Skip to main content

Macroporous Polymer Monoliths for Affinity Chromatography and Solid-Phase Enzyme Processing

  • Protocol
  • First Online:
Book cover Protein Downstream Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2178))

  • 2123 Accesses

Abstract

Nowadays, monolithic stationary phases, because of their special morphology and enormous permeability, are widely used for the development and realization of fast dynamic and static processes based on the mass transition between liquid and solid phases. These are liquid chromatography, solid-phase synthesis, microarrays, flow-through enzyme reactors, etc. High-performance liquid chromatography on monoliths, including the bioaffinity mode, represents unique technique appropriate for fast and efficient separation of biological (macro)molecules of different sizes and shapes (proteins, nucleic acids, peptides), as well as such supramolecular systems as viruses.

In the edited chapter, the examples of the application of commercially available macroporous monoliths for modern affinity processing are presented. In particular, the original methods developed for efficient isolation and fractionation of monospecific antibodies from rabbit blood sera, the possibility of simultaneous affinity separation of protein G and serum albumin from human serum, the isolation of recombinant products, such as protein G and tissue plasminogen activator, respectively, are described in detail. The suggested and realized multifunctional fractionation of polyclonal pools of antibodies by the combination of several short monolithic columns (disks) with different affinity functionalities stacked in the same cartridge represents the original and practically valuable method that can be used in biotechnology. In addition, macroporous monoliths were adapted to the immobilization of such different enzymes as polynucleotide phosphorylase, ribonuclease A, α-chymotrypsin, chitinolytic biocatalysts, β-xylosidase, and β-xylanase. The possibility of use of immobilized enzyme reactors based on monoliths for different purposes is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Groarke R, Brabazon D (2016) Methacrylate polymer monoliths for separation applications. Materials 9:446

    Article  CAS  PubMed Central  Google Scholar 

  2. González-González M, González-Valdez J, Mayolo-Deloisa K, Rito-Palomares M (2017) Monolithic chromatography: insights and practical perspectives. J Chem Technol Biotechnol 92:9–13

    Article  CAS  Google Scholar 

  3. Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS (2013) Affinity monolith chromatography: a review of principles and recent analytical applications. Anal Bioanal Chem 405:2133–2145

    Article  CAS  Google Scholar 

  4. Švec F, Tennikova TB, Deyl Z (2003) Monolithic materials : preparation, properties and applications. Elsevier, Amsterdam

    Google Scholar 

  5. Satzer P, Sommer R, Paulsson J, Rodler A, Zehetner R, Hofstädter K, Klade C, Jungbauer A (2018) Monolith affinity chromatography for the rapid quantification of a single-chain variable fragment immunotoxin. J Sep Sci 41:3051–3059

    Article  CAS  PubMed Central  Google Scholar 

  6. Lendero Krajnc N, Podgornik A, Štrancar A, Černigoj U, Nemec B, Vidic U, Vidič J, Gašperšič J (2016) Characterization of methacrylate chromatographic monoliths bearing affinity ligands. J Chromatogr A 1464:72–78

    Article  CAS  Google Scholar 

  7. Naldi M, Tramarin A, Bartolini M (2018) Immobilized enzyme-based analytical tools in the -omics era: recent advances. J Pharm Biomed Anal 160:222–237

    Article  CAS  Google Scholar 

  8. Han X, Xie Y, Wu Q, Wu S (2019) The effect of monolith properties on the digestion performance of monolith-based immobilized enzyme microreactor. J Chromatogr Sci 57:116–121

    Article  CAS  Google Scholar 

  9. Vlakh EG, Tennikova TB (2013) Flow-through immme reactors based on monoliths: I. Preparation of heterogeneous biocatalysts. J Sep Sci 36:110–127

    Article  CAS  Google Scholar 

  10. Ralla K, Anton F, Scheper T, Kasper C (2009) Application of conjoint liquid chromatography with monolithic disks for the simultaneous determination of immunoglobulin G and other proteins present in a cell culture medium. J Chromatogr A 1216:2671–2675

    Article  CAS  Google Scholar 

  11. Volokitina MV, Bobrov KS, Piens K, Eneyskaya EV, Tennikova TB, Vlakh EG, Kulminskaya AA (2015) Xylan degradation improved by a combination of monolithic columns bearing immobilized recombinant β-xylosidase from Aspergillus awamori X-100 and Grindamyl H121 β-xylanase. Biotechnol J 10:210–221

    Article  CAS  Google Scholar 

  12. Milačič R, Zuliani T, Vidmar J, Ščančar J (2016) Monolithic chromatography in speciation analysis of metal-containing biomolecules: a review. J Anal At Spectrom 31:1766–1779

    Article  CAS  Google Scholar 

  13. Waterborg JH, Matthews HR (2009) The Lowry method for protein quantitation. In: Walker JM (ed) The protein protocols handbook. Humana Press INC, Totowa, NJ, USA, p 1984

    Google Scholar 

  14. Ostryanina ND, Vlasov GP, Tennikova TB (2002) Multifunctional fractionation of polyclonal antibodies by immunoaffinity high-performance monolithic disk chromatography. J Chromatogr A 949:163–171

    Article  CAS  Google Scholar 

  15. Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  16. Platonova GA, Vlakh EG, Ivanova ND, Tennikova TB (2009) A flow-through enzymatic bioreactor based on immobilized α-chymotrypsin. Russ J Appl Chem 82(12):2182–2186

    Article  CAS  Google Scholar 

  17. Platonova GA, Surzhik MA, Tennikova TB, Vlasov GP, Timkovskii AL (1999) The catalysis of polyriboadenylate synthesis and phosphorolysis by polynucltotide phosphorylase immobilized on a new type of carrier. Russ J Bioorgan Chem 25:166–171

    Google Scholar 

  18. Wang X, Xia D, Han H, Peng K, Zhu P, Crommen J, Wang Q, Jiang Z (2018) Biomimetic small peptide functionalized affinity monoliths for monoclonal antibody purification. Anal Chim Acta 1017:57–65

    Article  CAS  Google Scholar 

  19. Vlakh E, Novikov A, Vlasov G, Tennikova T (2004) Solid phase peptide synthesis on epoxy-bearing methacrylate monoliths. J Pept Sci 10:719–730

    Article  CAS  Google Scholar 

  20. Meller K, Pomastowski P, Szumski M, Buszewski B (2017) Preparation of an improved hydrophilic monolith to make trypsin-immobilized microreactors. J Chromatogr B 1043:128–137

    Article  CAS  Google Scholar 

  21. Ponomareva EA, Kartuzova VE, Vlakh EG, Tennikova TB (2010) Monolithic bioreactors: effect of chymotrypsin immobilization on its biocatalytic properties. J Chromatogr B 878:567–574

    Article  CAS  Google Scholar 

  22. Han W, Yamauchi M, Hasegawa U, Noda M, Fukui K, van der Vlies AJ, Uchiyama S, Uyama H (2015) Pepsin immobilization on an aldehyde-modified polymethacrylate monolith and its application for protein analysis. J Biosci Bioeng 119:505–510

    Article  CAS  Google Scholar 

  23. Vlakh EG, Tennikova TB (2013) Flow-through immobilized enzyme reactors based on monoliths: I. preparation of heterogeneous biocatalysts. J Sep Sci 36:110–127

    Article  CAS  Google Scholar 

  24. Vlakh EG, Platonova GA, Vlasov GP, Kasper C, Tappe A, Kretzmer G, Tennikova TB (2003) In vitro comparison of complementary interactions between synthetic linear/branched oligo/poly-L-lysines and tissue plasminogen activator by means of high-performance monolithic-disk affinity chromatography. J Chromatogr A 992:128–138

    Article  CAS  Google Scholar 

  25. Platonova GA, Pankova GA, Il'ina IY, Vlasov GP, Tennikova TB (1999) Quantitative fast fractionation of a pool of polyclonal antibodies by immunoaffinity membrane chromatography. J Chromatogr A 852:129–140

    Article  CAS  Google Scholar 

  26. Gupalova TV, Lojkina OV, Palagnuk VG, Totolian AA, Tennikova TB (2002) Quantitative investigation of the affinity properties of different recombinant forms of protein G by means of high-performance monolithic chromatography. J Chromatogr A 949:185–193

    Article  CAS  Google Scholar 

  27. Vlakh EG, Volokitina MV, Vinokhodov DO, Tennikova TB (2014) Degradation of polyribonucleotides: biocatalysis and the monitoring of products. Appl Biochem Microbiol 50:600–607

    Google Scholar 

  28. Ponomareva EA, Kartuzova VE, Vlakh EG, Tennikova TB (2010) Monolithic bioreactors: effect of chymotrypsin immobilization on its biocatalytic properties. J Chromatogr B Anal Technol Biomed Life Sci 878:567–574

    Article  CAS  Google Scholar 

  29. Vlakh E, Ostryanina N, Jungbauer A, Tennikova T (2004) Use of monolithic sorbents modified by directly synthesized peptides for affinity separation of recombinant tissue plasminogen activator (t-PA). J Biotechnol 107:275–284

    Article  CAS  Google Scholar 

  30. Vlakh EG, Tappe A, Kasper C, Tennikova TB (2004) Monolithic peptidyl sorbents for comparison of affinity properties of plasminogen activators. J Chromatogr B Anal Technol Biomed Life Sci 810:15–23

    Article  CAS  Google Scholar 

  31. Kalashnikova IV, Ivanova ND, Evseeva TG, Menshikova AY, Vlakh EG, Tennikova TB (2007) Study of dynamic adsorption behavior of large-size protein-bearing particles. J Chromatogr A 1144:40–47

    Article  CAS  Google Scholar 

  32. Vlakh EG, Ponomareva EA, Tennikova TB (2014) A multienzyme bioreactor based on a chitinase complex. Appl Biochem Microbiol 50:441–446

    Article  CAS  Google Scholar 

  33. Volokitina MV, Nikitina AV, Tennikova TB, Korzhikova-Vlakh EG (2017) Immobilized enzyme reactors based on monoliths: effect of pore size and enzyme loading on biocatalytic process. Electrophoresis 38:2931–2939

    Article  CAS  Google Scholar 

  34. Raines RT, Ribonuclease A (1998) Chem Rev 98:1045–1065

    Article  CAS  Google Scholar 

  35. Ma W, Tang C, Lai L (2005) Specificity of trypsin and chymotrypsin: loop-motion-controlled dynamic correlation as a determinant. Biophys J 89:1183–1193

    Article  CAS  PubMed Central  Google Scholar 

  36. By H, Bpn S (1975) Use of IV-benzoyl-L-tyrosine substrate Ester as a protease. J Biol Chem 250:7366–7371

    Google Scholar 

  37. Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782

    Article  CAS  Google Scholar 

  38. Sousa S, Ramos A, Evtuguin DV, Gamelas JAF (2016) Xylan and xylan derivatives—their performance in bio-based films and effect of glycerol addition. Ind Crop Prod 94:682–689

    Article  CAS  Google Scholar 

  39. Ponomareva EA, Volokitina MV, Vinokhodov DO, Vlakh EG, Tennikova TB (2013) Biocatalytic reactors based on ribonuclease a immobilized on macroporous monolithic supports. Anal Bioanal Chem 405:2195–2206

    Article  CAS  Google Scholar 

  40. Martinović T, Andjelković U, Klobučar M, Černigoj U, Vidič J, Lučić M, Pavelić K, Josić D (2017) Affinity chromatography on monolithic supports for simultaneous and high-throughput isolation of immunoglobulins from human serum. Electrophoresis 38:2909–2913

    Article  CAS  Google Scholar 

  41. Vlakh EG, Tennikova TB (2013) Flow-through immobilized enzyme reactors based on monoliths: II. Kinetics study and application. J Sep Sci 36:110–127

    Article  CAS  Google Scholar 

  42. Mao Y, Černigoj U, Zalokar V, Štrancar A, Kulozik U (2017) Production of β-Lactoglobulin hydrolysates by monolith based immobilized trypsin reactors. Electrophoresis 38:2947–2956

    Article  CAS  Google Scholar 

  43. Masini JC, Svec F (2017) Porous monoliths for on-line sample preparation: a review. Anal Chim Acta 964:24–44

    Article  CAS  Google Scholar 

  44. Kent UM (1999) Purification of antibodies using ammonium sulfate fractionation or gel filtration. In: Javois LC (ed) Methods in molecular biology: immunocytochemical methods and protocols. Humana Press Inc, Totowa, NJ, pp 11–18

    Chapter  Google Scholar 

  45. Crowther JR (2009) The ELISA guidebook. In: Methods in molecular biology. Humana Press, Totowa, NJ, p 516

    Google Scholar 

  46. Strancar A, Barut M, Podgornik A, Koselj P, Josic D, Buchacher A (1998) Polymer based supports for fast separation of biomolecules. LC-GC Int 11:660–670

    Google Scholar 

  47. Kasper C, Meringova L, Freitag R, Tennikova T (1998) Fast isolation of protein receptors from streptococci G by means of macroporous affinity disks. J Chromatogr A 798:65–72

    Article  CAS  Google Scholar 

  48. Kurien BT, Scofield RH (2012) Protein Electrophoresis. In: Methods in molecular biology. Humana Press, Totowa, NJ, p 869

    Google Scholar 

  49. Gravanis I, Tsirka SE (2008) Tissue-type plasminogen activator as a therapeutic target in stroke. Expert Opin Ther Targets 12:159–170

    Article  CAS  Google Scholar 

  50. Thiebaut AM, Gauberti M, Ali C, Martinez De Lizarrondo S, Vivien D, Yepes M, Roussel BD (2018) The role of plasminogen activators in stroke treatment: fibrinolysis and beyond. Lancet Neurol 17:1121–1132

    Article  CAS  Google Scholar 

  51. Khan AL, Heys SD, Eremin O (1995) Synthetic polyribonucleotides: current role and potential use in oncological practice. Eur J Surg Oncol 21:224–227

    Article  CAS  Google Scholar 

  52. Naldi M, Černigoj U, Štrancar A, Bartolini M (2017) Towards automation in protein digestion: development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis. Talanta 167:143–157

    Article  CAS  Google Scholar 

  53. Volokitina MV, Vlakh EG, Platonova GA, Vinokhodov DO, Tennikova TB (2013) Polymer monoliths as efficient solid phases for enzymatic polynucleotide degradation followed by fast HPLC analysis. J Sep Sci 36:2793–2805

    Article  CAS  Google Scholar 

  54. Vlakh EG, Maksimova EF, Tennikova TB (2013) Monolithic polymeric sorbents for high-performance chromatography of synthetic polymers. Polym Sci Ser B 55:55–62

    Article  CAS  Google Scholar 

  55. Moussaoui M, Nogués MV, Guasch A, Barman T, Travers F, Cuchillo C (1998) The subsites structure of bovine pancreatic Ribonuclease a accounts for the abnormal kinetic behavior with Cytidine 2′,3′-cyclic phosphate. J Biol Chem 273:25565–25572

    Article  CAS  Google Scholar 

  56. Bartolini M, Greig NH, Yu Q, Andrisano V (2009) Immobilized butyrylcholinesterase in the characterization of new inhibitors that could ease Alzheimer’s disease. J Chromatogr A 1216:2730–2738

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to BIA Separations for long-term fruitful cooperation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Korzhikova-Vlakh, E.G., Platonova, G.A., Tennikova, T.B. (2021). Macroporous Polymer Monoliths for Affinity Chromatography and Solid-Phase Enzyme Processing. In: Labrou, N.E. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 2178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0775-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0775-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0774-9

  • Online ISBN: 978-1-0716-0775-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics