PHYSICOCHEMICAL PRINCIPLES OF PHARMACY

PHYSICOCHEMICAL PRINCIPLES OF PHARMACY

A. T. FLORENCE

Department of Pharmacy University of Strathclyde

and

D. ATTWOOD

Department of Pharmacy University of Manchester

SECOND EDITION

© A. T. Florence and D. Attwood 1981, 1988

All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright Act 1956 (as amended), or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, 33-4 Alfred Place, London WC1 7DP.

Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

First edition 1981 Reprinted 1985, 1986 Second edition 1988

Published by THE MACMILLAN PRESS LTD Houndmills, Basingstoke, Hampshire RG21 2XS and London Companies and representatives throughout the world

Typeset by TecSet Ltd, Wallington, Surrey

ISBN 978-0-333-23405-1 ISBN 978-1-349-16558-2 (eBook) DOI 10.1007/978-1-349-16558-2

Contents

	eface to Second Edition eface to First Edition	xi xii
1	Gases and Volatile Agents	1
	1.1 Ideal and non-ideal gases	1
	1.2 Vapour pressure	3
	1.2.1 Vapour pressure and solution composition – Raoult's law1.2.2 Variation of vapour pressure with temperature –	3
	Clausius-Clapeyron equation	5
	1.2.3 Vapour pressure lowering	7
	1.3 Application of the gas laws in aerosol formulation	10
	1.4 Solubility of gases in liquids	12
	1.4.1 Effect of temperature on solubility	14
	1.4.2 Effect of pressure on solubility	14
	1.4.3 Solubility of volatile anaesthetics in oil	16 16
	1.5 The solubility of gases in blood and tissues1.5.1 The solubility of oxygen in the blood	10
	1.5.2 The solubility of anaesthetic gases in blood and tissues	18
	References	10
2	Properties of the Solid State	21
	2.1 Crystal form and polymorphism	21
	1.1 Crystalisation and factors affecting crystal form	24
	2.2.1 Solvates	26
	2.3 The extent of the problem of poymorphism	26
	2.4 Pharmaceutical implications of crystal habit modification	
	and solvate formation	30
	2.5 Relative stability of polymorphs and their bioavailability	30
	2.6 Dissolution of solid drugs	32
	2.7 Biopharmaceutical importance of particle size	33
	2.8 Wetting of powders	38 39
	2.8.1 Contact angle and wettability of solid surfaces2.8.2 Wettability of powders	39 40
	2.9 Solid dispersions	40
	2.9.1 Eutectics and drug identification	45
	References	46
3	Physicochemical Properties of Drugs in Solution	47
	3.1 Concentration units	47
	3.2 Activity and chemical potential	48
	3.2.1 Activity and standard states	48
	3.2.2 Activity of ionised drugs	49
	3.2.3 Solvent activity	52
	3.2.4 Chemical potential	53

vi	Contents
	coment

	3.3 Ost	motic properties of drug solutions	56
		Osmotic pressure	56
		Osmolality and osmolarity	58
	3.3.3	Clinical relevance of osmotic effects	59
	3.3.4	Preparation of isotonic solutions	61
	3.4 Ion	isation of drugs in solution	63
	3.4.1	Dissociation of weakly acidic and basic drugs and	
		their salts	64
	3.4.2	The effect of pH on the ionisation of weakly acidic	
		or basic drugs and their salts	65
	3.4.3	Ionisation of amphoteric electrolytes	70
	3.4.4	Ionisation of polyprotic drugs and microdissociation	
		constants	72
		Preparation of buffer solutions	73
		fusion of drugs in solution	77
	Referenc	es	80
	<i>c</i> 1 · 1		81
4	Chemical	Stability of Drugs	81
	4.1 The	e chemical decomposition of drugs	81
	4.1.1	Hydrolysis	81
	4.1.2	Oxidation	83
	4.1.3	Isomerisation	85
		Photochemical decomposition	87
		Polymerisation	88
		netics of chemical decomposition in solution	89
		Order of reaction	89
		Zero-order reactions	90
		First-order reactions	91
		Second-order reactions	93
	4.2.5	Third-order reactions	94
		Determination of the order of reaction	95
		Complex reactions	96
		netics of chemical decomposition in solid dosage forms	100 103
		ctors affecting the rate of chemical decomposition	105
		Liquid dosage forms Semisolid dosage forms	105
		Solid dosage forms	115
		bility testing of drugs	115
		Effect of temperature on stability	119
		Other factors affecting stability	120
	Referenc		120
	Reference		127
5	Solubility	y and Partitioning of Drugs	131
	5.1 Ex	pressions of solubility	131
		diction of solubility	132
	5.2.1		132
	5.2.2	Structural features of simple molecules and aqueous	
		solubility	133

Contents	vii
----------	-----

5.3 Hydration and solvation	137
5.3.1 Hydration of non-electrolytes	137
5.3.2 Hydration of ionic species	138
	138
5.3.3 Hydrophobic hydration	
5.4 The solubility of inorganic materials in water	139
5.5 Solubility products	140
5.6 The effect of additives on solubility: the solubility coefficient5.7 Solubility of weak electrolytes	140
5.7 Solubility of weak electrolytes	141
5.7.1 Acidic drugs	141
5.7.2 Basic drugs	142
5.7.3 Amphoteric drugs	142
5.7.4 Calculations	146
5.8 Determination of solubility of organic electrolytes in aqueous	140
solution	140
	149
5.9 The solubility parameter	151
5.9.1 Solubility parameters and biological processes	152
5.10 Solubility in mixed solvents	152
5.11 Problems in formulation	154
5.11.1 Mixtures of acidic and basic compounds	154
5.11.2 Choice of drug salt	154
5.12 Drug solubility and biological activity	157
5.13 Partitioning phenomena	158
5.13.1 Partitioning of weak electrolytes	160
5.13.2 Biological activity and partition coefficient –	100
thermodynamic activity and Ferguson's principle	162
5.14 Uses of log P	162
References and bibliography	171
Surfactants	173
6.1 Amphipathic compounds	173
6.2 Surface and interfacial properties of surfactants	174
6.2.1 Effects of amphiphiles on surface and interfacial tension	174
6.2.2 Gibbs adsorption equation	175
6.2.3 Application of the Gibbs equation to surfactant solutions	178
6.2.4 Surface activity of drugs	180
6.2.5 Insoluble monolayers	180
6.2.6 Pharmaceutical applications of surface film studies	186
6.2.7 Adsorption at the solid-liquid interface	189
6.3 Micellisation	199
6.3.1 Water structure and hydrophobic bonding	200
6.3.2 Theories of micelle formation	203
	205
6.3.3 Micellar structure	205
6.3.4 Factors affecting the critical micelle concentration and	
micellar size	206
6.4 Liquid crystals and surfactant vesicles	209
6.5 Properties of some commonly used surfactants	214
6.5.1 Anionic surfactants	214
6.5.2 Cationic surfactants	214

	6.5.3 Non-ionic surfactants	215
	6.6 Solubilisation	218
	6.6.1 Determination of maximum additive concentration	218
	6.6.2 Location of the solubilisate	219
	6.6.3 Factors affecting solubilisation	221
	6.6.4 Pharmaceutical applications of solubilisation	224
	References	225
7	Disperse Systems	229
	7.1 Classification of colloidal systems	230
	7.2 Colloid stability	230
	7.3 Emulsions	239
	7.3.1 Stability of emulsions	239
	7.3.2 HLB system	239
	7.3.3 Multiple emulsions	244
	7.3.4 Microemulsions	246
	7.3.5 Structured emulsions	246
	7.3.6 Biopharmaceutical aspects of emulsion systems7.3.7 Preservative availability in emulsified systems	248
	7.3.7 Preservative availability in emulsified systems	249
	7.3.8 Mass transport in oil-in-water emulsions	251
	7.3.9 Intravenous fat emulsions	253
	7.3.10 The rheological characteristics of emulsions	253
	7.5 Pharmaceutical suspensions 7.5.1 Settling of suspended particles	256 256
	7.5.2 Suspension stability	250
	7.5.2 Suspension statisty 7.5.3 Extemporaneous suspensions	264
	7.5.4 Rheology of suspensions of solid particles	264
	7.5.5 Non-aqueous suspensions	264
	7.5.6 Adhesion of suspension particles to containers	266
	7.6 Application of colloid theory to other systems	269
	7.6.1 Cell-cell interactions	269
	7.6.2 Sorption of microbial cells on surfaces	271
	7.6.3 Blood as a colloidal system	272
	7.7 Foams	275
	7.7.1 Foams: clinical considerations	276
	References	278
8	Polymers and Macromolecules	281
	8.1 Water-soluble polymers	285
	8.2 General properties of polymer solutions	286
	8.2.1 Viscosity	286
	8.2.2 Gelling tendency	289
	8.2.3 Heterogels	291
	8.2.4 Syneresis	292
	8.2.5 Macromolecular complexation	292
	8.2.6 Binding of ions to macromolecules	294
	8.2.7 Interaction of polymers with solvents including water	295
	8.2.8 Adsorption of macromolecules	297

8.3 De	tails of some water-soluble polymers used in	
	armacy and medicine	299
	Carboxypolymethylene (Carbomer, Carbopol)	299
	Cellulose derivatives	300
	Natural gums and mucilages	303
8.3.4	Dextran	306
8.3.5	Polyvinylpyrrolidone	307
8.3.0	Polyoxyethylene glycols (Macrogols) Silicones	309
		310
	Polymers used as wound dressings	311 311
8.3.9		311
	ter-insoluble polymers and polymer membranes Permeability of polymers	312
8.4.1	Ion-exchange resins	312
	me applications of polymeric systems in drug delivery	319
	Release of drugs from matrices	323
	Microencapsulation	323
	Rate-limiting membranes and devices	329
Reference	-	333
Reference		
Drug Ab	sorption and Routes of Administration	335
9.1 Bi	ological membranes and drug transport	335
	Permeability and the pH-partition hypothesis	340
9.1.2	Problems in the quantitative application of the	
	pH-partition hypothesis	342
	ne oral route	348
9.2.1	Drug absorption from the gastro-intestinal tract	348
9.2.2	Structural principles of the gastro-intestinal tract	349
	Bile salts and fat absorption pathways	351
	Gastric emptying, motility and volume of contents	353
	rmeability of the oral mucosa; buccal and sublingual	254
	sorption	354 355
9.3.1		333
	bsorption of drugs from intramuscular and subcutaneous	357
	jections	364
	ppical preparations Routes of penetration	366
	Influence of drug	367
	Influence of vehicle	369
	Dilution of topical steroid preparations	374
9.5.5		376
	edication of the eye	378
	The eye	379
	Absorption of drugs applied to the eye	380
	Influence of formulation	381
9.6.4		385
	ne ear	386
	bsorption from the vagina	386
	halation therapy	387

Contents

ix

	9.9.1 Physical factors affecting deposition of aerosols9.9.2 Experimental observations	388 390
	9.9.3 Analysis of particle size distribution in aerosols	396
	9.10 The intranasal route	397
	9.11 Rectal absorption of drugs	399
	References	404
10	Drug Interactions and Incompatibilities – A Physicochemical View	407
	10.1 pH effects in vitro and in vivo	408
	10.1.1 In vitro	408
	10.1.2 In vivo	409
	10.2 Effects of dilution of mixed solvent systems	416
	10.3 Cation-anion interactions	416
	10.4 Simple electrolytes and their effect on drug solutions	420
	10.5 Chelation and other forms of complexation	420
	10.6 Other complexes	427
	10.6.1 Interaction of drugs with β -cyclodextrin	428
	10.6.2 Ion-exchange interactions	429
	10.7 Adsorption of drugs	432
	10.8 Drug interactions with plastics	436
	10.9 Protein binding	438
	Appendix – Drug interactions based on physical mechanisms	446
	References	452
11	Assessment of Dosage Forms in vitro	455
	11.1 Dissolution testing of dosage forms	455
	11.2 In vitro evaluation of suppository formulations	460
	11.3 In vitro release from transdermal systems	461
	11.4 Rheological characteristics of products	463
	11.5 Adhesivity of dosage forms	464
	References	469
Ind	'ex	471

Preface to Second Edition

The text of the first edition has been updated and new material added, but we have endeavoured to make the book no longer than before. Some material has been discarded and some of the sections rearranged to provide a more coherent flow to the text. However, our aim has remained the same: to provide the physicochemical background to drug formulation and delivery. Some of the basic physical chemistry has been removed from the text, not because it has diminished in importance but perhaps because it gave an undue emphasis, for example to thermodynamics, which could not be justified in pharmaceutical applications. The purists might query this decision, but there are two defences. First, there is available an abundance of good straight physical chemistry textbooks. Second, there is a limit to the depth and rigour of the basic sciences to which pharmacy undergraduates can be exposed, without deflecting them from the main goal, namely applying their knowledge to pharmacy.

> A. T. Florence Glasgow

> > D. Attwood Manchester

Preface to First Edition

This book sets out to provide the physicochemical background to the design and use of pharmaceutical products. It does not cover processing technology as such as this is dealt with adequately elsewhere. Rather an attempt is made to relate the physical chemistry of the drug or drug system to clinical usage. The book deals with the basic situations encountered in the progress of a drug from the dosage form to its site of action and how this can be controlled. Adhesion, deaggregation, solution, rates of solution, stability, diffusion, partition, aggregation, ionisation, interaction with water, and interaction with other molecules are topics which have been tackled. The special problems of the various routes of administration of particular dosage forms are considered from a physicochemical viewpoint, bearing in mind the physiological constraints. Where relevant, the physical chemistry of adjuvant substances such as surface active agents and polymers has been included as these substances are becoming more widely used to effect changes in the extent or duration of drug activity; often the basic mechanism of their effect is a physical and not a biological one.

Above all, however, an effort is made to unite the physical and biological aspects of pharmaceutics. Students sometimes forget that the same forces operate in inanimate and animate systems and early on in their training cannot see the relevance of the physical chemistry that is taught. It is hoped that this book will go some way towards bridging the gap between the fundamental and applied aspects of physical chemistry, pharmaceutical chemistry and biopharmaceutics. It does not purport to be a complete physical chemistry textbook but should be useful as a textbook which follows on from the standard physical chemistry texts, for use in all years of the undergraduate course. As it is aimed at undergraduates the reference lists at the end of each chapter have been kept to a minimum size. It has frequently been difficult to decide which facts to reference and which not to, but we feel that our approach has been correct. We hope that the book will be of use to undergraduate students of pharmacy and other life sciences and to postgraduate students and practising pharmacists wishing to refresh their memories.

We would be pleased to hear from readers of any errors in our treatment of subjects. It has not been possible to acknowledge by citation of references the contribution of many pharmaceutical scientists who have made this book possible but we nevertheless would have found it impossible to write without recourse to the literature. This is, indeed, one of the reasons why we felt the book was necessary — undergraduate students in pharmacy have had to rely too much on seeking out facts in the original literature. Perhaps this book will ease the way somewhat.

A. T. Florence Glasgow D. Attwood

Manchester