Skip to main content

Imaging the Nanoscale Distribution of Phosphoinositides in the Cell Plasma Membrane with Single-Molecule Localization Super-Resolution Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2251))

Abstract

Phosphoinositides make up only a small fraction of cellular phospholipids yet control cell function in a fundamental manner. Through protein interactions, phosphoinositides define cellular organelle identity and regulate protein function and organization and recruitment at the cytosol–membrane interface. As a result, perturbations on phosphoinositide metabolism alter cell physiology and lead to a wide range of human diseases, including cancer and diabetes. Among seven phosphoinositide members, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2, also known as PI(4,5)P2 or PIP2) is abundant in the plasma membrane. Besides its role in the second messenger pathway of phospholipase C that cleaves PtdIns(4,5)P2 to form diacylglycerol and inositol-1,4,5-trisphosphate (IP3), PtdIns(4,5)P2 regulates membrane trafficking and the function of the cytoskeleton, ion channels, and transporters. The nanoscale organization of PtdIns(4,5)P2 in the plasma membrane becomes essential to understand cellular signaling specificity in time and space. Here, we describe a single-molecule method to visualize the nanoscale distribution of PtdIns(4,5)P2 in the plasma membrane by using super-resolution microscopy and the dual-color fluorescent probes based on the PLCδ1 pleckstrin homology (PH) domain. This approach can be extended to image other phosphoinositides by changing the specific probes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438(7068):578–580

    Article  CAS  PubMed  Google Scholar 

  2. Spira F, Mueller NS, Beck G, von Olshausen P, Beig J, Wedlich-Soldner R (2012) Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat Cell Biol 14(6):640–648

    Article  CAS  PubMed  Google Scholar 

  3. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50

    Article  CAS  PubMed  Google Scholar 

  4. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657

    Article  PubMed  CAS  Google Scholar 

  5. Vicinanza M, D'Angelo G, Di Campli A, De Matteis MA (2008) Function and dysfunction of the PI system in membrane trafficking. EMBO J 27(19):2457–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93(3):1019–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312(5992):315–321

    Article  CAS  PubMed  Google Scholar 

  8. Lou X, Scheuss V, Schneggenburger R (2005) Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature 435(7041):497–501

    Article  CAS  PubMed  Google Scholar 

  9. Korogod N, Lou X, Schneggenburger R (2007) Posttetanic potentiation critically depends on an enhanced Ca(2+) sensitivity of vesicle fusion mediated by presynaptic PKC. Proc Natl Acad Sci U S A 104(40):15923–15928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lou X, Korogod N, Brose N, Schneggenburger R (2008) Phorbol esters modulate spontaneous and Ca2+−evoked transmitter release via acting on both Munc13 and protein kinase C. J Neurosci 28(33):8257–8267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ji C, Fan F, Lou X (2017) Vesicle docking is a key target of local PI(4,5)P2 metabolism in the secretory pathway of INS-1 cells. Cell Rep 20(6):1409–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Balla A, Kim YJ, Varnai P, Szentpetery Z, Knight Z, Shokat KM, Balla T (2008) Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol Biol Cell 19(2):711–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakatsu F, Baskin JM, Chung J, Tanner LB, Shui G, Lee SY, Pirruccello M, Hao M, Ingolia NT, Wenk MR, De Camilli P (2012) PtdIns4P synthesis by PI4KIIIalpha at the plasma membrane and its impact on plasma membrane identity. J Cell Biol 199(6):1003–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hammond GR, Fischer MJ, Anderson KE, Holdich J, Koteci A, Balla T, Irvine RF (2012) PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337(6095):727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Czech MP (2000) PIP2 and PIP3: complex roles at the cell surface. Cell 100(6):603–606

    Article  CAS  PubMed  Google Scholar 

  16. Czech MP (2003) Dynamics of phosphoinositides in membrane retrieval and insertion. Annu Rev Physiol 65:791–815

    Article  CAS  PubMed  Google Scholar 

  17. Hammond GR, Balla T (2015) Polyphosphoinositide binding domains: key to inositol lipid biology. Biochim Biophys Acta 1851(6):746–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garcia P, Gupta R, Shah S, Morris AJ, Rudge SA, Scarlata S, Petrova V, McLaughlin S, Rebecchi MJ (1995) The pleckstrin homology domain of phospholipase C-delta 1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry 34(49):16228–16234

    Article  CAS  PubMed  Google Scholar 

  19. Milosevic I, Sorensen JB, Lang T, Krauss M, Nagy G, Haucke V, Jahn R, Neher E (2005) Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J Neurosci 25(10):2557–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Rheenen J, Jalink K (2002) Agonist-induced PIP(2) hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale. Mol Biol Cell 13(9):3257–3267

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hammond G, Schiavo G, Irvine R (2009) Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns (4, 5) P2. Biochem J 422:23–35

    Article  CAS  PubMed  Google Scholar 

  22. Huang S, Lifshitz L, Patki-Kamath V, Tuft R, Fogarty K, Czech MP (2004) Phosphatidylinositol-4,5-bisphosphate-rich plasma membrane patches organize active zones of endocytosis and ruffling in cultured adipocytes. Mol Cell Biol 24(20):9102–9123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. James DJ, Khodthong C, Kowalchyk JA, Martin TF (2008) Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. J Cell Biol 182(2):355–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P (2000) GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 149(7):1455–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aoyagi K, Sugaya T, Umeda M, Yamamoto S, Terakawa S, Takahashi M (2005) The activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphosphate microdomains at syntaxin clusters. J Biol Chem 280(17):17346–17352

    Article  CAS  PubMed  Google Scholar 

  26. Kabachinski G, Yamaga M, Kielar-Grevstad DM, Bruinsma S, Martin TF (2014) CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis. Mol Biol Cell 25(4):508–521

    Article  PubMed  PubMed Central  Google Scholar 

  27. van den Bogaart G, Meyenberg K, Risselada HJ, Amin H, Willig KI, Hubrich BE, Dier M, Hell SW, Grubmuller H, Diederichsen U, Jahn R (2011) Membrane protein sequestering by ionic protein-lipid interactions. Nature 479(7374):552–555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. van Rheenen J, Achame EM, Janssen H, Calafat J, Jalink K (2005) PIP2 signaling in lipid domains: a critical re-evaluation. EMBO J 24(9):1664–1673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sato K, Ernstrom GG, Watanabe S, Weimer RM, Chen CH, Sato M, Siddiqui A, Jorgensen EM, Grant BD (2009) Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools. Proc Natl Acad Sci U S A 106(4):1139–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanan DA, Anderson R (1991) Simultaneous visualization of LDL receptor distribution and clathrin lattices on membranes torn from the upper surface of cultured cells. J Histochem Cytochem 39(8):1017–1024

    Article  CAS  PubMed  Google Scholar 

  31. Morone N, Fujiwara T, Murase K, Kasai RS, Ike H, Yuasa S, Usukura J, Kusumi A (2006) Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J Cell Biol 174(6):851–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ji C, Zhang Y, Xu P, Xu T, Lou X (2015) Nanoscale landscape of Phosphoinositides revealed by the specific PH-domains using single-molecule super-resolution imaging in the plasma membrane. J Biol Chem 290(45):26978–26993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ji C, Lou X (2016) Single-molecule super-resolution imaging of phosphatidylinositol 4,5-bisphosphate in the plasma membrane with novel fluorescent probes. J Vis Exp 116:54466

    Google Scholar 

  34. Szymborska A, de Marco A, Daigle N, Cordes VC, Briggs JA, Ellenberg J (2013) Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341(6146):655–658

    Article  CAS  PubMed  Google Scholar 

  35. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  36. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6(2):153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pertsinidis A, Mukherjee K, Sharma M, Pang ZP, Park SR, Zhang Y, Brunger AT, Sudhof TC, Chu S (2013) Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ. Proc Natl Acad Sci U S A 110(30):E2812–E2820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang M, Chang H, Zhang Y, Yu J, Wu L, Ji W, Chen J, Liu B, Lu J, Liu Y, Zhang J, Xu P, Xu T (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9(7):727–729

    Article  CAS  PubMed  Google Scholar 

  39. Huang F, Hartwich TM, Rivera-Molina FE, Lin Y, Duim WC, Long JJ, Uchil PD, Myers JR, Baird MA, Mothes W, Davidson MW, Toomre D, Bewersdorf J (2013) Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat Methods 10(7):653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sengupta P, Van Engelenburg S, Lippincott-Schwartz J (2012) Visualizing cell structure and function with point-localization superresolution imaging. Dev Cell 23(6):1092–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6(2):153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lemmon MA, Ferguson KM, O'Brien R, Sigler PB, Schlessinger J (1995) Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci 92(23):10472–10476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dyachok O, Isakov Y, Sågetorp J, Tengholm A (2006) Oscillations of cyclic AMP in hormone-stimulated insulin-secreting β-cells. Nature 439(7074):349–352

    Article  CAS  PubMed  Google Scholar 

  44. Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, Veatch SL, Lippincott-Schwartz J (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8(11):969–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Durisic N, Laparra-Cuervo L, Sandoval-Álvarez Á, Borbely JS, Lakadamyali M (2014) Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat Methods 11(2):156–162

    Article  CAS  PubMed  Google Scholar 

  47. Nan X, Collisson EA, Lewis S, Huang J, Tamgüney TM, Liphardt JT, McCormick F, Gray JW, Chu S (2013) Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling. Proc Natl Acad Sci U S A 110(46):18519–18524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barg S, Knowles MK, Chen X, Midorikawa M, Almers W (2010) Syntaxin clusters assemble reversibly at sites of secretory granules in live cells. Proc Natl Acad Sci U S A 107(48):20804–20809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heerklotz H (2002) Triton promotes domain formation in lipid raft mixtures. Biophys J 83(5):2693–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alabi AA, Tsien RW (2013) Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu Rev Physiol 75:393–422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported partially by the National Institutes of Health (NIH) (R01DK093953 and R21NS101584) and the grant AAB1425-135-A5362. We thank Tamas Balla at NIH and Pietro De Camilli at Yale for the PH-domain constructs and Dr. Christopher Newgard at Duke for INS-1 832/13 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelin Lou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fan, F., Ji, C., Lou, X. (2021). Imaging the Nanoscale Distribution of Phosphoinositides in the Cell Plasma Membrane with Single-Molecule Localization Super-Resolution Microscopy. In: Botelho, R.J. (eds) Phosphoinositides. Methods in Molecular Biology, vol 2251. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1142-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1142-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1141-8

  • Online ISBN: 978-1-0716-1142-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics