Antimicrobial Drug Action

# Antimicrobial Drug Action

**David Edwards** 



© David Edwards 1980

All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission

First published 1980 by THE MACMILLAN PRESS LTD London and Basingstoke Associated companies in Delhi Dublin Hong Kong Johannesburg Lagos Melbourne New York Singapore and Tokyo

*Typeset by* Reproduction Drawings Ltd, Sutton, Surrey

#### **British Library Cataloguing in Publication Data**

Edwards, David Antimicrobial drug action. 1. Anti-infective agents I. Title 615'.329 RM267

ISBN 978-0-333-23568-3 ISBN 978-1-349-16360-1 (eBook) DOI 10.1007/978-1-349-16360-1

This book is sold subject to the standard conditions of the Net Book Agreement

The paperback edition of this book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without the publisher's prior consent in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser

### To Kleddie

## Preface

While teaching the action of antimicrobial drugs to B.Sc. students studying microbiology I was struck by the absence of an adequate text which included a general review of the principles of drug action and their mechanisms. In writing a suitable book I have collated material which is not only relevant but which gives a suitable background to drug action. Consequently, the book may be studied in a logical sequence starting with the principles of drug action and thence progressing to the more rigorous biochemical treatment of the mechanisms of drug action.

In adopting this approach I hope that the student will realise that drugs are regarded in the context of the disease which they attempt to control and not merely as interesting problems of biochemistry and molecular biology. It should also be realised, nevertheless, that the study of such drugs has enabled significant advances to be made in biochemistry and provides a foundation upon which medicinal chemists can build to produce new and better drugs. The overall approach in preparing the book is therefore the presentation of a balanced view of drug action which encompasses both the medical and biochemical aspects. In this I hope I have succeeded and trust that students will find the book useful.

D. E.

# Contents

| Preface  |        |          |                                                     | vi |
|----------|--------|----------|-----------------------------------------------------|----|
| PART 1 G |        | GENI     | GENERAL PRINCIPLES AND SELECTIVE TOXICITY           |    |
| 1        | Histor | ry of Aı | ntimicrobial Chemotherapy                           | 1  |
|          | 1.1    | Introd   | uction                                              | 1  |
|          | 1.2    | The fu   | iture                                               | 6  |
|          | 1.3    | Refere   | ences and further reading                           | 7  |
| 2        | Princi | ples of  | Antimicrobial Drug Action                           | 8  |
|          | 2.1    |          | uction                                              | 8  |
|          |        | 2.1.1    | The role of antibiotics in the cell                 | 9  |
|          | 2.2    | Mecha    | nisms of resistance to antibiotics by the producer  |    |
|          |        | organi   | sm                                                  | 9  |
|          | 2.3    | Source   | es of antibiotics                                   | 10 |
|          | 2.4    | Selecti  | ive toxicity                                        | 13 |
|          | 2.5    | Assess   | ment of antimicrobial drug action                   | 16 |
|          |        | 2.5.1    | Introduction                                        | 16 |
|          |        | 2.5.2    | Diffusion tests                                     | 18 |
|          |        |          | (a) Disc techniques                                 | 18 |
|          |        |          | (b) Ditch technique                                 | 18 |
|          |        |          | (c) Hole or well technique                          | 19 |
|          |        | 2.5.3    | Tests in liquid media                               | 19 |
|          |        | 2.5.4    | Drug interactions                                   | 22 |
|          |        |          | (a) Disc technique with two diffusion centres       | 22 |
|          |        |          | (b) Determination by two linear zones of inhibition | 23 |
|          |        |          | (c) Strip-gradient (Szybalski) technique            | 24 |
|          |        | 2.5.5    | Quantitative determination of drug interaction      | 25 |
|          |        |          | (a) Determination by single and combined MICs       | 25 |
|          |        |          | (b) Comparison of bacteriocidal death rates         | 26 |
|          | 2.6    | Mutag    | enicity testing of antimicrobial agents             | 28 |
|          | 2.7    | Refere   | ences and further reading                           | 30 |
| 3        | Biosy  | nthesis  | of Antimicrobial Drugs                              | 31 |
|          | 3.1    | Introd   | -                                                   | 31 |
|          | 3.2    |          | otics derivable from amino acids                    | 35 |
|          | =      | 3.2.1    | D-Cycloserine (oxamycin)                            | 35 |
|          |        | 3.2.2    | Chloramphenicol                                     | 36 |

| CONTENTS |
|----------|
|----------|

|   |      | 3.2.3    | The penicillins and cephalosporins                | 37       |
|---|------|----------|---------------------------------------------------|----------|
|   |      | 3.2.4    | Gramicidin S                                      | 39       |
|   | 3.3  | Antibi   | otics derivable from sugars                       | 43       |
|   | 3.4  | Antibi   | otics derivable from purines and pyrimidines      | 43       |
|   | 3.5  | Antibi   | otics derivable from acetate and propionate       | 47       |
|   |      | 3.5.1    | Tetracyclines                                     | 48       |
|   |      | 3.5.2    | Griseofulvin                                      | 50       |
|   |      |          | Erythromycin                                      | 51       |
|   |      | 3.5.4    | Amphotericin B                                    | 52       |
|   | 3.6  | Refere   | nces and further reading                          | 54       |
| 4 | Mech | anisms o | of drug resistance                                | 55       |
|   | 4.1  | Geneti   | ic mechanisms                                     | 55       |
|   |      | 4.1.1    | Nature of resistance                              | 55       |
|   |      | 4.1.2    | Mechanisms of gene transfer                       | 55       |
|   |      |          | (a) Transformation                                | 56       |
|   |      |          | (b) Transduction                                  | 56       |
|   |      |          | (c) Conjugation                                   | 56       |
|   |      | 4.1.3    | Conjugation and R-factors                         | 57       |
|   |      |          | (a) The resistance transfer factor (RTF)          | 57       |
|   |      |          | (b) The resistance genes                          | 59       |
|   |      |          | (c) The conjugation process                       | 59       |
|   |      | 4.1.4    | The origin of R-factors                           | 59       |
|   |      | 4.1.5    | Clinical importance of conjugation                | 60       |
|   | 4.2  |          | emical resistance mechanisms occurring clinically | 61       |
|   |      | 4.2.1    | Chloramphenicol                                   | 62       |
|   |      | 4.2.2    |                                                   | 63       |
|   |      | 4.2.3    | -                                                 | 70       |
|   |      | 4.2.4    | •                                                 | 71       |
|   |      | 4.2.5    |                                                   | 73       |
|   |      | 4.2.6    |                                                   | 73       |
|   |      |          | Lincomycin                                        | 74       |
|   |      | 4.2.8    | Penicillins and cephalosporins                    | 74       |
|   | 4.3  |          | biochemical mechanisms                            | 76       |
|   |      | 4.3.1    | Decreased requirement for the product of a target | 76       |
|   |      |          | enzyme                                            | 76       |
|   |      | 4.3.2    |                                                   | 76       |
|   |      | 4.3.3    |                                                   | 77       |
|   |      | 4.3.4    | • •                                               | 78       |
|   |      | 4.3.5    |                                                   | 79<br>70 |
|   |      | 4.3.6    | 0                                                 | 79       |
|   |      | 4.3.7    | Exclusion of the drug from the target             | 80       |
|   | 4.4  | Refere   | ences and further reading                         | 80       |

| 5 | Drug                                               | Action  | in vivo—General Principles                     | 82  |
|---|----------------------------------------------------|---------|------------------------------------------------|-----|
|   | 5.1                                                | Absor   | ption                                          | 82  |
|   | 5.2                                                | Absor   | ption-quantitative aspects                     | 85  |
|   |                                                    | 5.2.1   | pH effects                                     | 85  |
|   |                                                    | 5.2.2   | Diffusion effects                              | 87  |
|   | 5.3                                                | Distrib | oution                                         | 87  |
|   |                                                    | 5 3.1   | Protein binding                                | 87  |
|   |                                                    | 5.3.2   | Tissue penetration                             | 89  |
|   |                                                    | 5.3.3   | The placental barrier                          | 89  |
|   |                                                    | 5.3.4   | The blood-brain barrier                        |     |
|   | 5.4                                                | Elimin  | ation and excretion                            | 91  |
|   |                                                    | 5.4.1   | Renal excretion                                | 91  |
|   |                                                    | 5.4.2   | Biliary excretion                              | 92  |
|   |                                                    | 5.4.3   | Other routes of excretion                      | 93  |
|   | 5.5                                                | Drug n  | netabolism                                     | 93  |
|   | 5.6 Metabolism and the duration of action of drugs |         |                                                | 100 |
|   |                                                    | 5.6.1   | An inactive drug is converted to an active one | 100 |
|   |                                                    | 5.6.2   | Active drugs have their activity modified      | 101 |
|   |                                                    | 5.6.3   | Active drugs are inactivated                   | 102 |
|   | 5.7                                                | Refere  | ences and further reading                      | 103 |

CONTENTS

ix

### PART 2 MECHANISMS OF ACTION

| 6 | Antil                         | oacterial Agents 1. Those Affecting Cell Wall Formation | 107                             |     |
|---|-------------------------------|---------------------------------------------------------|---------------------------------|-----|
|   | 6.1                           | Introduction                                            | 107                             |     |
|   | 6.2                           | Penicillins and cephalosporins                          | 110                             |     |
|   |                               | 6.2.1 Biosynthesis of the bacterial cell wall           | 110                             |     |
|   |                               | 6.2.2 Mode of action                                    | 117                             |     |
|   | 6.3                           | Oxamycin (D-cycloserine)                                | 123<br>124<br>127<br>128<br>129 |     |
|   |                               | 6.3.1 Mode of action                                    | 124                             |     |
|   | 6.4                           | Alaphosphin                                             | 127                             |     |
|   |                               | 6.4.1 Mode of action                                    | 128                             |     |
|   | 6.5                           | Bacitracin                                              | 129                             |     |
|   |                               | 6.5.1 Mode of action                                    | 129                             |     |
|   | 6.6 Vancomycin and ristocetin |                                                         | 131                             |     |
|   |                               | 6.6.1 Mode of action                                    | 132                             |     |
|   | 6.7 Fosfomycin                |                                                         | Fosfomycin                      | 133 |
|   |                               | 6.7.1 Mode of action                                    | 133                             |     |
|   | 6.8                           | References and further reading                          | 135                             |     |
| 7 | Antil                         | pacterial Agents 2. Those Affecting Membrane Function   | 137                             |     |
| · | 7.1                           | Introduction                                            | 137                             |     |

| CONTENTS |
|----------|
|----------|

|   | 7.2   | Antiba    | cterial agents which disorganise membrane structure                          | 140        |
|---|-------|-----------|------------------------------------------------------------------------------|------------|
|   |       | 7.2.1     | Tyrocidin and gramicidin S                                                   | 140        |
|   |       | 7.2.2     | Polyene antibiotics                                                          | 141        |
|   |       | 7.2.3     | Polymixins and octapeptins                                                   | 142        |
|   | 7.3   | Antiba    | cterial agents which alter membrane permeability                             | 145        |
|   |       | 7.3.1     | The gramicidins                                                              | 145        |
|   |       | 7.3.2     | Valinomycin and enniatin                                                     | 146        |
|   |       | 7.3.3     | Nonactin and the macrotetralides                                             | 148        |
|   |       | 7.3.4     |                                                                              | 150        |
|   |       | 7.3.5     | Alamethicin                                                                  | 152        |
|   |       | 7.3.6     | Ionophore transport mechanisms                                               | 153        |
|   | 7.4   |           | affecting membrane enzyme systems                                            | 154        |
|   | 7.5   | Refere    | nces and further reading                                                     | 156        |
| 8 |       |           | Agents 3. Those Affecting Nucleic Acid Function                              | 158        |
|   | 8.1   | Introd    |                                                                              | 158        |
|   | 8.2   | -         | which bind to DNA                                                            | 159        |
|   |       | 8.2.1     | Intercalating drugs                                                          | 159        |
|   |       |           | (a) Proflavin and ethidium                                                   | 161        |
|   |       |           | (b) Actinomycin D                                                            | 165        |
|   |       |           | (c) Actinomycin and protein synthesis                                        | 171        |
|   |       |           | (d) Other intercalators                                                      | 173        |
|   |       | 8.2.2     | Drugs which cross-link DNA                                                   | 175        |
|   |       | 8.2.3     | Drugs which cause strand breaks in DNA                                       | 175        |
|   |       |           | (a) Neocarzinostatin                                                         | 175        |
|   |       |           | (b) Bleomycin                                                                | 178        |
|   |       |           | (c) Phleomycins<br>(d) Strontoninin                                          | 182        |
|   |       | 8.2.4     | (d) Streptonigrin<br>Other drugs which kind to DNA                           | 182<br>182 |
|   |       | 0.2.4     | Other drugs which bind to DNA<br>(a) Chromomycin, mithramycin and olivomycin | 182        |
|   |       |           | (b) Anthramycin                                                              | 185        |
|   |       |           | (c) Kanchanomycin                                                            | 184        |
|   |       |           | (d) Luteoskyrin                                                              | 184        |
|   | 8.3   | Agents    | s that inhibit DNA replication and transcription enzymes                     | 185        |
|   | 0.0   | 8.3.1     | Drugs which inhibit RNA polymerase                                           | 185        |
|   |       | 01011     | (a) Rifampicin                                                               | 185        |
|   |       | 8.3.2     | Drugs which inhibit DNA polymerase                                           | 188        |
|   |       |           | (a) Arylhyrazinopyrimidines                                                  | 189        |
|   |       |           | (b) Novobiocin                                                               | 189        |
|   |       |           | (c) The edeines                                                              | 190        |
|   | 8.4   | Refere    | ences and further reading                                                    | 191        |
| 9 | Antil | bacterial | Agents 4. Those Affecting Protein Synthesis                                  | 193        |
|   | 9.1   |           | uction                                                                       | 193        |
|   | 9.2   | Protein   | n synthesis                                                                  | 194        |

|            | CONTENTS                                               | xi  |
|------------|--------------------------------------------------------|-----|
| 9.3        | Puromycin                                              | 197 |
| 9.3<br>9.4 | Inhibitors of the 50 S ribosomal subunit               | 200 |
| 7.4        | 9.4.1 Chloramphenicol                                  | 200 |
|            | 9.4.2 Effect of chloramphenicol in eukaryotic cells    | 200 |
|            | 9.4.3 Erythromycin                                     | 202 |
|            | 9.4.4 Lincomycin and clindamycin                       | 203 |
|            | 9.4.5 Fusidic acid                                     | 203 |
| 9.5        | Inhibitors of the 30 S ribosomal subunit               | 205 |
|            | 9.5.1 The tetracyclines                                | 205 |
|            | 9.5.2 Spectinomycin                                    | 207 |
|            | 9.5.3 Streptomycin and the aminoglycoside antibiotics  | 207 |
|            | 9.5.4 Streptomycin resistance                          | 211 |
|            | 9.5.5 Other aminoglycosides                            | 212 |
|            | 9.5.6 Side effects of aminoglycosides                  | 213 |
| 9.6        | References and further reading                         | 214 |
| 10 Antib   | acterial Agents 5. Antimetabolites and Synthetic Drugs | 217 |
|            | Introduction                                           | 217 |
|            | Arsenical drugs                                        | 219 |
|            | 10.2.1 Mode of action                                  | 219 |
| 10.3       | The sulphonamides                                      | 220 |
|            | 10.3.1 Mode of action                                  | 222 |
| 10.4       | Sulphone drugs                                         | 224 |
| 10.5       | Antifolate drugs                                       | 225 |
|            | 10.5.1 Mode of action                                  | 227 |
| 10.6       | Antitubercular drugs                                   | 229 |
| 10.7       | Nitrofuran                                             | 231 |
|            | 10.7.1 Mode of action                                  | 233 |
| 10.8       | Nitroimidazole                                         | 235 |
|            | 10.8.1 Mode of action in micro-organisms               | 238 |
|            | 10.8.2 Mode of action as radiosensitisers              | 241 |
| 10.9       | Miscellaneous synthetic drugs                          | 243 |
|            | 10.9.1 Mode of action                                  | 244 |
| 10.10      | References and further reading                         | 245 |
| 11 Antif   | ungal Agents                                           | 248 |
| 11.1       | Introduction                                           | 248 |
| 11.2       | Polyene antibiotics                                    | 248 |
|            | 11.2.1 Mode of action of polyenes                      | 251 |
| 11.3       | Griseofulvin                                           | 254 |
|            | 11.3.1 Mode of action of griseofulvin                  | 255 |
| 11.4       | 5-Fluorocytosine                                       | 256 |
|            | 11.4.1 Mode of action of 5-fluorocytosine              | 257 |
| 11.5       | Imidazole derivatives                                  | 258 |
|            | 11.5.1 Mode of action of imidazoles                    | 259 |

| 11.6     | Tolnaftate                                                     | 261 |
|----------|----------------------------------------------------------------|-----|
| 11.7     | Haloprigin                                                     | 261 |
| 11.8     | References and further reading                                 | 262 |
| 12 Antiv | iral Agents                                                    | 264 |
|          | Introduction                                                   | 264 |
| 12.1     | Replication of animal viruses                                  | 264 |
|          | 12.2.1 Adsorption, penetration and uncoating of DNA viruses    | 264 |
|          | 12.2.2 Transcription, translation and replication of viral DNA | 268 |
|          | 12.2.3 Transcription, translation and replication of viral RNA | 270 |
|          | 12.2.4 Assembly and release of viruses                         | 271 |
| 12.3     | Antiviral chemotherapy                                         | 272 |
|          | 12.3.1 Interferon                                              | 273 |
|          | (a) Interferon-its chemotherapeutic potential                  | 275 |
|          | (b) Interferon inducers                                        | 276 |
|          | (c) Mode of action of interferon                               | 277 |
|          | 12.3.2 Amantadine                                              | 279 |
|          | 12.3.3 Ribavirin (Virazole)                                    | 281 |
|          | (a) In vitro studies                                           | 281 |
|          | (b) In vivo studies                                            | 281 |
|          | (c) Mode of action                                             | 283 |
|          | 12.3.4 Idoxuridine                                             | 285 |
|          | (a) Mode of action                                             | 286 |
|          | 12.3.5 Methisazone                                             | 286 |
|          | (a) Mode of action                                             | 287 |
|          | 12.3.6 Cytosine arabinoside and adenine arabinoside            | 287 |
|          | (a) Mode of action                                             | 288 |
|          | 12.3.7 Acycloguanosine                                         | 290 |
|          | (a) Mode of action                                             | 290 |
|          | 12.3.8 Phosphonoacetic acid                                    | 291 |
|          | (a) Mode of action                                             | 291 |
| 12.4     | References and further reading                                 | 291 |
| 13 Cance | er and Anticancer Agents                                       | 295 |
| Α        | The origin of cancer                                           | 295 |
|          | 13.1 The immunological theory                                  | 295 |
|          | 13.2 The free radical theory                                   | 296 |
|          | 13.3 The virogene-oncogene theory                              | 298 |
| В        | The chemotherapy of cancer                                     | 301 |
|          | 13.4 Introduction                                              | 301 |
|          | 13.5 Mechanism of action of antineoplastic agents              | 305 |
|          | 13.5.1 Alkylating agents                                       | 305 |
|          | (a) The alkylation process                                     | 305 |
|          | (b) The cross-linking process                                  | 307 |
|          |                                                                |     |

|       | 13.5.2 | Antimetabolites                 | 309 |
|-------|--------|---------------------------------|-----|
|       |        | (a) Antifolates                 | 309 |
|       |        | (b) Antipurines                 | 311 |
|       |        | (c) Antipyrimidines             | 313 |
|       | 13.5.3 | Natural products                | 315 |
|       |        | (a) Antibiotics                 | 315 |
|       |        | (b) Alkaloids                   | 315 |
|       |        | (c) Enzymes                     | 316 |
|       |        | (d) Hormones                    | 316 |
|       | 13.5.4 | Miscellaneous compounds         | 317 |
|       |        | (a) Radiosensitisers            | 317 |
|       |        | (b) Other compounds             | 318 |
| 13.6  | New ap | proaches to cancer chemotherapy | 319 |
| 13.7  | ••     |                                 | 321 |
| Index |        |                                 | 323 |

xiii