Skip to main content

Analysis of Chromosomal DNA Fragmentation in Apoptosis by Pulsed-Field Gel Electrophoresis

  • Protocol
  • First Online:
DNA Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2119))

Abstract

Double-strand DNA break (DSB) formation is a key feature of apoptosis called chromosomal DNA fragmentation. However, some apoptosis inducers introduce DNA damage-induced DSBs prior to induction of apoptotic chromosomal DNA fragmentation. To analyze these distinct breaks, we have developed a method using pulsed-field gel electrophoresis (PFGE) with a rotating gel electrophoresis system (RGE) that enables us to distinguish between apoptotic DSBs and DNA damaging agent-induced DSBs based on their mobility in the electrophoresis gel. Apoptotic DSBs appear as smeared low-molecular weight bands (less than 500 kb), while damage-induced DSBs result in a compact single band (more than 500 kb). Furthermore, using a caspase inhibitor, Z-VAD-FMK, we can confirm whether broken DNA fragments are produced as part of an apoptotic response. Overall, we succeeded in characterizing two individual apoptosis inducers and showed the different effects of those compounds on the induction of DNA breaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89(2):175–184

    Article  CAS  Google Scholar 

  2. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391(6662):43–50

    Article  CAS  Google Scholar 

  3. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146(5):905–916

    Article  CAS  Google Scholar 

  4. Hanada K, Budzowska M, Davies SL, van Drunen E, Onizawa H, Beverloo HB, Maas A, Essers J, Hickson ID, Kanaar R (2007) The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat Struct Mol Biol 14(11):1096–1104

    Article  CAS  Google Scholar 

  5. Eppink B, Tafel AA, Hanada K, van Drunen E, Hickson ID, Essers J, Kanaar R (2011) The response of mammalian cells to UV-light reveals Rad54-dependent and independent pathways of homologous recombination. DNA Repair (Amst) 10(11):1095–1105

    Article  CAS  Google Scholar 

  6. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  Google Scholar 

  7. Sakahira H, Iwamatsu A, Nagata S (2000) Specific chaperone-like activity of inhibitor of caspase-activated DNase for caspase-activated DNase. J Biol Chem 275(11):8091–8096

    Article  CAS  Google Scholar 

  8. Sakahira H, Enari M, Nagata S (2015) Corrigendum: cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 526(7575):728

    Article  CAS  Google Scholar 

  9. Yuste VJ, Sanchez-Lopez I, Sole C, Moubarak RS, Bayascas JR, Dolcet X, Encinas M, Susin SA, Comella JX (2005) The contribution of apoptosis-inducing factor, caspase-activated DNase, and inhibitor of caspase-activated DNase to the nuclear phenotype and DNA degradation during apoptosis. J Biol Chem 280(42):35670–35683

    Article  CAS  Google Scholar 

  10. Widlak P, Garrard WT (2009) Roles of the major apoptotic nuclease-DNA fragmentation factor-in biology and disease. Cell Mol Life Sci 66(2):263–274

    Article  CAS  Google Scholar 

  11. Slee EA, Zhu H, Chow SC, MacFarlane M, Nicholson DW, Cohen GM (1996) Benzyloxycarbonyl-Val-Ala-asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem J 315(Pt 1):21–24

    Article  CAS  Google Scholar 

  12. Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273(49):32608–32613

    Article  CAS  Google Scholar 

  13. Shimizu T, Pommier Y (1997) Camptothecin-induced apoptosis in p53-null human leukemia HL60 cells and their isolated nuclei: effects of the protease inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and serine proteases. Leukemia 11(8):1238–1244

    Article  CAS  Google Scholar 

  14. Lundin C, Erixon K, Arnaudeau C, Schultz N, Jenssen D, Meuth M, Helleday T (2002) Different roles for nonhomologous end joining and homologous recombination following replication arrest in mammalian cells. Mol Cell Biol 22(16):5869–5878

    Article  CAS  Google Scholar 

  15. Hansen LT, Lundin C, Spang-Thomsen M, Petersen LN, Helleday T (2003) The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer. Int J Cancer 105(4):472–479

    Article  CAS  Google Scholar 

  16. Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J, Kanaar R (2006) The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J 25(20):4921–4932

    Article  CAS  Google Scholar 

  17. Chu WK, Payne MJ, Beli P, Hanada K, Choudhary C, Hickson ID (2015) FBH1 influences DNA replication fork stability and homologous recombination through ubiquitylation of RAD51. Nat Commun 6:5931

    Article  CAS  Google Scholar 

  18. Abraham J, Lemmers B, Hande MP, Moynahan ME, Chahwan C, Ciccia A, Essers J, Hanada K, Chahwan R, Khaw AK, McPherson P, Shehabeldin A, Laister R, Arrowsmith C, Kanaar R, West SC, Jasin M, Hakem R (2003) Eme1 is involved in DNA damage processing and maintenance of genomic stability in mammalian cells. EMBO J 22(22):6137–6147

    Article  CAS  Google Scholar 

  19. McPherson JP, Lemmers B, Chahwan R, Pamidi A, Migon E, Matysiak-Zablocki E, Moynahan ME, Essers J, Hanada K, Poonepalli A, Sanchez-Sweatman O, Khokha R, Kanaar R, Jasin M, Hande MP, Hakem R (2004) Involvement of mammalian Mus81 in genome integrity and tumor suppression. Science 304(5678):1822–1826

    Article  CAS  Google Scholar 

  20. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361(15):1475–1485. https://doi.org/10.1056/NEJMra0804615

    Article  CAS  PubMed  Google Scholar 

  21. Terabayashi T, Hanada K (2018) Genome instability syndromes caused by impaired DNA repair and aberrant DNA damage responses. Cell Biol Toxicol 34(5):337–350

    Article  CAS  Google Scholar 

  22. Guainazzi A, Scharer OD (2010) Using synthetic DNA interstrand crosslinks to elucidate repair pathways and identify new therapeutic targets for cancer chemotherapy. Cell Mol Life Sci 67(21):3683–3697

    Article  CAS  Google Scholar 

  23. Hühn D, Bolck HA, Sartori AA (2013) Targeting DNA double-strand break signalling and repair: recent advances in cancer therapy. Swiss Med Wkly 143:w13837

    PubMed  Google Scholar 

  24. Efferth T, Miyachi H, Bartsch H (2007) Pharmacogenomics of a traditional Japanese herbal medicine (Kampo) for cancer therapy. Cancer Genomics Proteomics 4(2):81–91

    CAS  PubMed  Google Scholar 

  25. Wu Z, Wu LJ, Li LH, Tashiro S, Onodera S, Ikejima T (2004) Shikonin regulates HeLa cell death via caspase-3 activation and blockage of DNA synthesis. J Asian Nat Prod Res 6(3):155–166

    Article  CAS  Google Scholar 

  26. Wu Z, Wu L, Li L, Tashiro S, Onodera S, Ikejima T (2004) p53-mediated cell cycle arrest and apoptosis induced by shikonin via a caspase-9-dependent mechanism in human malignant melanoma A375-S2 cells. J Pharmacol Sci 94(2):166–176

    Article  CAS  Google Scholar 

  27. Liang W, Cai A, Chen G, Xi H, Wu X, Cui J, Zhang K, Zhao X, Yu J, Wei B, Chen L (2016) Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species. Sci Rep 6:38267

    Article  CAS  Google Scholar 

  28. Yang H, Zhou P, Huang H, Chen D, Ma N, Cui QC, Shen S, Dong W, Zhang X, Lian W, Wang X, Dou QP, Liu J (2009) Shikonin exerts antitumor activity via proteasome inhibition and cell death induction in vitro and in vivo. Int J Cancer 124(10):2450–2459

    Article  CAS  Google Scholar 

  29. Zhao Z, He X, Han W, Chen X, Liu P, Zhao X, Wang X, Zhang L, Wu S, Zheng X (2019) Genus Tetradium L.: a comprehensive review on traditional uses, phytochemistry, and pharmacological activities. J Ethnopharmacol 231:337–354

    Article  CAS  Google Scholar 

  30. Fang C, Zhang J, Qi D, Fan X, Luo J, Liu L, Tan Q (2014) Evodiamine induces G2/M arrest and apoptosis via mitochondrial and endoplasmic reticulum pathways in H446 and H1688 human small-cell lung cancer cells. PLoS One 9(12):e115204

    Article  Google Scholar 

  31. Pan X, Hartley JM, Hartley JA, White KN, Wang Z, Bligh SW (2012) Evodiamine, a dual catalytic inhibitor of type I and II topoisomerases, exhibits enhanced inhibition against camptothecin resistant cells. Phytomedicine 19(7):618–624

    Article  CAS  Google Scholar 

  32. Lee YC, Lee CH, Tsai HP, An HW, Lee CM, Wu JC, Chen CS, Huang SH, Hwang J, Cheng KT, Leiw PL, Chen CL, Lin CM (2015) Targeting of topoisomerase I for prognoses and therapeutics of Camptothecin-resistant ovarian Cancer. PLoS One 10(7):e0132579

    Article  Google Scholar 

  33. Sakasai R, Iwabuchi K (2016) The distinctive cellular responses to DNA strand breaks caused by a DNA topoisomerase I poison in conjunction with DNA replication and RNA transcription. Genes Genet Syst 90(4):187–194

    Article  Google Scholar 

  34. Kawashima Y, Yamaguchi N, Teshima R, Narahara H, Yamaoka Y, Anai H, Nishida Y, Hanada K (2017) Detection of DNA double-strand breaks by pulsed-field gel electrophoresis. Genes Cells 22(1):84–93

    Article  CAS  Google Scholar 

  35. Ryan AJ, Squires S, Strutt HL, Johnson RT (1991) Camptothecin cytotoxicity in mammalian cells is associated with the induction of persistent double strand breaks in replicating DNA. Nucleic Acids Res 19(12):3295–3300

    Article  CAS  Google Scholar 

  36. Hawtin RE, Stockett DE, Wong OK, Lundin C, Helleday T, Fox JA (2010) Homologous recombination repair is essential for repair of vosaroxin-induced DNA double-strand breaks. Oncotarget 1(7):606–619

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Editage (www.editage.jp) for English language editing. This research was supported by a Grant-in-Aid for the Cooperative Research Project from Institute of Natural Medicine, University of Toyama in 2014 and by JSPS KAKENHI Grant Number 16 K07119 to T. T. and 17 K08339 to T. I.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takeshi Terabayashi or Katsuhiro Hanada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Terabayashi, T., Tokumaru, A., Ishizaki, T., Hanada, K. (2020). Analysis of Chromosomal DNA Fragmentation in Apoptosis by Pulsed-Field Gel Electrophoresis. In: Hanada, K. (eds) DNA Electrophoresis. Methods in Molecular Biology, vol 2119. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0323-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0323-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0322-2

  • Online ISBN: 978-1-0716-0323-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics