PLASMA

THE FOURTH STATE OF MATTER

PLASMA

THE FOURTH STATE OF MATTER

D. A. Frank-Kamenetskii

Kurchatov Institute of Atomic Energy Academy of Sciences of the USSR, Moscow

Translated from Russian by Joseph Norwood, Jr. Assistant Professor of Physics University of Miami, Coral Gables, Florida

MACMILLAN EDUCATION

The original Russian text was published by Atomizdat in Moscow in 1968. The English translation is published under an agreement with Mezhdunarodnaya Kniga, the Soviet book export agency.

Давид Альбертович Франк-Каменецкий

ПЛАЗМА: ЧЕТВЕРТОЕ СОСТОЯНИЕ ВЕЩЕСТВА PLAZMA: CHETVERTOE SOSTOYANIE VESHCHESTVA

© 1972 Plenum Press, New York Softcover reprint of the hardcover 1st edition 1972

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without written permission from the publisher.

Published 1972 by
The MACMILLAN PRESS, LTD.
London and Basingstoke
Associated Companies in
New York Melbourne
Toronto Dublin Johannesburg
and Madras

SBN 333 136764

ISBN 978-1-349-01554-2 ISBN 978-1-349-01552-8 (eBook) DOI 10.1007/978-1-349-01552-8

Foreword

The idea for this book originated with the late Igor Vasil'evich Kurchatov. He suggested to the author the need for a comprehensive presentation of the fundamental ideas of plasma physics without complicated mathematics. This task has not been an easy one. In order to clarify the physical nature of plasma phenomena without recourse to intricate mathematical expressions it is necessary to think problems through very carefully. Thus, the book did not come into being by inspiration, but required a considerable effort.

The aim of the book is to provide a beginning reader with an elementary knowledge of plasma physics. The book is primarily written for engineers and technicians; however, we have also tried to make it intelligible to the reader whose knowledge of physics is at the advanced-freshman level. To understand the book it is also necessary to have a working knowledge of electricity and magnetism of the kind available in present-day programs in junior colleges.

This book is not intended for light reading. It is designed for the reader for whom plasma physics will be a continuing interest. We have confidence that such a reader will want to broaden his knowledge by consulting more specialized literature. Thus, we not only include simple expressions but also special important terms.

Every scientific discipline has its own language. Before undertaking a journey we must acquire a knowledge not only of

vi FOREWORD

the geography, but also of the language of the country we intend to visit. It is equally important in the journey to new regions of knowledge that some familiarity with its special language be acquired. Thus, every new term is emphasized (by expansion) when it first appears.

In the American edition of this book we will use the rationalized MKS system of units, which has become increasingly popular in science and engineering in recent years.

The physics of plasmas is a field in which knowledge is expanding rapidly. The size of this book does not allow us to cover everything we should. To mention the work of only some of the workers in this field would be an injustice to the others. Thus, we have decided not to give references or names, except where the names appear in scientific terminology.

The growing science of plasmas excites lively interest in many people with various levels of training. We hope, therefore, that the book will be useful to a broad range of readers.

The author expresses his thanks to friends and colleagues such as S. I. Braginskii, A. A. Vedenov, E. P. Velikhov, V. P. Demidov, E. K. Zavoiskii, B. B. Kadomtsev, I. A. Kovan, V. I. Kogan, M. A. Leontovich, V. I. Patrushev, L. I. Rudakov, V. D. Rusanov, R. Z. Sagdeev, and V. D. Shafranov for their constant interest and many discussions covering the entire range of plasma physics. T. D. Kuznetsov gave invaluable help with the illustrations.

Contents

Introduction	1
Production of a Plasma	8
Plasma Diagnostics	11
Quasi Neutrality and Charge Separation	18
Polarization of a Plasma	22
Gas Discharges	24
Plasma Thermodynamics	25
Elementary Processes	35
Plasmas and Radiation	36
Equilibrium and the Stationary Ionization States	40
Plasmas as Conducting Fluids	44
Field Diffusion and Plasma Diffusion	50
Applications of the Conducting-Fluid Model	51
Toroidal Plasma Traps	53
Electromagnetic Pumping and Plasma Acceleration	55
Magnetohydrodynamic Flow	57
The Two-Fluid Model	59
Plasma Conductivity in a Magnetic Field	64
Plasma as an Ensemble of Independent Particles	66
Drift Motion	68
Electric Drift	71
Conservation of Magnetic Moment	74
The Adiabatic Traps	75
Drift in an Inhomogeneous Field	79
Polarization Drift	83
Rotating Plasmas	85

viii CONTENTS

The Magnetization Current	86
The Quasi-hydrodynamic Approximation	89
Hydromagnetic Plasma Instabilities	91
Pinch Instability	95
Stabilization by Frozen-in Magnetic Fields	96
Interchange or Flute Instabilities	98
Diffusion of Opposed Fields	100
Oscillations and Waves in Plasmas	104
Electrostatic Plasma Oscillations	108
Electrostatic Oscillations with Ions	11 0
Plasma Oscillations in a Magnetic Field	113
Dispersion near the Cyclotron Frequency	116
Oblique Waves and General Classification of Oscillations	119
Propagation of Radio Waves through a Plasma	120
Plasma Resonators and Waveguides	126
Excitation and Damping of Oscillations	130
Shock Waves in Plasmas	134
Random Processes	135
The Drunkard's Walk	138
The Mean Free Path and the Collision Cross Section	139
Collisions with Neutral Particles	141
Coulomb Collisions	144
The Establishment of Thermal Equilibrium	1 48
Transport Processes in a Magnetic Field	1 50
Ambipolar Diffusion	152
A Recent Plasma Experiment	154
Index	157