Skip to main content

Applications of Mouse Models to the Study of Food Allergy

  • Protocol
  • First Online:
Animal Models of Allergic Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2223))

Abstract

Mouse models of allergic disease offer numerous advantages when compared to the models of other animals. However, selection of appropriate mouse models is critical to advance the field of food allergy by revealing mechanisms of allergy and for testing novel therapeutic approaches. All current mouse models for food allergy have weaknesses that may limit their applicability to human disease. Aspects such as the genetic predisposition to allergy or tolerance from the strain of mouse used, allergen dose, route of exposure (oral, intranasal, intraperitoneal, or epicutaneous), damage of the epithelial barrier, use of adjuvants, food matrix effects, or composition of the microbiota should be considered prior to the selection of a specific murine model and contemplated according to the intended purpose of the study. This chapter reviews our current knowledge on the application of mouse models to food allergy research and the variables that may influence the successful development of each type of model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piacentini GL, Bertolini A, Spezia E, Piscione T, Boner AL (1994) Ability of a new infant formula prepared from partially hydrolyzed bovine whey to induce anaphylactic sensitization: evaluation in a guinea pig model. Allergy 49(5):361–364. https://doi.org/10.1111/j.1398-9995.1994.tb02282.x

    Article  CAS  PubMed  Google Scholar 

  2. Pilegaard K, Madsen C (2004) An oral Brown Norway rat model for food allergy: comparison of age, sex, dosing volume, and allergen preparation. Toxicology 196(3):247–257. https://doi.org/10.1016/j.tox.2003.11.010

    Article  CAS  PubMed  Google Scholar 

  3. Teuber SS, Del Val G, Morigasaki S, Jung HR, Eisele PH, Frick OL, Buchanan BB (2002) The atopic dog as a model of peanut and tree nut food allergy. J Allergy Clin Immunol 110(6):921–927. https://doi.org/10.1067/mai.2002.130056

    Article  PubMed  Google Scholar 

  4. Rupa P, Hamilton K, Cirinna M, Wilkie BN (2008) A neonatal swine model of allergy induced by the major food allergen chicken ovomucoid (Gal d 1). Int Arch Allergy Immunol 146(1):11–18. https://doi.org/10.1159/000112498

    Article  CAS  PubMed  Google Scholar 

  5. Helm RM, Ermel RW, Frick OL (2003) Nonmurine animal models of food allergy. Environ Health Perspect 111(2):239–244. https://doi.org/10.1289/ehp.5705

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aldemir H, Bars R, Herouet-Guicheney C (2009) Murine models for evaluating the allergenicity of novel proteins and foods. Regul Toxicol Pharmacol 54(3 Suppl):S52–S57. https://doi.org/10.1016/j.yrtph.2008.11.004

    Article  CAS  PubMed  Google Scholar 

  7. Bogh KL, van Bilsen J, Glogowski R, Lopez-Exposito I, Bouchaud G, Blanchard C, Bodinier M, Smit J, Pieters R, Bastiaan-Net S, de Wit N, Untersmayr E, Adel-Patient K, Knippels L, Epstein MM, Noti M, Nygaard UC, Kimber I, Verhoeckx K, O’Mahony L (2016) Current challenges facing the assessment of the allergenic capacity of food allergens in animal models. Clin Transl Allergy 6:21. https://doi.org/10.1186/s13601-016-0110-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Gramberg JL, de Veer MJ, O’Hehir RE, Meeusen EN, Bischof RJ (2013) Use of animal models to investigate major allergens associated with food allergy. J Allergy (Cairo) 2013:635695. https://doi.org/10.1155/2013/635695

    Article  Google Scholar 

  9. Ahuja V, Quatchadze M, Ahuja V, Stelter D, Albrecht A, Stahlmann R (2010) Evaluation of biotechnology-derived novel proteins for the risk of food-allergic potential: advances in the development of animal models and future challenges. Arch Toxicol 84(12):909–917. https://doi.org/10.1007/s00204-010-0582-0

    Article  CAS  PubMed  Google Scholar 

  10. Larsen JM, Bogh KL (2018) Animal models of allergen-specific immunotherapy in food allergy: overview and opportunities. Clin Exp Allergy 48(10):1255–1274. https://doi.org/10.1111/cea.13212

    Article  PubMed  Google Scholar 

  11. Liu T, Navarro S, Lopata AL (2016) Current advances of murine models for food allergy. Mol Immunol 70:104–117. https://doi.org/10.1016/j.molimm.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  12. Smit JJ, Noti M, O’Mahony L (2015) The use of animal models to discover immunological mechanisms underpinning sensitization to food allergens. Drug Discov Today Dis Model 17-18:63–69. https://doi.org/10.1016/j.ddmod.2016.09.001

    Article  Google Scholar 

  13. Haley PJ (2003) Species differences in the structure and function of the immune system. Toxicology 188(1):49–71. https://doi.org/10.1016/s0300-483x(03)00043-x

    Article  CAS  PubMed  Google Scholar 

  14. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738. https://doi.org/10.4049/jimmunol.172.5.2731

    Article  CAS  PubMed  Google Scholar 

  15. Sicherer SH, Sampson HA (2009) Food allergy: recent advances in pathophysiology and treatment. Annu Rev Med 60:261–277. https://doi.org/10.1146/annurev.med.60.042407.205711

    Article  CAS  PubMed  Google Scholar 

  16. Khodoun MV, Strait R, Armstrong L, Yanase N, Finkelman FD (2011) Identification of markers that distinguish IgE- from IgG-mediated anaphylaxis. Proc Natl Acad Sci U S A 108(30):12413–12418. https://doi.org/10.1073/pnas.1105695108

    Article  PubMed  PubMed Central  Google Scholar 

  17. Finkelman FD, Khodoun MV, Strait R (2016) Human IgE-independent systemic anaphylaxis. J Allergy Clin Immunol 137(6):1674–1680. https://doi.org/10.1016/j.jaci.2016.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jonsson F, Mancardi DA, Kita Y, Karasuyama H, Iannascoli B, Van Rooijen N, Shimizu T, Daeron M, Bruhns P (2011) Mouse and human neutrophils induce anaphylaxis. J Clin Invest 121(4):1484–1496. https://doi.org/10.1172/JCI45232

    Article  PubMed  PubMed Central  Google Scholar 

  19. Polak D, Hafner C, Briza P, Kitzmuller C, Elbe-Burger A, Samadi N, Gschwandtner M, Pfutzner W, Zlabinger GJ, Jahn-Schmid B, Bohle B (2019) A novel role for neutrophils in IgE-mediated allergy: Evidence for antigen presentation in late-phase reactions. J Allergy Clin Immunol 143(3):1143–1152. e1144. https://doi.org/10.1016/j.jaci.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  20. Smit JJ, Willemsen K, Hassing I, Fiechter D, Storm G, van Bloois L, Leusen JH, Pennings M, Zaiss D, Pieters RH (2011) Contribution of classic and alternative effector pathways in peanut-induced anaphylactic responses. PLoS One 6(12):e28917. https://doi.org/10.1371/journal.pone.0028917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gonipeta B, Kim E, Gangur V (2015) Mouse models of food allergy: how well do they simulate the human disorder? Crit Rev Food Sci Nutr 55(3):437–452. https://doi.org/10.1080/10408398.2012.657807

    Article  CAS  PubMed  Google Scholar 

  22. Kanagaratham C, Sallis BF, Fiebiger E (2018) Experimental models for studying food allergy. Cell Mol Gastroenterol Hepatol 6(3):356–369. e351. https://doi.org/10.1016/j.jcmgh.2018.05.010

    Article  PubMed  PubMed Central  Google Scholar 

  23. Benede S, Berin MC (2018) Mast cell heterogeneity underlies different manifestations of food allergy in mice. PLoS One 13(1):e0190453. https://doi.org/10.1371/journal.pone.0190453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blanco C, Sanchez-Garcia F, Torres-Galvan MJ, Dumpierrez AG, Almeida L, Figueroa J, Ortega N, Castillo R, Gallego MD, Carrillo T (2004) Genetic basis of the latex-fruit syndrome: association with HLA class II alleles in a Spanish population. J Allergy Clin Immunol 114(5):1070–1076. https://doi.org/10.1016/j.jaci.2004.06.022

    Article  CAS  PubMed  Google Scholar 

  25. Asai Y, Eslami A, van Ginkel CD, Akhabir L, Wan M, Ellis G, Ben-Shoshan M, Martino D, Ferreira MA, Allen K, Mazer B, de Groot H, de Jong NW, Gerth van Wijk RN, Dubois AEJ, Chin R, Cheuk S, Hoffman J, Jorgensen E, Witte JS, Melles RB, Hong X, Wang X, Hui J, Musk AWB, Hunter M, James AL, Koppelman GH, Sandford AJ, Clarke AE, Daley D (2018) Genome-wide association study and meta-analysis in multiple populations identifies new loci for peanut allergy and establishes C11orf30/EMSY as a genetic risk factor for food allergy. J Allergy Clin Immunol 141(3):991–1001. https://doi.org/10.1016/j.jaci.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  26. Hong X, Hao K, Ladd-Acosta C, Hansen KD, Tsai HJ, Liu X, Xu X, Thornton TA, Caruso D, Keet CA, Sun Y, Wang G, Luo W, Kumar R, Fuleihan R, Singh AM, Kim JS, Story RE, Gupta RS, Gao P, Chen Z, Walker SO, Bartell TR, Beaty TH, Fallin MD, Schleimer R, Holt PG, Nadeau KC, Wood RA, Pongracic JA, Weeks DE, Wang X (2015) Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun 6:6304. https://doi.org/10.1038/ncomms7304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McClain S, Bannon GA (2006) Animal models of food allergy: opportunities and barriers. Curr Allergy Asthma Rep 6(2):141–144. https://doi.org/10.1007/s11882-006-0052-1

    Article  PubMed  Google Scholar 

  28. Morafo V, Srivastava K, Huang CK, Kleiner G, Lee SY, Sampson HA, Li AM (2003) Genetic susceptibility to food allergy is linked to differential TH2-TH1 responses in C3H/HeJ and BALB/c mice. J Allergy Clin Immunol 111(5):1122–1128. https://doi.org/10.1067/mai.2003.1463

    Article  CAS  PubMed  Google Scholar 

  29. Smole U, Schabussova I, Pickl WF, Wiedermann U (2017) Murine models for mucosal tolerance in allergy. Semin Immunol 30:12–27. https://doi.org/10.1016/j.smim.2017.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dearman RJ, Kimber I (2009) Animal models of protein allergenicity: potential benefits, pitfalls and challenges. Clin Exp Allergy 39(4):458–468. https://doi.org/10.1111/j.1365-2222.2008.03194.x

    Article  CAS  PubMed  Google Scholar 

  31. Wagenaar L, Bol-Schoenmakers M, Giustarini G, Garssen J, Smit JJ, Pieters RHH (2019) Mouse strain differences in response to oral immunotherapy for peanut allergy. Immun Inflamm Dis 7(1):41–51. https://doi.org/10.1002/iid3.242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Germundson DL, Smith NA, Vendsel LP, Kelsch AV, Combs CK, Nagamoto-Combs K (2018) Oral sensitization to whey proteins induces age- and sex-dependent behavioral abnormality and neuroinflammatory responses in a mouse model of food allergy: a potential role of mast cells. J Neuroinflammation 15(1):120. https://doi.org/10.1186/s12974-018-1146-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Song HK, Hwang DY (2017) Use of C57BL/6N mice on the variety of immunological researches. Lab Anim Res 33(2):119–123. https://doi.org/10.5625/lar.2017.33.2.119

    Article  PubMed  PubMed Central  Google Scholar 

  34. Adel-Patient K, Bernard H, Ah-Leung S, Creminon C, Wal JM (2005) Peanut- and cow’s milk-specific IgE, Th2 cells and local anaphylactic reaction are induced in Balb/c mice orally sensitized with cholera toxin. Allergy 60(5):658–664. https://doi.org/10.1111/j.1398-9995.2005.00767.x

    Article  CAS  PubMed  Google Scholar 

  35. Berin MC, Zheng Y, Domaradzki M, Li XM, Sampson HA (2006) Role of TLR4 in allergic sensitization to food proteins in mice. Allergy 61(1):64–71. https://doi.org/10.1111/j.1398-9995.2006.01012.x

    Article  CAS  PubMed  Google Scholar 

  36. Marco-Martin G, La Rotta HA, Vazquez de la Torre M, Higaki Y, Zubeldia JM, Baeza ML (2017) Differences in the anaphylactic response between C3H/HeOuJ and BALB/c mice. Int Arch Allergy Immunol 173(4):204–212. https://doi.org/10.1159/000478983

    Article  CAS  PubMed  Google Scholar 

  37. Pablos-Tanarro A, Lopez-Exposito I, Lozano-Ojalvo D, Lopez-Fandino R, Molina E (2016) Antibody production, anaphylactic signs, and T-cell responses induced by oral sensitization with ovalbumin in BALB/c and C3H/HeOuJ mice. Allergy Asthma Immunol Res 8(3):239–245. https://doi.org/10.4168/aair.2016.8.3.239

    Article  CAS  PubMed  Google Scholar 

  38. Chen CY, Lee JB, Liu B, Ohta S, Wang PY, Kartashov AV, Mugge L, Abonia JP, Barski A, Izuhara K, Rothenberg ME, Finkelman FD, Hogan SP, Wang YH (2015) Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 43(4):788–802. https://doi.org/10.1016/j.immuni.2015.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bashir ME, Louie S, Shi HN, Nagler-Anderson C (2004) Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol 172(11):6978–6987. https://doi.org/10.4049/jimmunol.172.11.6978

    Article  CAS  PubMed  Google Scholar 

  40. Aitoro R, Simeoli R, Amoroso A, Paparo L, Nocerino R, Pirozzi C, di Costanzo M, Meli R, De Caro C, Picariello G, Mamone G, Calignano A, Nagler CR, Berni Canani R (2017) Extensively hydrolyzed casein formula alone or with L. rhamnosus GG reduces beta-lactoglobulin sensitization in mice. Pediatr Allergy Immunol 28(3):230–237. https://doi.org/10.1111/pai.12687

    Article  PubMed  Google Scholar 

  41. Smit JJ, Bol-Schoenmakers M, Hassing I, Fiechter D, Boon L, Bleumink R, Pieters RH (2011) The role of intestinal dendritic cells subsets in the establishment of food allergy. Clin Exp Allergy 41(6):890–898. https://doi.org/10.1111/j.1365-2222.2011.03738.x

    Article  CAS  PubMed  Google Scholar 

  42. Krishnaswamy JK, Singh A, Gowthaman U, Wu R, Gorrepati P, Sales Nascimento M, Gallman A, Liu D, Rhebergen AM, Calabro S, Xu L, Ranney P, Srivastava A, Ranson M, Gorham JD, McCaw Z, Kleeberger SR, Heinz LX, Muller AC, Bennett KL, Superti-Furga G, Henao-Mejia J, Sutterwala FS, Williams A, Flavell RA, Eisenbarth SC (2015) Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration. Proc Natl Acad Sci U S A 112(10):3056–3061. https://doi.org/10.1073/pnas.1501554112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, Matthews HF, Davis J, Turner ML, Uzel G, Holland SM, Su HC (2009) Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med 361(21):2046–2055. https://doi.org/10.1056/NEJMoa0905506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gowthaman U, Chen JS, Zhang B, Flynn WF, Lu Y, Song W, Joseph J, Gertie JA, Xu L, Collet MA, Grassmann JDS, Simoneau T, Chiang D, Berin MC, Craft JE, Weinstein JS, Williams A, Eisenbarth SC (2019) Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science 365(6456). https://doi.org/10.1126/science.aaw6433

  45. Mathias CB, Hobson SA, Garcia-Lloret M, Lawson G, Poddighe D, Freyschmidt EJ, Xing W, Gurish MF, Chatila TA, Oettgen HC (2011) IgE-mediated systemic anaphylaxis and impaired tolerance to food antigens in mice with enhanced IL-4 receptor signaling. J Allergy Clin Immunol 127(3):791–805. https://doi.org/10.1016/j.jaci.2010.11.009

    Article  CAS  Google Scholar 

  46. Burton OT, Darling AR, Zhou JS, Noval-Rivas M, Jones TG, Gurish MF, Chatila TA, Oettgen HC (2013) Direct effects of IL-4 on mast cells drive their intestinal expansion and increase susceptibility to anaphylaxis in a murine model of food allergy. Mucosal Immunol 6(4):740–750. https://doi.org/10.1038/mi.2012.112

    Article  CAS  PubMed  Google Scholar 

  47. Noval Rivas M, Burton OT, Wise P, Zhang YQ, Hobson SA, Garcia Lloret M, Chehoud C, Kuczynski J, DeSantis T, Warrington J, Hyde ER, Petrosino JF, Gerber GK, Bry L, Oettgen HC, Mazmanian SK, Chatila TA (2013) A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J Allergy Clin Immunol 131(1):201–212. https://doi.org/10.1016/j.jaci.2012.10.026

    Article  CAS  PubMed  Google Scholar 

  48. Strait RT, Morris SC, Smiley K, Urban JF Jr, Finkelman FD (2003) IL-4 exacerbates anaphylaxis. J Immunol 170(7):3835–3842. https://doi.org/10.4049/jimmunol.170.7.3835

    Article  CAS  PubMed  Google Scholar 

  49. Orgel K, Smeekens JM, Ye P, Fotsch L, Guo R, Miller DR, Pardo-Manuel de Villena F, Burks AW, Ferris MT, Kulis MD (2019) Genetic diversity between mouse strains allows identification of the CC027/GeniUnc strain as an orally reactive model of peanut allergy. J Allergy Clin Immunol 143(3):1027–1037. e1027. https://doi.org/10.1016/j.jaci.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  50. Beutier H, Hechler B, Godon O, Wang Y, Gillis CM, de Chaisemartin L, Gouel-Cheron A, Magnenat S, Macdonald LE, Murphy AJ, Group NS, Chollet-Martin S, Longrois D, Gachet C, Bruhns P, Jonsson F (2018) Platelets expressing IgG receptor FcgammaRIIA/CD32A determine the severity of experimental anaphylaxis. Sci Immunol 3(22). https://doi.org/10.1126/sciimmunol.aan5997

  51. Dombrowicz D, Brini AT, Flamand V, Hicks E, Snouwaert JN, Kinet JP, Koller BH (1996) Anaphylaxis mediated through a humanized high affinity IgE receptor. J Immunol 157(4):1645–1651

    CAS  PubMed  Google Scholar 

  52. Gillis CM, Jonsson F, Mancardi DA, Tu N, Beutier H, Van Rooijen N, Macdonald LE, Murphy AJ, Bruhns P (2017) Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice. J Allergy Clin Immunol 139(4):1253–1265. e1214. https://doi.org/10.1016/j.jaci.2016.06.058

    Article  CAS  PubMed  Google Scholar 

  53. Bryce PJ, Falahati R, Kenney LL, Leung J, Bebbington C, Tomasevic N, Krier RA, Hsu CL, Shultz LD, Greiner DL, Brehm MA (2016) Humanized mouse model of mast cell-mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis. J Allergy Clin Immunol 138(3):769–779. https://doi.org/10.1016/j.jaci.2016.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Burton OT, Stranks AJ, Tamayo JM, Koleoglou KJ, Schwartz LB, Oettgen HC (2017) A humanized mouse model of anaphylactic peanut allergy. J Allergy Clin Immunol 139(1):314–322. e319. https://doi.org/10.1016/j.jaci.2016.04.034

    Article  CAS  PubMed  Google Scholar 

  55. Afify SM, Pali-Scholl I (2017) Adverse reactions to food: the female dominance - A secondary publication and update. World Allergy Organ J 10(1):43. https://doi.org/10.1186/s40413-017-0174-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kelly C, Gangur V (2009) Sex disparity in food allergy: evidence from the PubMed database. J Allergy (Cairo) 2009:159845. https://doi.org/10.1155/2009/159845

    Article  Google Scholar 

  57. Pali-Scholl I, Jensen-Jarolim E (2019) Gender aspects in food allergy. Curr Opin Allergy Clin Immunol 19(3):249–255. https://doi.org/10.1097/ACI.0000000000000529

    Article  PubMed  Google Scholar 

  58. Untersmayr E, Diesner SC, Bramswig KH, Knittelfelder R, Bakos N, Gundacker C, Lukschal A, Wallmann J, Szalai K, Pali-Scholl I, Boltz-Nitulescu G, Scheiner O, Duschl A, Jensen-Jarolim E (2008) Characterization of intrinsic and extrinsic risk factors for celery allergy in immunosenescence. Mech Ageing Dev 129(3):120–128. https://doi.org/10.1016/j.mad.2007.10.015

    Article  CAS  PubMed  Google Scholar 

  59. Li H, Yu J, Ahmedna M, Goktepe I (2013) Reduction of major peanut allergens Ara h 1 and Ara h 2, in roasted peanuts by ultrasound assisted enzymatic treatment. Food Chem 141(2):762–768. https://doi.org/10.1016/j.foodchem.2013.03.049

    Article  CAS  PubMed  Google Scholar 

  60. Yamaki K, Yoshino S (2012) Preventive and therapeutic effects of rapamycin, a mammalian target of rapamycin inhibitor, on food allergy in mice. Allergy 67(10):1259–1270. https://doi.org/10.1111/all.12000

    Article  CAS  PubMed  Google Scholar 

  61. Parvataneni S, Birmingham NP, Gonipeta B, Gangur V (2009) Dominant, non-MHC genetic control of food allergy in an adjuvant-free mouse model. Int J Immunogenet 36(5):261–267. https://doi.org/10.1111/j.1744-313X.2009.00860.x

    Article  CAS  PubMed  Google Scholar 

  62. Toomer O, Pereira M, Do A, Williams K (2017) Gender and dose dependent ovalbumin induced hypersensitivity responses in murine model of food allergy. J Food Nutr Popul Health 1:1–6

    Google Scholar 

  63. Berin MC, Shreffler WG (2008) T(H)2 adjuvants: implications for food allergy. J Allergy Clin Immunol 121(6):1311–1320.; quiz 1321-1312. https://doi.org/10.1016/j.jaci.2008.04.023

    Article  CAS  PubMed  Google Scholar 

  64. Mattsson J, Schon K, Ekman L, Fahlen-Yrlid L, Yrlid U, Lycke NY (2015) Cholera toxin adjuvant promotes a balanced Th1/Th2/Th17 response independently of IL-12 and IL-17 by acting on Gsalpha in CD11b(+) DCs. Mucosal Immunol 8(4):815–827. https://doi.org/10.1038/mi.2014.111

    Article  CAS  PubMed  Google Scholar 

  65. Blazquez AB, Berin MC (2008) Gastrointestinal dendritic cells promote Th2 skewing via OX40L. J Immunol 180(7):4441–4450. https://doi.org/10.4049/jimmunol.180.7.4441

    Article  CAS  PubMed  Google Scholar 

  66. Chu DK, Llop-Guevara A, Walker TD, Flader K, Goncharova S, Boudreau JE, Moore CL, Seunghyun In T, Waserman S, Coyle AJ, Kolbeck R, Humbles AA, Jordana M (2013) IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol 131(1):181–200. https://doi.org/10.1016/j.jaci.2012.08.002

    Article  CAS  Google Scholar 

  67. Krause K, Metz M, Makris M, Zuberbier T, Maurer M (2012) The role of interleukin-1 in allergy-related disorders. Curr Opin Allergy Clin Immunol 12(5):477–484. https://doi.org/10.1097/ACI.0b013e3283574d0c

    Article  CAS  PubMed  Google Scholar 

  68. Feng BS, Chen X, He SH, Zheng PY, Foster J, Xing Z, Bienenstock J, Yang PC (2008) Disruption of T-cell immunoglobulin and mucin domain molecule (TIM)-1/TIM4 interaction as a therapeutic strategy in a dendritic cell-induced peanut allergy model. J Allergy Clin Immunol 122(1):55–61, 61 e51–57. https://doi.org/10.1016/j.jaci.2008.04.036

  69. Hu T, Fan X, Ma L, Liu J, Chang Y, Yang P, Qiu S, Chen T, Yang L, Liu Z (2017) TIM4-TIM1 interaction modulates Th2 pattern inflammation through enhancing SIRT1 expression. Int J Mol Med 40(5):1504–1510. https://doi.org/10.3892/ijmm.2017.3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Berin MC, Mayer L (2009) Immunophysiology of experimental food allergy. Mucosal Immunol 2(1):24–32. https://doi.org/10.1038/mi.2008.72

    Article  CAS  PubMed  Google Scholar 

  71. Cox E, Verdonck F, Vanrompay D, Goddeeris B (2006) Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res 37(3):511–539. https://doi.org/10.1051/vetres:2006014

    Article  CAS  PubMed  Google Scholar 

  72. Pablos-Tanarro A, Lozano-Ojalvo D, Molina E, Lopez-Fandino R (2018) Assessment of the allergenic potential of the main egg white proteins in BALB/c mice. J Agric Food Chem 66(11):2970–2976. https://doi.org/10.1021/acs.jafc.8b00402

    Article  CAS  PubMed  Google Scholar 

  73. Lee SY, Oh S, Lee K, Jang YJ, Sohn MH, Lee KE, Kim KE (2005) Murine model of buckwheat allergy by intragastric sensitization with fresh buckwheat flour extract. J Korean Med Sci 20(4):566–572. https://doi.org/10.3346/jkms.2005.20.4.566

    Article  PubMed  PubMed Central  Google Scholar 

  74. Foss N, Duranti M, Magni C, Frokiaer H (2006) Assessment of lupin allergenicity in the cholera toxin model: induction of IgE response depends on the intrinsic properties of the conglutins and matrix effects. Int Arch Allergy Immunol 141(2):141–150. https://doi.org/10.1159/000094716

    Article  CAS  PubMed  Google Scholar 

  75. Lam YF, Tong KK, Kwan KM, Tsuneyama K, Shu SA, Leung PS, Chu KH (2015) Gastrointestinal immune response to the shrimp allergen tropomyosin: Histological and immunological analysis in an animal model of shrimp tropomyosin hypersensitivity. Int Arch Allergy Immunol 167(1):29–40. https://doi.org/10.1159/000431228

    Article  CAS  PubMed  Google Scholar 

  76. van Bergenhenegouwen J, Braber S, Loonstra R, Buurman N, Rutten L, Knipping K, Savelkoul PJ, Harthoorn LF, Jahnsen FL, Garssen J, Hartog A (2018) Oral exposure to the free amino acid glycine inhibits the acute allergic response in a model of cow’s milk allergy in mice. Nutr Res 58:95–105. https://doi.org/10.1016/j.nutres.2018.07.005

    Article  CAS  PubMed  Google Scholar 

  77. Vonk MM, Wagenaar L, Pieters RHH, Knippels LMJ, Willemsen LEM, Smit JJ, van Esch B, Garssen J (2017) The efficacy of oral and subcutaneous antigen-specific immunotherapy in murine cow’s milk- and peanut allergy models. Clin Transl Allergy 7:35. https://doi.org/10.1186/s13601-017-0170-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kulis M, Macqueen I, Li Y, Guo R, Zhong XP, Burks AW (2012) Pepsinized cashew proteins are hypoallergenic and immunogenic and provide effective immunotherapy in mice with cashew allergy. J Allergy Clin Immunol 130(3):716–723. https://doi.org/10.1016/j.jaci.2012.05.044

    Article  CAS  PubMed  Google Scholar 

  79. Vinje NE, Namork E, Lovik M (2011) Anaphylactic reactions in mice with Fenugreek allergy. Scand J Immunol 74(4):342–353. https://doi.org/10.1111/j.1365-3083.2011.02587.x

    Article  CAS  PubMed  Google Scholar 

  80. Ganeshan K, Neilsen CV, Hadsaitong A, Schleimer RP, Luo X, Bryce PJ (2009) Impairing oral tolerance promotes allergy and anaphylaxis: a new murine food allergy model. J Allergy Clin Immunol 123(1):231–238. e234. https://doi.org/10.1016/j.jaci.2008.10.011

    Article  CAS  PubMed  Google Scholar 

  81. Tsilochristou O, du Toit G, Sayre PH, Roberts G, Lawson K, Sever ML, Bahnson HT, Radulovic S, Basting M, Plaut M, Lack G, Immune Tolerance Network Learning Early About Peanut Allergy Study T (2019) Association of Staphylococcus aureus colonization with food allergy occurs independently of eczema severity. J Allergy Clin Immunol 144(2):494–503. https://doi.org/10.1016/j.jaci.2019.04.025

    Article  Google Scholar 

  82. Yang PC, Xing Z, Berin CM, Soderholm JD, Feng BS, Wu L, Yeh C (2007) TIM-4 expressed by mucosal dendritic cells plays a critical role in food antigen-specific Th2 differentiation and intestinal allergy. Gastroenterology 133(5):1522–1533. https://doi.org/10.1053/j.gastro.2007.08.006

    Article  CAS  PubMed  Google Scholar 

  83. Ou LS, Goleva E, Hall C, Leung DY (2004) T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J Allergy Clin Immunol 113(4):756–763. https://doi.org/10.1016/j.jaci.2004.01.772

    Article  CAS  PubMed  Google Scholar 

  84. Schulke S, Albrecht M (2019) Mouse models for food allergies: where do we stand? Cell 8(6). https://doi.org/10.3390/cells8060546

  85. Tordesillas L, Goswami R, Benede S, Grishina G, Dunkin D, Jarvinen KM, Maleki SJ, Sampson HA, Berin MC (2014) Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest 124(11):4965–4975. https://doi.org/10.1172/JCI75660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. HogenEsch H, O’Hagan DT, Fox CB (2018) Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. NPJ Vaccines 3:51. https://doi.org/10.1038/s41541-018-0089-x

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kool M, Petrilli V, De Smedt T, Rolaz A, Hammad H, van Nimwegen M, Bergen IM, Castillo R, Lambrecht BN, Tschopp J (2008) Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 181(6):3755–3759. https://doi.org/10.4049/jimmunol.181.6.3755

    Article  CAS  PubMed  Google Scholar 

  88. Kong J, Chalcraft K, Mandur TS, Jimenez-Saiz R, Walker TD, Goncharova S, Gordon ME, Naji L, Flader K, Larche M, Chu DK, Waserman S, McCarry B, Jordana M (2015) Comprehensive metabolomics identifies the alarmin uric acid as a critical signal for the induction of peanut allergy. Allergy 70(5):495–505. https://doi.org/10.1111/all.12579

    Article  CAS  PubMed  Google Scholar 

  89. Proust B, Astier C, Jacquenet S, Ogier V, Magueur E, Roitel O, Belcourt C, Morisset M, Moneret-Vautrin DA, Bihain BE, Kanny G (2008) A single oral sensitization to peanut without adjuvant leads to anaphylaxis in mice. Int Arch Allergy Immunol 146(3):212–218. https://doi.org/10.1159/000115889

    Article  CAS  PubMed  Google Scholar 

  90. Liu X, Feng J, Xu ZR, Wang YZ, Liu JX (2008) Oral allergy syndrome and anaphylactic reactions in BALB/c mice caused by soybean glycinin and beta-conglycinin. Clin Exp Allergy 38(2):350–356. https://doi.org/10.1111/j.1365-2222.2007.02893.x

    Article  CAS  PubMed  Google Scholar 

  91. Chen L, Chen J, Ren J, Zhao M (2011) Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. J Agric Food Chem 59(6):2600–2609. https://doi.org/10.1021/jf103771x

    Article  CAS  PubMed  Google Scholar 

  92. Gonipeta B, Parvataneni S, Paruchuri P, Gangur V (2010) Long-term characteristics of hazelnut allergy in an adjuvant-free mouse model. Int Arch Allergy Immunol 152(3):219–225. https://doi.org/10.1159/000283028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gonipeta B, Parvataneni S, Tempelman RJ, Gangur V (2009) An adjuvant-free mouse model to evaluate the allergenicity of milk whey protein. J Dairy Sci 92(10):4738–4744. https://doi.org/10.3168/jds.2008-1927

    Article  CAS  PubMed  Google Scholar 

  94. Tordesillas L, Mondoulet L, Blazquez AB, Benhamou PH, Sampson HA, Berin MC (2017) Epicutaneous immunotherapy induces gastrointestinal LAP(+) regulatory T cells and prevents food-induced anaphylaxis. J Allergy Clin Immunol 139(1):189–201. e184. https://doi.org/10.1016/j.jaci.2016.03.057

    Article  CAS  PubMed  Google Scholar 

  95. Wavrin S, Bernard H, Wal JM, Adel-Patient K (2015) Influence of the route of exposure and the matrix on the sensitisation potency of a major cows’ milk allergen. Clin Transl Allergy 5(1):3. https://doi.org/10.1186/s13601-015-0047-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Benede S, Lopez-Exposito I, Lopez-Fandino R, Molina E (2014) Identification of IgE-binding peptides in hen egg ovalbumin digested in vitro with human and simulated gastroduodenal fluids. J Agric Food Chem 62(1):152–158. https://doi.org/10.1021/jf404226w

    Article  CAS  PubMed  Google Scholar 

  97. Oyoshi MK, Oettgen HC, Chatila TA, Geha RS, Bryce PJ (2014) Food allergy: Insights into etiology, prevention, and treatment provided by murine models. J Allergy Clin Immunol 133(2):309–317. https://doi.org/10.1016/j.jaci.2013.12.1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dunkin D, Berin MC, Mayer L (2011) Allergic sensitization can be induced via multiple physiologic routes in an adjuvant-dependent manner. J Allergy Clin Immunol 128(6):1251–1258. e1252. https://doi.org/10.1016/j.jaci.2011.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Oyoshi MK, Larson RP, Ziegler SF, Geha RS (2010) Mechanical injury polarizes skin dendritic cells to elicit a T(H)2 response by inducing cutaneous thymic stromal lymphopoietin expression. J Allergy Clin Immunol 126(5):976–984. https://doi.org/10.1016/j.jaci.2010.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE, Sattentau QA, Comeau MR, Spergel JM, Artis D (2014) Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol 133(5):1390–1399. https://doi.org/10.1016/j.jaci.2014.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Han H, Roan F, Johnston LK, Smith DE, Bryce PJ, Ziegler SF (2018) IL-33 promotes gastrointestinal allergy in a TSLP-independent manner. Mucosal Immunol 11(2):578. https://doi.org/10.1038/mi.2017.82

    Article  CAS  PubMed  Google Scholar 

  102. Leyva-Castillo JM, Galand C, Kam C, Burton O, Gurish M, Musser MA, Goldsmith JD, Hait E, Nurko S, Brombacher F, Dong C, Finkelman FD, Lee RT, Ziegler S, Chiu I, Austen KF, Geha RS (2019) Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity 50(5):1262–1275. e1264. https://doi.org/10.1016/j.immuni.2019.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Callard RE, Harper JI (2007) The skin barrier, atopic dermatitis and allergy: a role for Langerhans cells? Trends Immunol 28(7):294–298. https://doi.org/10.1016/j.it.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  104. Hudson TJ (2006) Skin barrier function and allergic risk. Nat Genet 38(4):399–400. https://doi.org/10.1038/ng0406-399

    Article  CAS  PubMed  Google Scholar 

  105. Fischer R, McGhee JR, Vu HL, Atkinson TP, Jackson RJ, Tome D, Boyaka PN (2005) Oral and nasal sensitization promote distinct immune responses and lung reactivity in a mouse model of peanut allergy. Am J Pathol 167(6):1621–1630. https://doi.org/10.1016/S0002-9440(10)61246-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wavrin S, Bernard H, Wal JM, Adel-Patient K (2014) Cutaneous or respiratory exposures to peanut allergens in mice and their impacts on subsequent oral exposure. Int Arch Allergy Immunol 164(3):189–199. https://doi.org/10.1159/000363444

    Article  CAS  PubMed  Google Scholar 

  107. Dolence JJ, Kobayashi T, Iijima K, Krempski J, Drake LY, Dent AL, Kita H (2018) Airway exposure initiates peanut allergy by involving the IL-1 pathway and T follicular helper cells in mice. J Allergy Clin Immunol 142(4):1144–1158. e1148. https://doi.org/10.1016/j.jaci.2017.11.020

    Article  CAS  PubMed  Google Scholar 

  108. Frei R, Lauener RP, Crameri R, O’Mahony L (2012) Microbiota and dietary interactions: an update to the hygiene hypothesis? Allergy 67(4):451–461. https://doi.org/10.1111/j.1398-9995.2011.02783.x

    Article  CAS  PubMed  Google Scholar 

  109. Plunkett CH, Nagler CR (2017) The influence of the microbiome on allergic sensitization to food. J Immunol 198(2):581–589. https://doi.org/10.4049/jimmunol.1601266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cahenzli J, Koller Y, Wyss M, Geuking MB, McCoy KD (2013) Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14(5):559–570. https://doi.org/10.1016/j.chom.2013.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, Tjota MY, Seo GY, Cao S, Theriault BR, Antonopoulos DA, Zhou L, Chang EB, Fu YX, Nagler CR (2014) Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A 111(36):13145–13150. https://doi.org/10.1073/pnas.1412008111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Abdel-Gadir A, Stephen-Victor E, Gerber GK, Noval Rivas M, Wang S, Harb H, Wang L, Li N, Crestani E, Spielman S, Secor W, Biehl H, DiBenedetto N, Dong X, Umetsu DT, Bry L, Rachid R, Chatila TA (2019) Microbiota therapy acts via a regulatory T cell MyD88/RORgammat pathway to suppress food allergy. Nat Med 25(7):1164–1174. https://doi.org/10.1038/s41591-019-0461-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lyons A, O’Mahony D, O’Brien F, MacSharry J, Sheil B, Ceddia M, Russell WM, Forsythe P, Bienenstock J, Kiely B, Shanahan F, O’Mahony L (2010) Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models. Clin Exp Allergy 40(5):811–819. https://doi.org/10.1111/j.1365-2222.2009.03437.x

    Article  CAS  PubMed  Google Scholar 

  114. Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM, Burzyn D, Ortiz-Lopez A, Lobera M, Yang J, Ghosh S, Earl A, Snapper SB, Jupp R, Kasper D, Mathis D, Benoist C (2015) Mucosal Immunology. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science 349(6251):993–997. https://doi.org/10.1126/science.aaa9420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Blazquez AB, Berin MC (2017) Microbiome and food allergy. Transl Res 179:199–203. https://doi.org/10.1016/j.trsl.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  116. Mirotti L, Florsheim E, Rundqvist L, Larsson G, Spinozzi F, Leite-de-Moraes M, Russo M, Alcocer M (2013) Lipids are required for the development of Brazil nut allergy: the role of mouse and human iNKT cells. Allergy 68(1):74–83. https://doi.org/10.1111/all.12057

    Article  CAS  PubMed  Google Scholar 

  117. Palladino C, Narzt MS, Bublin M, Schreiner M, Humeniuk P, Gschwandtner M, Hafner C, Hemmer W, Hoffmann-Sommergruber K, Mildner M, Palomares O, Gruber F, Breiteneder H (2018) Peanut lipids display potential adjuvanticity by triggering a pro-inflammatory response in human keratinocytes. Allergy 73(8):1746–1749. https://doi.org/10.1111/all.13475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cecilia Berin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Benedé, S., Berin, M.C. (2021). Applications of Mouse Models to the Study of Food Allergy. In: Nagamoto-Combs, K. (eds) Animal Models of Allergic Disease. Methods in Molecular Biology, vol 2223. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1001-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1001-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1000-8

  • Online ISBN: 978-1-0716-1001-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics