Skip to main content

Agrobacterum-Mediated Transformation of Citrus

  • Chapter
Transgenic Crops of the World

Abstract

Citrus is the most important fruit crop in the world, with a production of almost 100 million tonnes and acreage of 7.2 million hectares in 2001 (1). It is grown in more than 100 countries all over the world, mainly in tropical and subtropical areas (approximately 40° latitude in each side of the equator) where favourable soil and climatic conditions occur. Citrus fruits are marketed fresh or as processed juice and canned segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FAO (2001). http://apps.fao.org/lim500/nph-wrap.pl.

  2. Soost RK and Cameron JW (1975). Citrus. In: Janick J, Moore JN (eds.), Advances in Fruit Breeding, Purdue University Press, West Lafayette, USA, pp. 507–540.

    Google Scholar 

  3. Savage EM and Gardner FE (1965). The Troyer and Carrizo citranges. California Citrograph, 50: 112–116.

    Google Scholar 

  4. Deng Z, Huang S, Ling P, Yu C, Tao Q, Chen C, Wendell MK, Zhang H-B et al. (2001). Fine genetic mapping and BAC contig development for the citrus tristeza virus resistance gene locus in Poncirus trifoliata (Raf.). Molecular and General Genomics, 265: 739–747.

    Article  CAS  Google Scholar 

  5. Yang Z-N, Ye X-R, Choi S, Molina J, Moonan F, Wing RA, Roose ML and Mirkov TE (2001). Construction of a 1.2-Mb contig including the citrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of Poncirus trifoliata (L.) Raf. Genome, 44: 382–393.

    PubMed  CAS  Google Scholar 

  6. Grosser JW, Ollitrault P and Olivares-Fuster O (2000). Somatic hybridization in Citrus: an effective tool to facilitate variety improvement. In Vitro Plant, 36: 439–449.

    Google Scholar 

  7. Ollitrault P, Dambier D, Sudahono S, Mademba-Sy F, Vanel F, Luro F and Aubert B (1998). Biotechnology for triploid mandarin breeding. Fruits, 53: 307–317.

    CAS  Google Scholar 

  8. Kobayashi S and Uchimiya H (1989). Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer. Japanese Journal of Genetics, 64: 91–97.

    Article  Google Scholar 

  9. Vardi A, Bleichman S and Aviv D (1990). Genetic transformation of citrus protoplasts and regeneration of transgenic plants. Plant Science, 69: 199–206.

    Article  CAS  Google Scholar 

  10. Hidaka T, Omura M, Ugaki M, Tomiyama M, Kato A, Ohshima M and Motoyoshi F (1990). Agrobacterium-mediated transformation and regeneration of Citrus spp. from suspension cells. Japanese Journal of Breeding, 40: 199–207.

    Google Scholar 

  11. Moore GA, Jacono CC, Neidigh JL, Lawrence SD and Cline K (1992). Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Reports, 11: 238–242.

    Article  CAS  Google Scholar 

  12. Gutiérrez MA, Luth DE and Moore GA (1997). Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Reports, 16: 745–753.

    Article  Google Scholar 

  13. Hidaka T and Omura M (1993). Transformation of citrus protoplasts by electroporation. Journal of the Japanese Society for Horticultural Science, 62: 371–376.

    Article  CAS  Google Scholar 

  14. Yao J-L, Wu J-H, Gleave AP and Morris BAM (1996). Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos. Plant Science, 113: 175–183.

    Article  CAS  Google Scholar 

  15. Kaneyoshi J, Kobayashi S, Nakamura Y, Shigemoto N and Doi Y (1994). A simple and efficient gene transfer system of trifoliate orange. Plant Cell Reports, 13: 541–545.

    CAS  Google Scholar 

  16. Kobayashi S, Nakamura Y, Kaneyoshi J, Higo H and Higo K (1996). Transformation of kiwifruit (Actinidia chinensis) and trifoliate orange (Poncirus trifoliata) with a synthetic gene encoding the human epidermal growth factor (hEGF). Journal of the Japanese Society for Horticultural Science, 64: 763–769.

    Article  CAS  Google Scholar 

  17. Kaneyoshi J and Kobayashi S (1999). Characteristics of transgenic trifoliate orange (Poncirus trifoliata Raf.) possessing the rolC gene of Agrobacterium rhizogenes Ri plasmid. Journal of the Japanese Society for Horticultural Science, 68: 734–738.

    Article  CAS  Google Scholar 

  18. Bond JE and Roose ML (1998). Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Reports, 18: 229–234.

    Article  CAS  Google Scholar 

  19. Luth D and Moore G (2000). Transgenic grapefruit plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell, Tissue and Organ Culture, 57: 219–222.

    Article  Google Scholar 

  20. Costa MGC, Otoni WC and Moore GC (2002). An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Reports, 21: 365–373.

    Article  CAS  Google Scholar 

  21. Pérez-Molphe E and Ochoa-Alejo N (1998). Regeneration of transgenic plants of Mexican lime from Agrobacterium rhizogenes-transformed tissues. Plant Cell Reports, 17: 591–596.

    Article  Google Scholar 

  22. Yang Z-N, Ingelbrecht IL, Louzada E, Skaria M and Mirkov TE (2000). Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradidi Macf.). Plant Cell Reports, 19: 1203–1211.

    Article  CAS  Google Scholar 

  23. Fleming GH, Olivares-Fuster O, Fatta Del-Bosco S and Grosser JW (2000). An alternative method for the genetic transformation of sweet orange. In Vitro Cellular and Developmental Biology-Plant, 36: 450–455.

    Article  CAS  Google Scholar 

  24. Li DD, Shi W and Deng XX (2002). Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Reports, 21: 153–156.

    Article  CAS  Google Scholar 

  25. Peña L, Cervera M, Juárez J, Ortega C, Pina JA, Durán-Vila N and Navarro L (1995). High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Science, 104: 183–191.

    Article  Google Scholar 

  26. Cervera M, Pina JA, Juárez J, Navarro L and Peña L (1998). Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Reports, 16: 271–278.

    Article  Google Scholar 

  27. Cervera M, Pina JA, Juárez J, Navarro L and Peña L (2000). A broad exploration of a transgenic population of citrus: stability on gene expression and phenotype. Theoretical and Applied Genetics, 100: 670–677.

    Article  CAS  Google Scholar 

  28. Peña L, Cervera M, Juárez J, Navarro A, Pina JA, Durán-Vila N and Navarro L (1995). Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Reports, 14: 616–619.

    Article  Google Scholar 

  29. Cervera M, Juárez J, Navarro A, Pina JA, Durn-Vila N, Navarro L and Peña L (1998). Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Transgenic Research, 7: 51–59.

    Article  CAS  Google Scholar 

  30. Peña L, Cervera M, Juárez J, Navarro A, Pina JA and Navarro L (1997). Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Reports, 16: 731–737.

    Article  Google Scholar 

  31. Domínguez A, Guerri J, Cambra M, Navarro L, Moreno P and Peña L (2000). Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Reports, 19: 427–433.

    Article  Google Scholar 

  32. Ghorbel R, Domínguez A, Navarro L and Peña L (2000). High efficiency genetic transformation of sour orange (Citrus aurantium L.) and production of transgenic trees containing the coat protein gene of citrus tristeza virus. Tree Physiology, 20: 1183–1189.

    Article  PubMed  Google Scholar 

  33. Ghorbel R, LaMalfa S, Lopez MM, Petit A, Navarro L and Peña L (2001). Additional copies of virG from pTiBo542 provide a super-transformation ability to Agrobacterium tumefaciens in citrus. Physiology and Molecular Plant Pathology, 58: 103–110.

    Article  CAS  Google Scholar 

  34. Domínguez A, Hermoso de Mendoza A, Guerri J, Cambra M, Navarro L, Moreno P and Peña L (2002). Pathogen-derived resistance to citrus tristeza virus (CTV) in transgenic Mexican lime (Citrus aurantifolia (Christ.) Swing.) plants expressing its p25 coat protein gene. Molecular Breeding, 10: 1–10.

    Article  Google Scholar 

  35. Domínguez A, Fagoaga C, Navarro L, Moreno P and Peña L (2002). Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Molecular and General Genomics, 267: 544–556.

    Article  Google Scholar 

  36. Ghorbel R, Lopez C, Moreno P, Navarro L, Flores R and Pella L (2001). Transgenic citrus plants expressing the citrus tristeza virus p23 protein exhibit viral-like symptoms. Molecular Plant Pathology, 2: 27–36.

    Article  PubMed  CAS  Google Scholar 

  37. Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L et al. (2001). Increased tolerance to Phytophthora citrophthora in transgenic orange plants overexpressing a tomato pathogenesis related protein PR-5. Molecular Breeding, 7: 175–181.

    Article  CAS  Google Scholar 

  38. Cervera M, Ortega C, Navarro A, Navarro L and Peña L (2000). Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. Journal of Horticultural Science & Biotechnology, 75: 26–30.

    CAS  Google Scholar 

  39. Peña L, Martín-Trillo M, Juárez J, Pina JA, Navarro L and Martínez-Zapater JM (2001). Constitutive expression of Arabidopsis LEAFY and APETALA1 genes in citrus reduces their generation time. Nature Biotechnology, 19: 263–267.

    Article  PubMed  Google Scholar 

  40. Hood EE, Gelvin SB, Melchers LS and Hoekema A (1993). New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Research, 2: 208–218.

    Article  CAS  Google Scholar 

  41. Cervera M, Lopez MM, Navarro L and Peña L (1998). Virulence and supervirulence of Agrobacterium tumefaciens in woody fruit plants. Physiology and Molecular Plant Pathology, 52: 67–78.

    Article  Google Scholar 

  42. Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473–497.

    Article  CAS  Google Scholar 

  43. Koch AL (1994). Growth measurements. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C., USA, pp. 248–277.

    Google Scholar 

  44. Jefferson RA, Kavanagh TA and Bevan MW (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6: 3901–3907.

    PubMed  CAS  Google Scholar 

  45. Chalfie M, Tu Y, Euskirchen G, Ward WW and Prasher DC (1994). Green fluorescent protein as a marker for gene expression. Science, 263: 663–664.

    Article  Google Scholar 

  46. Ghorbel R, Juárez J, Navarro L and Peña L (1999). Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theoretical and Applied Genetics, 99: 350–358.

    Article  Google Scholar 

  47. Navarro L, Roistacher CN and Murashige T (1975). Improvement of shoot-tip grafting in vitro for virus-free citrus. Journal of American Society for Horticultural Science, 100: 471–479.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Peña, L. et al. (2004). Agrobacterum-Mediated Transformation of Citrus. In: Curtis, I.S. (eds) Transgenic Crops of the World. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2333-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2333-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7021-3

  • Online ISBN: 978-1-4020-2333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics