Skip to main content

Cytochrome P450-Mediated Drug Bioactivation Assay: An Untargeted High Resolution Accurate Mass LC/MS Assay

  • Protocol
  • First Online:
Cytochrome P450

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1073 Accesses

Abstract

Glutathione trapping enables the detection and characterization of reactive metabolites which result from enzymatic bioactivation of compounds. Data obtained from this assay is used to estimate any potential bioactivation liabilities associated with drugs. This is useful in terms of guidance for design and safety assessment of discovery compounds. There are several reported variations of GSH trapping assays, each with their own unique advantages and disadvantages. Here, we describe a simplified reactive metabolite screening assay optimized for semi-high throughput analysis of drug discovery candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan Z et al (2005) Rapid detection and characterization of minor reactive metabolites using stable-isotope trapping in combination with tandem mass spectrometry. Rapid Commun Mass Spectrom 19(22):3322–3330

    Article  CAS  Google Scholar 

  2. Schadt S et al (2015) Minimizing DILI risk in drug discovery: a screening tool for drug candidates. Toxicol In Vitro 30(1 Pt B):429–437

    Article  CAS  Google Scholar 

  3. Chen M, Borlak J, Tong W (2016) A model to predict severity of drug-induced liver injury in humans. Hepatology 64(3):931–940

    Article  CAS  Google Scholar 

  4. Evans DC et al (2004) Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 17(1):3–16

    Article  CAS  Google Scholar 

  5. Yu LJ et al (2005) Identification of a novel glutathione adduct of diclofenac, 4′-hydroxy-2′-glutathion-deschloro-diclofenac, upon incubation with human liver microsomes. Drug Metab Dispos 33(4):484–488

    Article  CAS  Google Scholar 

  6. Raney KD et al (1992) Glutathione conjugation of aflatoxin B1 exo- and endo-epoxides by rat and human glutathione S-transferases. Chem Res Toxicol 5(4):470–478

    Article  CAS  Google Scholar 

  7. Thompson CD, Kinter MT, Macdonald TL (1996) Synthesis and in vitro reactivity of 3-carbamoyl-2-phenylpropionaldehyde and 2-phenylpropenal: putative reactive metabolites of felbamate. Chem Res Toxicol 9(8):1225–1229

    Article  CAS  Google Scholar 

  8. Orhan H (2015) Extrahepatic targets and cellular reactivity of drug metabolites. Curr Med Chem 22(4):408–437

    Article  CAS  Google Scholar 

  9. Godinho ALA et al (2018) High resolution mass spectrometry-based methodologies for identification of Etravirine bioactivation to reactive metabolites: in vitro and in vivo approaches. Eur J Pharm Sci 119:70–82

    Article  CAS  Google Scholar 

  10. Baillie TA, Davis MR (1993) Mass spectrometry in the analysis of glutathione conjugates. Biol Mass Spectrom 22(6):319–325

    Article  CAS  Google Scholar 

  11. Yan Z, Caldwell GW (2004) Stable-isotope trapping and high-throughput screenings of reactive metabolites using the isotope MS signature. Anal Chem 76(23):6835–6847

    Article  CAS  Google Scholar 

  12. Xie C, Zhong D, Chen X (2013) A fragmentation-based method for the differentiation of glutathione conjugates by high-resolution mass spectrometry with electrospray ionization. Anal Chim Acta 788:89–98

    Article  CAS  Google Scholar 

  13. Zheng J et al (2007) Screening and identification of GSH-trapped reactive metabolites using hybrid triple quadruple linear ion trap mass spectrometry. Chem Res Toxicol 20(5):757–766

    Article  CAS  Google Scholar 

  14. Kalgutkar AS (2017) Liabilities associated with the formation of “Hard” electrophiles in reactive metabolite trapping screens. Chem Res Toxicol 30(1):220–238

    Article  CAS  Google Scholar 

  15. Zhang KE et al (1996) Microsomal metabolism of the 5-lipoxygenase inhibitor L-739,010: evidence for furan bioactivation. Chem Res Toxicol 9(2):547–554

    Article  CAS  Google Scholar 

  16. Gorrod JW, Aislaitner G (1994) The metabolism of alicyclic amines to reactive iminium ion intermediates. Eur J Drug Metab Pharmacokinet 19(3):209–217

    Article  CAS  Google Scholar 

  17. Gan J et al (2005) Dansyl glutathione as a trapping agent for the quantitative estimation and identification of reactive metabolites. Chem Res Toxicol 18(5):896–903

    Article  CAS  Google Scholar 

  18. Takakusa H et al (2009) Quantitative assessment of reactive metabolite formation using 35S-labeled glutathione. Drug Metab Pharmacokinet 24(1):100–107

    Article  CAS  Google Scholar 

  19. Brink A et al (2014) Post-acquisition analysis of untargeted accurate mass quadrupole time-of-flight MSE data for multiple collision-induced neutral losses and fragment ions of glutathione conjugates. Rapid Commun Mass Spectrom 28(24):2695–2703

    Article  CAS  Google Scholar 

  20. Bojic M et al (2014) Time- and NADPH-dependent inhibition of cytochrome P450 3A4 by the cyclopentapeptide cilengitide: significance of the guanidine group and accompanying spectral changes. Drug Metab Dispos 42(9):1438–1446

    Article  Google Scholar 

  21. Ma S, Subramanian R (2006) Detecting and characterizing reactive metabolites by liquid chromatography/tandem mass spectrometry. J Mass Spectrom 41(9):1121–1139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Johnson, K.M. (2021). Cytochrome P450-Mediated Drug Bioactivation Assay: An Untargeted High Resolution Accurate Mass LC/MS Assay. In: Yan, Z., Caldwell, G.W. (eds) Cytochrome P450. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1542-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1542-3_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1541-6

  • Online ISBN: 978-1-0716-1542-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics