Skip to main content

Controlled Assays for Phenotyping the Effects of Strigolactone-Like Molecules on Arbuscular Mycorrhiza Development

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2309))

Abstract

Arbuscular mycorrhiza is an ancient symbiosis between most land plants and fungi of the Glomeromycotina, in which the fungi provide mineral nutrients to the plant in exchange for photosynthetically fixed organic carbon. Strigolactones are important signals promoting this symbiosis, as they are exuded by plant roots into the rhizosphere to stimulate activity of the fungi. In addition, the plant karrikin signaling pathway is required for root colonization. Understanding the molecular mechanisms underpinning root colonization by AM fungi, requires the use of plant mutants as well as treatments with different environmental conditions or signaling compounds in standardized cocultivation systems to allow for reproducible root colonization phenotypes. Here we describe how we set up and quantify arbuscular mycorrhiza in the model plants Lotus japonicus and Brachypodium distachyon under controlled conditions. We illustrate a setup for open pot culture as well as for closed plant tissue culture (PTC) containers, for plant-fungal cocultivation in sterile conditions. Furthermore, we explain how to harvest, store, stain, and image AM roots for phenotyping and quantification of different AM structures.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Smith SE, Read D (2008) 1—The symbionts forming arbuscular mycorrhizas. In: Smith SE, Read D (eds) Mycorrhizal Symbiosis, 3rd edn. Academic Press, London, pp 13–41

    Chapter  Google Scholar 

  2. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  3. Querejeta J (2017) Soil water retention and availability as influenced by mycorrhizal symbiosis: consequences for individual plants, communities, and ecosystems. In: Mycorrhizal mediation of soil. Elsevier Inc, Amsterdam, pp 299–317

    Chapter  Google Scholar 

  4. Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi—from ecology to application. Front Plant Sci 9:1270

    Article  Google Scholar 

  5. Keymer A, Gutjahr C (2018) Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. Curr Opin Plant Biol 44:137–144

    Article  CAS  Google Scholar 

  6. Nadal M, Paszkowski U (2013) Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 16(4):473–479

    Article  CAS  Google Scholar 

  7. Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4(7):e226

    Article  Google Scholar 

  8. Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K (2016) Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry 130:90–98

    Article  CAS  Google Scholar 

  9. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824–827

    Article  CAS  Google Scholar 

  10. Kobae Y, Kameoka H, Sugimura Y, Saito K, Ohtomo R, Fujiwara T, Kyozuka J (2018) Strigolactone biosynthesis genes of rice are required for the punctual entry of arbuscular mycorrhizal fungi into the roots. Plant Cell Physiol 59(3):544–553

    Article  CAS  Google Scholar 

  11. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455(7210):189–194

    Article  CAS  Google Scholar 

  12. Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K (2012) The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol 196(4):1208–1216

    Article  CAS  Google Scholar 

  13. Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E, Kumar CS, Sundaresan V, Harrison MJ, Paszkowski U (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69(5):906–920

    Article  CAS  Google Scholar 

  14. Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235(6):1197–1207

    Article  CAS  Google Scholar 

  15. Jamil M, Charnikhova T, Cardoso C, Jamil T, Ueno K, Verstappen F, Asami T, Bouwmeester HJ (2011) Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res 51(4):373–385

    Article  CAS  Google Scholar 

  16. Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64(6):1002–1017

    Article  CAS  Google Scholar 

  17. Balzergue C, Puech-Pages V, Becard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62(3):1049–1060

    Article  CAS  Google Scholar 

  18. Gutjahr C, Gobbato E, Choi J, Riemann M, Johnston MG, Summers W, Carbonnel S, Mansfield C, Yang SY, Nadal M, Acosta I, Takano M, Jiao WB, Schneeberger K, Kelly KA, Paszkowski U (2015) Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350(6267):1521–1524

    Article  CAS  Google Scholar 

  19. Choi J, Lee T, Cho J, Servante EK, Pucker B, Summers W, Bowden S, Rahimi M, An K, An G, Bouwmeester HJ, Wallington EJ, Oldroyd G, Paszkowski U (2020) The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nat Commun 11(1):2114

    Article  CAS  Google Scholar 

  20. Luginbuehl LH, Oldroyd GED (2017) Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Curr Biol 27(17):R952–R963

    Article  CAS  Google Scholar 

  21. Kobae Y, Ohmori Y, Saito C, Yano K, Ohtomo R, Fujiwara T (2016) Phosphate treatment strongly inhibits new arbuscule development but not the maintenance of arbuscule in mycorrhizal rice roots. Plant Physiol 171(1):566–579

    Article  CAS  Google Scholar 

  22. Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83(4):409–418

    Article  Google Scholar 

  23. Müller A, Ngwene B, Peiter E, George E (2017) Quantity and distribution of arbuscular mycorrhizal fungal storage organs within dead roots. Mycorrhiza 27(3):201–210

    Article  Google Scholar 

  24. Choi J, Summers W, Paszkowski U (2018) Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annu Rev Phytopathol 56:135–160

    Article  CAS  Google Scholar 

  25. Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29(1):593–617

    Article  CAS  Google Scholar 

  26. MacLean AM, Bravo A, Harrison MJ (2017) Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. Plant Cell 29(10):2319–2335

    Article  CAS  Google Scholar 

  27. Das D, Torabi S, Chapman P, Gutjahr C (2020) A flexible, low-cost hydroponic co-cultivation system for studying arbuscular mycorrhiza symbiosis. Front Plant Sci 11:63

    Article  Google Scholar 

  28. Pumplin N, Harrison MJ (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol 151(2):809–819

    Article  CAS  Google Scholar 

  29. Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius S, Delaux P-M, Klingl V, von Roepenack-Lahaye E, Wang T, Eisenreich W, Dörmann P, Parniske M, Gutjahr C (2017) Lipid transfer from plants to arbuscular mycorrhiza fungi. elife 6:e29107

    Article  Google Scholar 

  30. Ivanov S, Harrison MJ (2014) A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula. Plant J 80(6):1151–1163

    Article  CAS  Google Scholar 

  31. Kobae Y, Hata S (2010) Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant Cell Physiol 51(3):341–353

    Article  CAS  Google Scholar 

  32. Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125(4):1075–1080

    Article  CAS  Google Scholar 

  33. Hoagland DR, Arnon DI (1938) The water-culture method for growing plants without soil. University of California, College of Agriculture, Agricultural Experiment Station, Berkeley, CA

    Google Scholar 

  34. Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80(1):1–20

    Article  CAS  Google Scholar 

  35. Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64(12):5004–5007

    Article  CAS  Google Scholar 

  36. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115(3):495–501

    Article  CAS  Google Scholar 

  37. Dickson S (2004) The Arum–Paris continuum of mycorrhizal symbioses. New Phytol 163(1):187–200

    Article  CAS  Google Scholar 

  38. Hong JJ, Park YS, Bravo A, Bhattarai KK, Daniels DA, Harrison MJ (2012) Diversity of morphology and function in arbuscular mycorrhizal symbioses in Brachypodium distachyon. Planta 236(3):851–865

    Article  CAS  Google Scholar 

  39. Gutjahr C, Siegler H, Haga K, Iino M, Paszkowski U (2015) Full establishment of arbuscular mycorrhizal symbiosis in rice occurs independently of enzymatic jasmonate biosynthesis. PLoS One 10(4):e0123422

    Article  Google Scholar 

Download references

Acknowledgments

We thank Laleh Torabi for the illustration of AM colonization (Fig. 1) and Philipp Chapman for excellent technical support in the establishment of the AM culture in PTC containers. ST and JAVA were supported by the Emmy Noether program (GU1423/1-1) of the Deutsche Forschungsgemeinschaft (DFG) to CG. AK was supported by the Collaborative Research Center SFB924 “Molecular Mechanisms Regulating Yield and Yield Stability in Plants” (subproject B03: GU1423/2-1) of the DFG to CG. KV was supported by a doctoral student fellowship from the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Gutjahr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Torabi, S., Varshney, K., Villaécija-Aguilar, J.A., Keymer, A., Gutjahr, C. (2021). Controlled Assays for Phenotyping the Effects of Strigolactone-Like Molecules on Arbuscular Mycorrhiza Development. In: Prandi, C., Cardinale, F. (eds) Strigolactones. Methods in Molecular Biology, vol 2309. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1429-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1429-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1428-0

  • Online ISBN: 978-1-0716-1429-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics