Skip to main content

SnoopLigase-Mediated Peptide–Peptide Conjugation and Purification

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2208))

Abstract

Covalently linking together different proteins can enhance functionality for a range of applications. We have developed the SnoopLigase peptide–peptide conjugation method to easily and specifically link proteins fused to the peptides SnoopTagJr or DogTag via an isopeptide bond. SnoopLigase conjugation has been applied for enhancing enzyme resilience and for antigen oligomerization to enhance vaccine efficacy. Following conjugation, SnoopLigase and unreacted substrates can be removed by solid-phase immobilization of SnoopLigase, yielding purified protein–protein conjugates. Here, we describe procedures for designing tag-fused proteins, SnoopLigase purification, and ligation of SnoopTagJr and DogTag. We further define steps for the purification of the ligated product and quantification of ligation success.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Banerjee A, Howarth M (2018) Nanoteamwork: covalent protein assembly beyond duets towards protein ensembles and orchestras. Curr Opin Biotechnol 51:16–23

    Article  CAS  Google Scholar 

  2. Mootz HD (2009) Split inteins as versatile tools for protein semisynthesis. Chembiochem 10:2579–2589

    Article  CAS  Google Scholar 

  3. Pishesha N, Ingram JR, Ploegh HL (2018) Sortase A: a model for transpeptidation and its biological applications. Annu Rev Cell Dev Biol 34:163–188

    Article  CAS  Google Scholar 

  4. Nguyen GK, Wang S, Qiu Y et al (2014) Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol 10:732–738

    Google Scholar 

  5. Reddington SC, Howarth M (2015) Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr Opin Chem Biol 29:94–99

    Article  CAS  Google Scholar 

  6. Fierer JO, Veggiani G, Howarth M (2014) SpyLigase peptide–peptide ligation polymerizes affibodies to enhance magnetic cancer cell capture. Proc Natl Acad Sci 111:E1176–E1181

    Article  CAS  Google Scholar 

  7. Wu XL, Liu Y, Liu D et al (2018) An intrinsically disordered peptide-peptide stapler for highly efficient protein ligation both in vivo and in vitro. J Am Chem Soc 140:17474–17483

    Article  CAS  Google Scholar 

  8. Buldun CM, Jean JX, Bedford MR et al (2018) SnoopLigase catalyzes peptide-peptide locking and enables solid-phase conjugate isolation. J Am Chem Soc 140:3008–3018

    Article  CAS  Google Scholar 

  9. Schoene C, Bennett SP, Howarth M (2016) SpyRings declassified. Methods Enzymol 580:149–167

    Article  CAS  Google Scholar 

  10. Brune KD, Howarth M (2018) New routes and opportunities for modular construction of particulate vaccines: stick, click, and glue. Front Immunol 9:1432

    Article  Google Scholar 

  11. Andersson A-MC, Buldun CM, Pattinson DJ et al (2019) SnoopLigase peptide-peptide conjugation enables modular vaccine assembly. Sci Rep 9:4625

    Article  Google Scholar 

  12. Fairhead M, Howarth M (2015) Site-specific biotinylation of purified proteins using BirA. Methods Mol Biol 1266:171–184

    Article  CAS  Google Scholar 

  13. Veggiani G, Nakamura T, Brenner MD et al (2016) Programmable polyproteams built using twin peptide superglues. Proc Natl Acad Sci 113:1202–1207

    Google Scholar 

  14. Wieduwild R, Howarth M (2018) Assembling and decorating hyaluronan hydrogels with twin protein superglues to mimic cell-cell interactions. Biomaterials 180:253–264

    Article  CAS  Google Scholar 

  15. Wriggers W, Chakravarty S, Jennings PA (2005) Control of protein functional dynamics by peptide linkers. Biopolymers 80:736–746

    Article  CAS  Google Scholar 

  16. van Rosmalen M, Krom M, Merkx M (2017) Tuning the flexibility of glycine-serine linkers to allow rational design of multidomain proteins. Biochemistry 56:6565–6574

    Google Scholar 

  17. Buldun CM (2017) Synthetic biology engineering to catalyse unbreakable linkage between peptide building blocks. DPhil Thesis, University of Oxford

    Google Scholar 

  18. Oesterle S, Roberts TM, Widmer LA et al (2017) Sequence-based prediction of permissive stretches for internal protein tagging and knockdown. BMC Biol 15:100

    Article  Google Scholar 

  19. Salis HM (2011) The ribosome binding site calculator. Methods Enzymol 498:19–42

    Article  CAS  Google Scholar 

  20. O’ Callaghan CA, Byford MF, Wyer JR et al (1999) BirA enzyme: production and application in the study of membrane receptor–ligand interactions by site-specific biotinylation. Anal Biochem 266:9–15

    Google Scholar 

  21. Zhang WB, Sun F, Tirrell DA et al (2013) Controlling macromolecular topology with genetically encoded SpyTag-SpyCatcher chemistry. J Am Chem Soc 135:13988–13997

    Google Scholar 

  22. Ke N, Landgraf D, Paulsson J et al (2016) Visualization of periplasmic and cytoplasmic proteins with a self-labeling protein tag. J Bacteriol 198:1035–1043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Can M. Buldun and Irsyad N.A. Khairil Anuar contributed equally to this work.

Funding for C.M.B. was provided by the Engineering and Physical Sciences Research Council (EPSRC) and Corpus Christi College Oxford. Funding for I.N.A.K.A. was provided by Yayasan Khazanah, Oxford Centre for Islamic Studies, and St. John’s College Oxford. M.H. was funded by the Biotechnology and Biological Sciences Research Council (BBSRC, BB/S007369/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Howarth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Buldun, C.M., Khairil Anuar, I.N.A., Howarth, M. (2021). SnoopLigase-Mediated Peptide–Peptide Conjugation and Purification. In: Ryadnov, M. (eds) Polypeptide Materials. Methods in Molecular Biology, vol 2208. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0928-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0928-6_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0927-9

  • Online ISBN: 978-1-0716-0928-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics