinello, S. Hueffer, and H. Weiss, J. Am. Chem. Soc. 122, 501 (2000).

    Article  Google Scholar 

  79. M. Boero, M. Parrinello, H. Weiss, and S. Hueffer, J. Phys. Chem. A 105, 5096 (2001).

    Article  Google Scholar 

  80. K. C. Haas, W. F. Schneider, A. Curioni, and W. Andreoni, Science 282, 265 (1998).

    Article  ADS  Google Scholar 

  81. C. Stampfl and M. Scheffler, Surf. Sci. 435, 119 (2000).

    Google Scholar 

  82. K. C. Haas, W. F. Schneider, A. Curioni, and W. Andreoni, J. Phys. Chem. B 104, 5527 (2000).

    Article  Google Scholar 

  83. C. Stampfl, M. V. Ganduglia-Pirovano, K. Reuter, and M. Scheffler, Surf. Sci. 500, 368 (2002).

    Article  ADS  Google Scholar 

  84. G. J. Kroes, A. Gross, E. J. Baerends, M. Scheffler, and D. A. McCormack, Acc. Chem. Res. 35, 193 (2002).

    Article  Google Scholar 

  85. M. Saitta and M. L. Klein, Nature 399, 46 (1999).

    Article  ADS  Google Scholar 

  86. M. Saitta and M. L. Klein, J. Chem. Phys. 111, 9434 (1999).

    Article  ADS  Google Scholar 

  87. M. Saitta and M. L. Klein, J. Am. Chem. Soc. 121, 11827 (1999).

    Article  Google Scholar 

  88. M. Saitta and M. L. Klein, J. Phys. Chem. B 105, 6495 (2001).

    Article  Google Scholar 

  89. S. Piana, D. Sebastiani, P. Carloni, and M. Parrinello, J. Am. Chem. Soc. 123, 8730 (2001).

    Article  Google Scholar 

  90. J. Hutter, P. Carloni, and M. Parrinello, J. Am. Chem. Soc. 118, 871 (1996).

    Google Scholar 

  91. U. Roethlisberger and P. Carloni, Intl. J. Quant. Chem. 73, 209 (1999).

    Article  Google Scholar 

  92. W. Andreoni, A. Curioni, and T. Mordasini, IBM J. Res. and Development 45, 397 (2001).

    Article  Google Scholar 

  93. C. Rovira and M. Parrinello, Intl. J. Quant. Chem. 80, 1172 (2000).

    Article  Google Scholar 

  94. C. Rovira, B. Schulze, M. Eichinger, J. D. Evanseck, and M. Parrinello, Biophys. J. 81, 435 (2001).

    Article  Google Scholar 

  95. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  96. R. G. Parr and W. Yang, Density Functional Theory of atoms and molecules (Oxford University Press, Oxford, 1989).

    Google Scholar 

  97. R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer-Verlag, Berlin/Heidelberg, 1990).

    Book  MATH  Google Scholar 

  98. Z. H. Liu, L. E. Carter, and E. A. Carter, J. Phys. Chem. 99, 4355 (1995).

    Article  Google Scholar 

  99. B. D. Martino, M. Celino, and V. Rosato, Comp. Phys. Comm. 120, 255 (1999).

    Article  ADS  Google Scholar 

  100. R. A. Friesner, Chem. Phys. Lett. 116, 39 (1985).

    Article  ADS  Google Scholar 

  101. G. Lippert, J. Hutter, and M. Parrinello, Mol. Phys. 92, 477 (1997).

    ADS  Google Scholar 

  102. Y. Liu and M. E. Tuckerman, Phys. Rev. Lett. (submitted).

    Google Scholar 

  103. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  104. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  105. W. Y. C. Lee and R. C. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  106. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  107. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  108. N. C. Handy and A. J. Cohen, Mol. Phys. 99,403 (2001).

    Article  ADS  Google Scholar 

  109. A. J. Cohen and N. C. Handy, Mol. Phys. 99, 607 (2001).

    Article  ADS  Google Scholar 

  110. N. C. Handy and A. J. Cohen, J. Chem. Phys. 116, 5411 (2002).

    Article  ADS  Google Scholar 

  111. Q. Wu and W. Yang, J. Chem. Phys. 116, 515 (2002).

    Article  ADS  Google Scholar 

  112. A. D. Becke, J. Chem. Phys. 96, 2155 (1992).

    Article  ADS  Google Scholar 

  113. A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).

    Article  ADS  Google Scholar 

  114. A. D. Becke, J. Chem. Phys. 112, 4020 (2000).

    Article  ADS  Google Scholar 

  115. E. Proynov, H. Chermette, and D. R. Salahub, J. Chem. Phys. 113, 10013 (2000).

    Article  ADS  Google Scholar 

  116. M. Ernzerhof, S. N. Maximoff, and G. E. Scuseria, J. Chem. Phys. 116, 3980 (2002).

    Article  ADS  Google Scholar 

  117. J. A. White and D. M. Bird, Phys. Rev. B 50, 4954 (1994).

    Article  ADS  Google Scholar 

  118. G. Bachelet, D. Hamann, and M. Schluter, Phys. Rev. B 26, 4199 ((1982)).

    Article  ADS  Google Scholar 

  119. N. Troullier and J. L. Martins, Phys. Rev. B 43. 1993 (1991).

    Article  ADS  Google Scholar 

  120. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  ADS  Google Scholar 

  121. P. E. Bloechl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  122. L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

    Article  ADS  Google Scholar 

  123. X. Gonze, P. Kaeckell, and M. Scheffler, Phys. Rev. B 41, 12264 (1990).

    Article  ADS  Google Scholar 

  124. X. Gonze, R. Stumpf, and M. Scheffer, Phys. Rev. B 44, 1991 (1991).

    Google Scholar 

  125. M. E. Tuckerman and G. J. Martyna, (To be submitted).

    Google Scholar 

  126. R. W. Hockney, Phys. Rev. B 48, 2081 (1993).

    Google Scholar 

  127. R. N. Barnett and U. Landmann, Methods Comput. Phys. 9, 136 (1978).

    Google Scholar 

  128. G. Martyna and M. Tuckerman, J. Chem. Phys. 110. 2810 (1999).

    Article  ADS  Google Scholar 

  129. P. Minary, M. E. Tuckerman, K. A. Pihakari, and G. J. Martyna, J. Chem. Phys. 116, 5351 (2002).

    Article  ADS  Google Scholar 

  130. M. E. Tuckerman, P. Minary, K. A. Pihakari, and G. J. Martyna, In Computational Methods for Macromolecules: Challenges and Applications T. Schlick and H. H. Gan, eds. (PUBLISHER, Springer, Berlin, 2002), p. 381.

    Chapter  Google Scholar 

  131. J. J. Mortensen and M. Parrinello, J. Phys. Chem. B 104, 2901 (2000).

    Article  Google Scholar 

  132. J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys. 82, 1400 (1985).

    Article  ADS  Google Scholar 

  133. J. T. Muckerman, Chem. Phys. Lett. 173, 200 (1990).

    Article  ADS  Google Scholar 

  134. D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).

    Article  ADS  Google Scholar 

  135. R. G. Littlejohn, M. Cargo, T. Carrington, K. A. Mitchell, and B. Poirier, J. Chem. Phys. 116, 8691 (2002).

    Article  ADS  Google Scholar 

  136. S. Guerin and H. R. Jauslin, Comp. Phys. Comm. 121–122.496 (1999).

    Article  Google Scholar 

  137. L. Rosso, P. Minary, Z. Zhu, and M. E. Tuckerman, J. Chem. Phys. 116, 4389 (2002).

    Article  ADS  Google Scholar 

  138. Although the problem could just as well be formulated in terms of an extended Hamiltonian as in the simple x-y model, we prefer to use the Lagrangian formulation as in the original CP paper [3].

    Google Scholar 

  139. M. E. Tuckerman and M. Parrinello, J. Chem. Phys. 101, 1301 (1994).

    ADS  Google Scholar 

  140. K. Laasonen, R. Car, C. Lee, and D. Vanderbilt, Phys. Rev. B 43, 6796 (1991).

    Article  ADS  Google Scholar 

  141. K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt, Phys. Rev. B 47, 10142 (1993).

    Article  ADS  Google Scholar 

  142. J. Hutter, M. E. Tuckerman, and M. Parrinello, J. Chem. Phys. 102, 859 (1995).

    Article  ADS  Google Scholar 

  143. M. Tuckerman and G. J. Martuna (to be submitted).

    Google Scholar 

  144. W. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  ADS  Google Scholar 

  145. G. Martyna, M. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635 (1992).

    Article  ADS  Google Scholar 

  146. P. Blochl and M. Parrinello, Phys. Rev. B 45, 9413 (1991).

    Article  ADS  Google Scholar 

  147. P. Minary, G. J. Martyna, and M. E. Tuckerman, J. Chem. Phys. (submitted).

    Google Scholar 

  148. P. A. Egelstaff, Adv. Phys. 11, 203 (1962).

    Article  ADS  Google Scholar 

  149. R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

    Article  ADS  Google Scholar 

  150. R. Resta, Rev. Mod. Phys. 66, 899 (1994).

    Article  ADS  Google Scholar 

  151. R. Resta, Phys. Rev. Lett. 80, 1800 (1998).

    Article  ADS  Google Scholar 

  152. R. Resta, J. Phys. Condens. Matter 14, R625 (2002).

    Article  ADS  Google Scholar 

  153. P. L. Silvestrelli, Phys. Rev. B 59, 9703 (1999).

    Article  ADS  Google Scholar 

  154. G. Berghold, C. J. Mundy, A. H. Romero, J. Hutter, and M. Parrinello, Phys. Rev. B 61, 10040 (2000).

    Article  ADS  Google Scholar 

  155. N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

    Article  ADS  Google Scholar 

  156. A. Putrino, D. Sebastiani, and M. Parrinello, J. Chem. Phys. 113, 7102 (2000).

    Article  ADS  Google Scholar 

  157. S. Baroni, P. Gianozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1985).

    Article  ADS  Google Scholar 

  158. X. Gonze and J. P. Vigneron, Phys. Rev. B 39, 13120 (1989).

    Article  ADS  Google Scholar 

  159. X. Gonze, Phys. Rev. A 52, 1096 (1995).

    Article  ADS  Google Scholar 

  160. D. Sebastiani and M. Parrinello, J. Phys. Chem. A 105, 1951 (2001).

    Article  Google Scholar 

  161. B. J. Berne and R. Pecora, Dynamic Light Scattering (John Wiley and Sons, Inc., New York, 1976).

    Google Scholar 

  162. T. Gregor, F. Mauri, and R. Car, J. Chem. Phys. 111, 1815 (1999).

    Article  ADS  Google Scholar 

  163. C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001).

    Article  ADS  Google Scholar 

  164. F. Mauri and S. Louie, Phys. Rev. Lett. 76, 4246 (1996).

    Article  ADS  Google Scholar 

  165. F. Mauri, B. Pfrommer, and S. Louie, Phys. Rev. Lett. 77, 5300 (1996).

    Article  ADS  Google Scholar 

  166. F. Mauri, B. Pfrommer, and S. Louie, Phys. Rev. Lett. 79, 2340 (1997).

    Article  ADS  Google Scholar 

  167. Y. Yoon, B. Pfrommer, F. Mauri, and S. Louie, Phvs. Rev. Lett. 80.3388 (1998).

    Article  ADS  Google Scholar 

  168. F. Mauri, B. Pfrommer, and S. Louie, Phys. Rev. B 60, 2941 (1999).

    Article  ADS  Google Scholar 

  169. A. Alavi, J. Kohanoff, M. Parrinello, and D. Frenkel, Phys. Rev. Lett. 73, 2599 (1994).

    Article  ADS  Google Scholar 

  170. N. L. Doltsinis and D. Marx, Phys. Rev. Lett. 88, 166–402 (2002).

    Article  Google Scholar 

  171. G. Galli and M. Parrinello, Phvs. Rev. Lett. 69.3547 (1992).

    Article  ADS  Google Scholar 

  172. X. P. Li, R. W. Nunes, and D. Vanderbilt, Phys. Rev. B 48, 14646 (1993).

    Article  Google Scholar 

  173. G. Galli and F. Mauri, Phys. Rev. B 50, 4316 (1994).

    Article  ADS  Google Scholar 

  174. D. R. Bowler, T. Miyazaki, and M. J. Gillan, J. Phys. Condens. Matter 14, 2781 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tuckerman, M.E. (2004). Basic Concepts and Trends in ab Initio Molecular Dynamics. In: Samios, J., Durov, V.A. (eds) Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations. NATO Science Series, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2384-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2384-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1847-3

  • Online ISBN: 978-1-4020-2384-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics