Skip to main content

The Use of Differential Scanning Fluorimetry to Assess Strigolactone Receptor Function

  • Protocol
  • First Online:
Strigolactones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2309))

  • 949 Accesses

Abstract

Differential scanning fluorimetry (DSF) is a method used for assessing the interaction of ligands with proteins. In most cases binding of a ligand to proteins tends to increase the melting temperature (Tm) of the protein involved. However, in the case of strigolactone receptors (e.g., D14, AtD14, DAD2, RMS3) from plants, the Tm tends to be reduced in the presence of strigolactones. This is likely due to increased flexibility of the receptors in the presence of hormone ligands.

DSF experiments are simple, fast, amenable to high-throughput formats, and cost effective. They have therefore gained in popularity, including within the field of SL signaling. Typically in DSF the receptor protein is purified and incubated with the ligand (strigolactone, agonist, or antagonist) and a (fluorescent) reporter dye. The mixture is then placed in a quantitative PCR instrument and subjected to an increasing temperature gradient. Changes in fluorescence are recorded along the gradient, as the dye interacts with unfolded portions of the protein becoming accessible when the protein “melts”. Differences in the temperature at which the protein unfolds in the absence and in the presence of the ligand are interpreted as indicating interactions between the ligand and the receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2(9):2212–2221

    Article  CAS  Google Scholar 

  2. Huynh K, Partch CL (2015) Analysis of protein stability and ligand interactions by thermal shift assay. Curr Protoc Protein Sci 79:28.9.1–28.9.14

    Article  Google Scholar 

  3. Kranz JK, Schalk-Hihi C (2011) Protein thermal shifts to identify low molecular weight fragments. Methods Enzymol 493:277–298

    Article  CAS  Google Scholar 

  4. Bai N, Roder H, Dickson A, Karanicolas J (2019) Isothermal analysis of ThermoFluor data can readily provide quantitative binding affinities. Sci Rep 9(1):2650

    Article  Google Scholar 

  5. Rudolf AF, Skovgaard T, Knapp S, Jensen LJ, Berthelsen J (2014) A comparison of protein kinases inhibitor screening methods using both enzymatic activity and binding affinity determination. PLoS One 9(6):e98800

    Article  Google Scholar 

  6. Matulis D, Kranz JK, Salemme FR, Todd MJ (2005) Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry 44(13):5258–5266

    Article  CAS  Google Scholar 

  7. Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22(21):2032–2036

    Article  CAS  Google Scholar 

  8. de Saint Germain A, Clave G, Badet-Denisot MA, Pillot JP, Cornu D, Le Caer JP, Burger M, Pelissier F, Retailleau P, Turnbull C, Bonhomme S, Chory J, Rameau C, Boyer FD (2016) An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat Chem Biol 12(10):787–794

    Article  Google Scholar 

  9. Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci U S A 111(50):18084–18089

    Article  CAS  Google Scholar 

  10. Seto Y, Yasui R, Kameoka H, Tamiru M, Cao M, Terauchi R, Sakurada A, Hirano R, Kisugi T, Hanada A, Umehara M, Seo E, Akiyama K, Burke J, Takeda-Kamiya N, Li W, Hirano Y, Hakoshima T, Mashiguchi K, Noel JP, Kyozuka J, Yamaguchi S (2019) Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat Commun 10(1):191

    Article  Google Scholar 

  11. Hamiaux C, Drummond RSM, Luo Z, Lee HW, Sharma P, Janssen BJ, Perry NB, Denny WA, Snowden KC (2018) Inhibition of strigolactone receptors by N-phenylanthranilic acid derivatives: structural and functional insights. J Biol Chem 293(17):6530–6543

    Article  CAS  Google Scholar 

  12. Zhao LH, Zhou XE, Yi W, Wu Z, Liu Y, Kang Y, Hou L, de Waal PW, Li S, Jiang Y, Scaffidi A, Flematti GR, Smith SM, Lam VQ, Griffin PR, Wang Y, Li J, Melcher K, Xu HE (2015) Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res 25(11):1219–1236

    Article  CAS  Google Scholar 

  13. Waters MT, Scaffidi A, Moulin SL, Sun YK, Flematti GR, Smith SM (2015) A Selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in Arabidopsis development but cannot mediate responses to karrikins or strigolactones. Plant Cell 27(7):1925–1944

    Article  CAS  Google Scholar 

  14. Burger M, Mashiguchi K, Lee HJ, Nakano M, Takemoto K, Seto Y, Yamaguchi S, Chory J (2019) Structural basis of karrikin and non-natural strigolactone perception in Physcomitrella patens. Cell Rep 26(4):855–865.e5

    Article  CAS  Google Scholar 

  15. Yao J, Mashiguchi K, Scaffidi A, Akatsu T, Melville KT, Morita R, Morimoto Y, Smith SM, Seto Y, Flematti GR, Yamaguchi S, Waters MT (2018) An allelic series at the KARRIKIN INSENSITIVE 2 locus of Arabidopsis thaliana decouples ligand hydrolysis and receptor degradation from downstream signalling. Plant J 96(1):75–89

    Article  CAS  Google Scholar 

  16. Sun YK, Yao J, Scaffidi A, Melville KT, Davies SF, Bond CS, Smith SM, Flematti GR, Waters MT (2020) Divergent receptor proteins confer responses to different karrikins in two ephemeral weeds. Nat Commun 11(1):1264

    Article  CAS  Google Scholar 

  17. Yao R, Ming Z, Yan L, Li S, Wang F, Sui M, Yu C, Yang M, Chen L, Chen L, Li Y, Yan C, Miao D, Sun Z, Yan J, Sun Y, Wang L, Chu J, Fan S, He W, Deng H, Nan F, Li J, Rao Z, Lou Z, Xie D (2016) Allosteric activation of the non-canonical hormone receptor DWARF14 by strigolactone. Nature 536(7617):469–473

    Article  CAS  Google Scholar 

  18. Machin DC, Hamon-Josse M, Bennett T (2019) Fellowship of the rings: a saga of strigolactones and other small signals. New Phytol 225(2):621–636

    Article  Google Scholar 

  19. Bürger M, Chory J (2020) The many models of strigolactone signaling. Trends Plant Sci 25(4):395–405

    Article  Google Scholar 

  20. Lee HW, Sharma P, Janssen BJ, Drummond RSM, Luo Z, Hamiaux C, Collier T, Allison JR, Newcomb RD, Snowden KC (2020) Flexibility of the petunia strigolactone receptor DAD2 promotes its interaction with signaling partners. J Biol Chem 295(13):4181–4193

    Article  CAS  Google Scholar 

  21. Yasui R, Seto Y, Ito S, Kawada K, Itto-Nakama K, Mashiguchi K, Yamaguchi S (2019) Chemical screening of novel strigolactone agonists that specifically interact with DWARF14 protein. Bioorg Med Chem Lett 29(7):938–942

    Article  CAS  Google Scholar 

  22. Nakamura H, Hirabayashi K, Miyakawa T, Kikuzato K, Hu W, Xu Y, Jiang K, Takahashi I, Niiyama R, Dohmae N, Tanokura M, Asami T (2019) Triazole ureas covalently bind to strigolactone receptor and antagonize strigolactone responses. Mol Plant 12(1):44–58

    Article  CAS  Google Scholar 

  23. Schon A, Brown RK, Hutchins BM, Freire E (2013) Ligand binding analysis and screening by chemical denaturation shift. Anal Biochem 443(1):52–57

    Article  CAS  Google Scholar 

  24. Vedadi M, Niesen FH, Allali-Hassani A, Fedorov OY, Finerty PJ Jr, Wasney GA, Yeung R, Arrowsmith C, Ball LJ, Berglund H, Hui R, Marsden BD, Nordlund P, Sundstrom M, Weigelt J, Edwards AM (2006) Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc Natl Acad Sci U S A 103(43):15835–15840

    Article  CAS  Google Scholar 

  25. Crowther GJ, He P, Rodenbough PP, Thomas AP, Kovzun KV, Leibly DJ, Bhandari J, Castaneda LJ, Hol WG, Gelb MH, Napuli AJ, Van Voorhis WC (2010) Use of thermal melt curves to assess the quality of enzyme preparations. Anal Biochem 399(2):268–275

    Article  CAS  Google Scholar 

  26. Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357(2):289–298

    Article  CAS  Google Scholar 

  27. Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E, Carver T, Asel E, Springer BA, Lane P, Salemme FR (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 6(6):429–440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Luke Luo, and Revel Drummond for feedback and helpful discussions. The authors were funded by Plant & Food Research, a Marsden grant (contract PAF1301) and by AGMARDT (Agribusiness Innovation Grant 1323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberley C. Snowden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hamiaux, C., Janssen, B.J., Snowden, K.C. (2021). The Use of Differential Scanning Fluorimetry to Assess Strigolactone Receptor Function. In: Prandi, C., Cardinale, F. (eds) Strigolactones. Methods in Molecular Biology, vol 2309. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1429-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1429-7_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1428-0

  • Online ISBN: 978-1-0716-1429-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics