Skip to main content

Isolation and Identification of Naturally Occurring Strigolactones

  • Protocol
  • First Online:
Strigolactones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2309))

Abstract

The accurate structure determination of strigolactones (SLs) that are produced by plants leads to the precise understanding of the biosynthesis and functions of their molecules. SLs need to be isolated and purified from the plant roots or root exudates in a hydroponic solution using appropriate methods in order to determine the structures. In this chapter, we describe a small-scale extraction method for chromatographic analysis of known SLs and a large-scale purification method for isolation of unknown SLs, together with methods for the hydroponic culture of plants and collection of root exudates. Finally, we present spectroscopic data that are helpful in identifying SLs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    Article  CAS  Google Scholar 

  2. Wang Y, Bouwmeester HJ (2018) Structural diversity in the strigolactones. J Exp Bot 69:2219–2230

    Article  CAS  Google Scholar 

  3. Yoneyama K, Xie X, Yoneyama K et al (2018) Which are the major players, canonical or non-canonical strigolactones? J Exp Bot 69:2231–2239

    Article  CAS  Google Scholar 

  4. Xie X (2016) Structural diversity of strigolactones and their distribution in the plant kingdom. J Pestic Sci 41:175–180

    Article  CAS  Google Scholar 

  5. Ćavar S, Zwanenburg B, Tarkowski P (2015) Strigolactones: occurrence, structure, and biological activity in the rhizosphere. Phytochem Rev 14:691–711

    Article  Google Scholar 

  6. Ueno K, Nakashima H, Mizutani M et al (2018) Bioconversion of 5-deoxystrigol stereoisomers to monohydroxylated strigolactones by plants. J Pestic Sci 43:198–206

    Article  CAS  Google Scholar 

  7. Motonami N, Ueno K, Nakashima H et al (2013) The bioconversion of 5-deoxystrigol to sorgomol by the sorghum, Sorghum bicolor (L.) Moench. Phytochemistry 93:41–48

    Article  CAS  Google Scholar 

  8. Sato D, Awad AA, Takeuchi Y et al (2005) Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Biosci Biotechnol Biochem 69:98–102

    Article  CAS  Google Scholar 

  9. Yoneyama K, Yoneyama K, Takeuchi Y et al (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038

    Article  CAS  Google Scholar 

  10. Akiyama K, Ogasawara S, Ito S et al (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51:1104–1117

    Article  CAS  Google Scholar 

  11. Sugimoto Y, Ueyama T (2008) Production of (+)-5-deoxystrigol by Lotus japonicus root culture. Phytochemistry 69:212–217

    Article  CAS  Google Scholar 

  12. Ueno K, Furumoto T, Umeda S et al (2014) Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry 108:122–128

    Article  CAS  Google Scholar 

  13. Ueno K, Nomura S, Muranaka S et al (2011) Ent-2′-epi-orobanchol and its acetate, as germination stimulants for Striga gesinerioides seeds isolated from cowpea and red clover. J Agric Food Chem 59:10485–10490

    Article  CAS  Google Scholar 

  14. Abe S, Sado A, Tanaka K et al (2014) Carlactone is converted to carlactonic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci U S A 11:18084–18089

    Article  Google Scholar 

  15. Xie X, Kisugi T, Yoneyama K et al (2017) Methyl zealactonoate, a novel germination stimulant for root parasitic weeds produced by maize. J Pestic Sci 42:58–61

    Article  CAS  Google Scholar 

  16. Ueno K, Sugimoto Y, Zwanenburg B (2015) The genuine structure of alectrol: end of a long controversy. Phytochem Rev 14:835–847

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Sugimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ueno, K., Wakabayashi, T., Sugimoto, Y. (2021). Isolation and Identification of Naturally Occurring Strigolactones. In: Prandi, C., Cardinale, F. (eds) Strigolactones. Methods in Molecular Biology, vol 2309. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1429-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1429-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1428-0

  • Online ISBN: 978-1-0716-1429-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics