Skip to main content

Analyzing the Effect of Strigolactones on the Motility Behavior of Rhizobia

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2309))

Abstract

In the Rhizobium–legume symbiosis, strigolactones (SLs) promote root nodule formation; however, the exact mechanism underlying this positive effect remains unknown. The recent finding that an SL receptor legume mutant shows a wild-type nodulation phenotype suggests that SLs influence the symbiosis by acting on the bacterial partner. In agreement with this, the application of the synthetic SL analog GR24 on the alfalfa symbiont Sinorhizobium (Ensifer) meliloti has been shown to stimulate swarming, a specialized bacterial surface motility, which could influence infection of legumes by Rhizobia. Surface motility assays for many bacteria, and particularly for Rhizobia, are challenging. The establishment of protocols to study bacterial surface motility is key to decipher the role of SLs as rhizosphere cues for rhizobacteria. In this chapter, we describe a set of protocols implemented to study the different types of motility exhibited by S. meliloti.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Poole P, Ramachandran V, Terpolilli J (2018) Rhizobia: from saprophytes to endosymbionts. Nat Rev Microbiol 16(5):291–303

    Article  CAS  Google Scholar 

  2. Ames P, Bergman K (1981) Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J Bacteriol 148(2):728–908

    Article  CAS  Google Scholar 

  3. Mellor HY, Glenn GA, Arwas R (1987) Symbiotic and competitive properties of motility mutants of Rhizobium trifolii TA1. Arch Microbiol 148:34–39

    Article  CAS  Google Scholar 

  4. Caetano-Anollés G, Wrobel-Boerner E, Bauer WD (1992) Growth and movement of spot inoculated Rhizobium meliloti on the root surface of alfalfa. Plant Physiol 98(3):1181–1189

    Article  Google Scholar 

  5. Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56(2):195–206

    Article  CAS  Google Scholar 

  6. Miller LD, Yost CK, Hynes MF, Alexandre G (2007) The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation. Mol Microbiol 63(2):348–362

    Article  CAS  Google Scholar 

  7. Bernabéu-Roda L, Calatrava-Morales N, Cuéllar V, Soto M (2015) Characterization of surface motility in Sinorhizobium meliloti: regulation and role in symbiosis. Symbiosis 67:79–90

    Article  Google Scholar 

  8. López-Ráez JA, Shirasu K, Foo E (2017) Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends Plant Sci 22(6):527–537

    Article  Google Scholar 

  9. Soto MJ, Fernández-Aparicio M, Castellanos-Morales V, García-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385

    Article  CAS  Google Scholar 

  10. Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234(5):1073–1081

    Article  CAS  Google Scholar 

  11. Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A, Ruyter-Spira C, Bonfante P, Lovisolo C, Bouwmeester HJ, Cardinale F (2013) Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. J Exp Bot 64:1967–1981

    Article  CAS  Google Scholar 

  12. De Cuyper C, Fromentin J, Yocgo RE, De Keyser A, Guillotin B, Kunert K, Boyer FD, Goormachtig S (2015) From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J Exp Bot 66(1):137–146

    Article  Google Scholar 

  13. McAdam EL, Hugill C, Fort S, Samain E, Cottaz S, Davies NW, Reid JB, Foo E (2017) Determining the site of action of strigolactones during nodulation. Plant Physiol 175(1):529–542

    Article  CAS  Google Scholar 

  14. Tambalo DD, Vanderlinde EM, Robinson S, Halmillawewa A, Hynes MF, Yost CK (2014) Legume seed exudates and Physcomitrella patens extracts influence swarming behavior in Rhizobium leguminosarum. Can J Microbiol 60(1):15–24

    Article  CAS  Google Scholar 

  15. Peláez-Vico MA, Bernabéu-Roda L, Kohlen W, Soto MJ, López-Ráez JA (2016) Strigolactones in the Rhizobium-legume symbiosis: stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants. Plant Sci 245:119–127

    Article  Google Scholar 

  16. Partridge JD, Harshey RM (2013) Swarming: flexible roaming plans. J Bacteriol 195(5):909–918

    Article  CAS  Google Scholar 

  17. Holscher T, Kovacs AT (2017) Sliding on the surface: bacterial spreading without an active motor. Environ Microbiol 19(7):2537–2545

    Article  Google Scholar 

  18. Mattingly AE, Weaver AA, Dimkovikj A, Shrout JD (2018) Assessing travel conditions: environmental and host influences on bacterial surface motility. J Bacteriol 200:e00014–e00018

    Article  CAS  Google Scholar 

  19. Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28(3):261–289

    Article  CAS  Google Scholar 

  20. Daniels R, Reynaert S, Hoekstra H, Verreth C, Janssens J, Braeken K, Fauvart M, Beullens S, Heusdens C, Lambrichts I, De Vos DE, Vanderleyden J, Vermant J, Michiels J (2006) Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci U S A 103(40):14965–14970

    Article  CAS  Google Scholar 

  21. Tambalo DD, Yost CK, Hynes MF (2010) Characterization of swarming motility in Rhizobium leguminosarum bv. viciae. FEMS Microbiol Lett 307(2):165–174

    Article  CAS  Google Scholar 

  22. Covelli JM, Althabegoiti MJ, López MF, Lodeiro AR (2013) Swarming motility in Bradyrhizobium japonicum. Res Microbiol 164(2):136–144

    Article  CAS  Google Scholar 

  23. Zheng H, Mao Y, Teng J, Zhu Q, Ling J, Zhong Z (2015) Flagellar-dependent motility in Mesorhizobium tianshanense is involved in the early stage of plant host interaction: study of an flgE mutant. Curr Microbiol 70(2):219–227

    Article  CAS  Google Scholar 

  24. Soto MJ, Fernández-Pascual M, Sanjuán J, Olivares J (2002) A fadD mutant of Sinorhizobium meliloti shows multicellular swarming migration and is impaired in nodulation efficiency on alfalfa roots. Mol Microbiol 43(2):371–382

    Article  CAS  Google Scholar 

  25. Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8(9):634–644

    Article  CAS  Google Scholar 

  26. Harshey RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273

    Article  CAS  Google Scholar 

  27. Nogales J, Domínguez-Ferreras A, Amaya-Gómez CV, van Dillewijn P, Cuéllar V, Sanjuán J, Olivares J, Soto MJ (2010) Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming. BMC Genomics 11(1):157

    Article  Google Scholar 

  28. Nogales J, Bernabéu-Roda L, Cuéllar V, Soto MJ (2012) ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti. J Bacteriol 194(8):2027

    Article  CAS  Google Scholar 

  29. Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM (2014) Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol 165(3):1221–1232

    Article  CAS  Google Scholar 

  30. Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  31. Sourjik V, Schmitt R (1996) Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol Microbiol 22(3):427–436

    Article  CAS  Google Scholar 

  32. Tremblay J, Deziel E (2008) Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays. J Basic Microbiol 48(6):509–515

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants PGC2018-096477-B-I00, RTI2018-094350-B-C31 and AGL2017-88-083-R from the Spanish National R&D Plan of the Ministry of Science, Innovation and Universities Economy and Competitiveness, and European Regional Development Funds (MCIU/AEI/FEDER, EU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María J. Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bernabéu-Roda, L.M., López-Ráez, J.A., Soto, M.J. (2021). Analyzing the Effect of Strigolactones on the Motility Behavior of Rhizobia. In: Prandi, C., Cardinale, F. (eds) Strigolactones. Methods in Molecular Biology, vol 2309. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1429-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1429-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1428-0

  • Online ISBN: 978-1-0716-1429-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics