Skip to main content

A Short Historical Perspective of Methods in Inositol Phosphate Research

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2091))

Abstract

The multitudinous inositol phosphate family elicits a wide range of molecular effects that regulate countless biological responses. In this review, I provide a methodological viewpoint of the manner in which key advances in the field of inositol phosphate research were made. I also note some of the considerable challenges that still lie ahead.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Berridge MJ (2005) Unlocking the secrets of cell signaling. Annu Rev Physiol 67:1–21

    Article  CAS  PubMed  Google Scholar 

  2. Shears SB (2004) How versatile are inositol phosphate kinases? Biochem J 377:265–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shears SB (2018) Intimate connections: inositol pyrophosphates at the interface of metabolic regulation and cell-signaling. J Cell Physiol 233:1897–1912

    Article  CAS  PubMed  Google Scholar 

  4. Majerus PW (1992) Inositol phosphate biochemistry. Annu Rev Biochem 61:225–250

    Article  CAS  PubMed  Google Scholar 

  5. Barker CJ, Berggren PO (2013) New horizons in cellular regulation by inositol polyphosphates: insights from the pancreatic Beta-cell. Pharmacol Rev 65(2):641–669

    Article  CAS  PubMed  Google Scholar 

  6. Ganapathi SB, Wei S-G, Lamb FS, Shears SB (2013) Functional regulation of Clc-3 in the migration of vascular smooth muscle cells. Hypertension 61:174–179

    Article  CAS  PubMed  Google Scholar 

  7. Kim E, Beon J, Lee S, Park J, Kim S (2015) Ipmk: a versatile regulator of nuclear signaling events. Adv Biol Regul 61:25–32

    Article  PubMed  CAS  Google Scholar 

  8. Jordan PA, Kayser-Bricker KJ, Miller SJ (2010) Asymmetric phosphorylation through catalytic P(III) phosphoramidite transfer: enantioselective synthesis of D-myo-inositol-6-phosphate. Proc Natl Acad Sci U S A 107(48):20620–20624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilcox RA, Safrany ST, Lampe D, Mills SJ, Nahorski SR, Potter BVL (1994) Modification at C2 of myo-inositol 1,4,5-trisphosphate produces inositol trisphosphates and tetrakisphosphates with potent biological activities. Eur J Biochem 223:115–124

    Article  CAS  PubMed  Google Scholar 

  10. Tan Z, Bruzik KS, Shears SB (1997) Properties of the inositol 3,4,5,6-tetrakisphosphate 1-kinase purified from rat liver. Regulation of enzyme activity by inositol 1,3,4-trisphosphate. J Biol Chem 272:2285–2290

    Article  CAS  PubMed  Google Scholar 

  11. Yang X, Shears SB (2000) Multitasking in signal transduction by a promiscuous human ins(3,4,5,6)P4 1-kinase/ins(1,3,4)P3 5/6-kinase. Biochem J 351:551–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson MP, Majerus PW (1996) Isolation of inositol 1,3,4-trisphosphate 5/6-kinase, Cdna cloning, and expression of recombinant enzyme. J Biol Chem 271:11904–11910

    Article  CAS  PubMed  Google Scholar 

  13. Scherer J (1850) Uber Eine Neue Aus Dem Muskelfleisch Gewonnene Zuckerart. Liebigs Ann Chem 73:322–322

    Article  Google Scholar 

  14. Nagai Y, Kimura Y (1958) Detection of inositol and inositol diphosphate on paper chromatograms. Nature 181(4625):1730–1731

    Article  CAS  PubMed  Google Scholar 

  15. Posternak S (1919) Sur la synthése de l'ether hexaphosphorique de l'inosite avec le principe phospho-organique de réserve des plantes vertes. C R Acad Sci 169:138–140

    CAS  Google Scholar 

  16. Posternak S (1903) Sur un nouveau principe phospho-organique d'origine végétale, la phytine. Compt rend Soc de biol 55:1190–1192

    Google Scholar 

  17. Suzuki U, Yoshimura K (1907) Ueber die verbreitung von “anhydro-oxy-methulen-diphosphor-sauren salzen” oder “phytin” in pflanzen. Tokyo Imp Univ, College of Agr Bul 8:495–502

    Google Scholar 

  18. Suzuki U, Yoshimura K, Takaishi T (1907) Ueber ein enzym "phytase" das "anhydro-oxy-methylendiphosphorsäure" spaltet. The bulletin of the College of Agriculture, Tokyo Imperial University 7:503–512

    Google Scholar 

  19. Heubner W, Stadler S (1914) Über eine titrationmethode zur bestimmung des phytins. Biochem Z 64:422–437

    CAS  Google Scholar 

  20. McCance RA, Widdowson EM (1935) Phytin in human nutrition. Biochem J 29(12):2694–2699

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Abelson PH (1999) A potential phosphate crisis. Science 283:2015

    Article  CAS  PubMed  Google Scholar 

  22. Rapoport S (1940) Phytic acid in avian erythrocytes. J Biol Chem 135:403–406

    CAS  Google Scholar 

  23. Rapoport S, Guest GM (1941) Distribution of acid-soluble phosphorous in blood cells of various vertebrates. JBC 138:269–282

    CAS  Google Scholar 

  24. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorous. J Biol Chem 66:375–400

    CAS  Google Scholar 

  25. Johnson LF, Tate ME (1969) Structure of "phytic acids". Can J Chem 47:63–73

    Article  CAS  Google Scholar 

  26. Desjobert A, Petek F (1956) Paper chromatography of inositol phosphates; use in study of hydrolytic degradation of inositol hexaphosphate. Bull Soc Chim Biol (Paris) 38(5-6):871–883

    CAS  Google Scholar 

  27. Anderson G (1955) Paper chromatography of inositol phosphates. Nature 175:863. https://doi.org/10.1038/175863b0

    Article  CAS  Google Scholar 

  28. Arnold PW (1956) Paper ionophoresis of inositol phosphates, with a note on the acid hydrolysates of phytic acid. Biochim Biophys Acta 19(3):552–554

    Article  CAS  PubMed  Google Scholar 

  29. Hanes CS, Isherwood FA (1949) Separation of the phosphoric esters on the filter paper chromatogram. Nature 164(4183):1107–1112. illust

    Article  CAS  PubMed  Google Scholar 

  30. Wade HE, Morgan DM (1953) Detection of phosphate esters on paper chromatograms. Nature 171(4351):529–530

    Article  CAS  PubMed  Google Scholar 

  31. Bohm P, Richarz G (1954) Quantitative determination of inositol in phosphatides. Hoppe Seylers Z Physiol Chem 298(3-5):110–120

    Article  CAS  PubMed  Google Scholar 

  32. Cosgrove DJ (1963) The isolation of myoinositol pentaphosphates from hydrolysates of phytic acid. Biochem J 89:172–175

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hubscher G, Hawthorne JN (1957) The isolation of inositol monophosphate from liver. Biochem J 67(3):523–527

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Smith DH, Clark FE (1952) Chromatographic separations of inositol phosphorus compounds. Soil Sci Soc Am Proc 16(2):170–172

    Article  Google Scholar 

  35. Hawthorne JN, Hubscher G (1959) Separation of glycerylphosphoryl inositol and related compounds on ion-exchange columns. Biochem J 71(1):195–200

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tomlinson RV, Ballou CE (1962) Myoinositol polyphosphate intermediates in the dephosphorylation of phytic acid by phytase. Biochemistry 1:166–171

    Article  CAS  PubMed  Google Scholar 

  37. Shears SB (1997) Measurement of inositol phosphate turnover in intact cells and cell-free systems. In: Shears SB (ed) Signalling by inositides: a practical approach. Oxford University Press, Oxford, pp 33–52

    Google Scholar 

  38. Popiolek M, Nguyen DP, Reinhart V, Edgerton JR, Harms J, Lotarski SM, Steyn SJ, Davoren JE, Grimwood S (2016) Inositol phosphate accumulation in vivo provides a measure of muscarinic M1 receptor activation. Biochemistry 55(51):7073–7085

    Article  CAS  PubMed  Google Scholar 

  39. Isaacks RE, Harkness DR (1980) Erythrocyte organic phosphates and hemoglobin function in birds reptiles and fishes. Amer Zool 20:115–129

    Article  CAS  Google Scholar 

  40. Lapan EA (1975) Magnesium inositol Hexaphosphate deposits in Mesozoan dispersal larvae. Exp Cell Res 94:277–282

    Article  CAS  PubMed  Google Scholar 

  41. Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC (2000) Binding of inositol phosphate to DNA-Pk and stimulation of double-Strand break repair. Cell 102:721–729

    Article  CAS  PubMed  Google Scholar 

  42. Lin H, Fridy PC, Ribeiro AA, Choi JH, Barma DK, Vogel G, Falck JR, Shears SB, York JD, Mayr GW (2009) Structural analysis and detection of biological inositol pyrophosphates reveals that the Vip/Ppip5k family are 1/3-kinases. J Biol Chem 284:1863–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin J-B, Foray M-F, Klein G, Satre M (1987) Identification of inositol Hexakisphosphate in 32p-Nmr spectra of Dictyostelium amoebae. Relevance to intracellular Ph determination. Biochim Biophys Acta 931:16–25

    Article  CAS  PubMed  Google Scholar 

  44. Laussmann T, Hansen A, Reddy KM, Reddy KK, Falck JR, Vogel G (1998) Diphospho-myo-inositol phosphates in Dictyostelium and Polysphondylium: identification of a new bisdiphospho-myo-inositol tetrakisphosphate. febs 426:145–150

    Article  CAS  Google Scholar 

  45. Turner B, Paphazy M, Haygarth P, McKelvie I (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond [Biol] 357:449–469

    Article  CAS  Google Scholar 

  46. Posternak T, Schopfer WH, Reymond D (1942) Recherches Dans La Série Des Cyclites Vi. Sut La Configuration De La Méso-Inosite, De La Scyllite Et D'un Inosose Obtenu Par Voie Biochimique (Scyllo-Ms-Inosose). Helv Chim Acta 25:746–752

    Article  CAS  Google Scholar 

  47. Posternak T, Schopfer WH, Reymond D (1955) Biochimie Des Cyclitols I. Contribution À 1'étude Du Métabolisme Du Méso-Inositol Chez Le Rat. Helv Chim Acta 150:1283–1288

    Article  Google Scholar 

  48. Klenk E, Sakai R (1939) Inositmonophosphorsäure, Ein Spaltprodukt Der Sojabohnenphosphatide Z physiol Chem 258:33–38

    Article  CAS  Google Scholar 

  49. Folch J, Wooley DW (1942) Inositol, a constituent of brain phosphatide. J Biol Chem 142:963–964

    CAS  Google Scholar 

  50. Folch J (1949) Brain Diphosphoninositide, a new phosphatide having inositol Metadiphosphate as a constituent. J Biol Chem 177(2):505–519

    CAS  PubMed  Google Scholar 

  51. Grado C, Ballou CE (1961) Myo-inositol phosphates obtained by alkaline hydrolysis of beef brain Phosphoinositide. J Biol Chem 236:54–60

    CAS  PubMed  Google Scholar 

  52. Dittmer JC, Dawson RM (1961) The isolation of a new lipid, triphosphoinositide, and monophosphoinositide from ox brain. Biochem J 81:535–540

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dawson RM, Dittmer JC (1961) Evidence for the structure of brain triphosphoinositide from hydrolytic degradation studies. Biochem J 81:540–545

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Irvine RF (2016) A short history of inositol lipids. J Lipid Res 57(11):1987–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tomlinson RV, Ballou CE (1961) Complete characterization of the myo-inositol polyphosphates from beef brain phosphoinositide. J Biol Chem 236:1902–1906

    CAS  PubMed  Google Scholar 

  56. Brown DM, Stewart JC (1966) The structure of triphosphoinositide from beef brain. Biochim Biophys Acta 125(3):413–421

    Article  CAS  PubMed  Google Scholar 

  57. Dawson RMC (1954) The measurement of 32p labelling of individual Kephalins and lecithin in a small sample of tissue. Biochim Biophys Acta 14:374–379

    Article  CAS  PubMed  Google Scholar 

  58. Hokin LE (1952) The role of ribonucleic acids in amylase secretion by pancreatic slices. Biochim Biophys Acta 8: 225–226

    Google Scholar 

  59. Hokin LE, Hokin MR (1955) Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim Biophys Acta 18:102–110

    Article  CAS  PubMed  Google Scholar 

  60. Hokin LE, Hokin MR (1958) Phosphoinositides and protein secretion in pancreas slices. J Biol Chem 233(4):805–810

    CAS  PubMed  Google Scholar 

  61. Hokin L (1969) Functional activity in glands and synaptic tissue and the turnover of phosphatidylinositol. Ann N Y Acad Sci U S A 165:695–709

    Article  CAS  Google Scholar 

  62. Hokin MR, Hokin LE (1964) Interconversions of phosphatidylinositol and phosphatidic adid involved in the response to acetylcholine in the salt gland. In: Dawson RMC, Rhodes DN (eds) Metabolism and physiological significance of lipids. John Wiley and Sons, London, pp 423–434

    Google Scholar 

  63. Agranoff BW, Bradley RM, Brady RO (1958) The enzymatic synthesis of inositol phosphatide. J Biol Chem 233(5):1077–1083

    CAS  PubMed  Google Scholar 

  64. Stetten MR, Stetten D Jr (1946) Biological conversion of inositol into glucose. J Biol Chem 164:85–91

    CAS  PubMed  Google Scholar 

  65. Christensen SC, Kolbjorn JA, Simonsen LO (2003) Aberrant 3H in Ehrlich mouse ascites tumor cell nucleotides after in vivo labeling with myo-[2-3H]- and L-myo-[1-3H]inositol: implications for measuring inositol phosphate Signaling. Anal Biochem 313(2):283–291

    Article  CAS  PubMed  Google Scholar 

  66. Christensen S, Harbak H, Simonsen LO (1994) Aberrant 3H labelling of Atp during in vivo labelling of Ehrlich mouse ascites tumour cells with [2-3H]inositol is significant in the study of isomers of Insp3 and Insp4. Biochem J 300(Pt 3):859–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Agranoff BW, Murthy P, Seguin EB (1983) Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J Biol Chem 258:2076–2078

    CAS  PubMed  Google Scholar 

  68. Dangelmaier CA, Daniel JL, Smith JB (1986) Determination of basal and stimulated levels of inositol triphosphate in [32p]orthophosphate-labeled platelets. Anal Biochem 154(2):414–419

    Article  CAS  PubMed  Google Scholar 

  69. Hawthorne JN (1960) The inositol phospholipids. J Lipid Res 1:255–280

    CAS  PubMed  Google Scholar 

  70. Thompson W, Dawson RM (1964) The triphosphoinositide phosphodiesterase of brain tissue. Biochem J 91(2):237–243

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Durell J, Garland JT (1969) Acetylcholine-stimulated phosphodiesteratic cleavage of phosphoinositides: hypothetical role in membrane depolarization. Ann N Y Acad Sci 165(2):743–754

    Article  CAS  PubMed  Google Scholar 

  72. Durell J, Sodd MA, Friedel RO (1968) Acetylcholine stimulation of the phosphodiesteratic cleavage of guinea pig brain phosphoinositides. Life Sci 7:363–368

    Article  CAS  PubMed  Google Scholar 

  73. Heslop JP, Irvine RF, Tashjian AH, Berridge MJ (1985) Inositol tetrakis- and pentakisphosphates in Gh4 cells. J Exp Biol 119:395–401

    CAS  PubMed  Google Scholar 

  74. Kemp P, Hubscher G, Hawthorne JN (1961) Phosphoinositides. 3. Enzymic hydrolysis of inositol-containing phospholipids. Biochem J 79:193–200

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Menniti FS, Miller RN, Putney JW Jr, Shears SB (1993) Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J Biol Chem 268:3850–3856

    CAS  PubMed  Google Scholar 

  76. Stephens LR, Radenberg T, Thiel U, Vogel G, Khoo K-H, Dell A, Jackson TR, Hawkins PT, Mayr GW (1993) The detection, purification, structural characterization and metabolism of diphosphoinositol pentakisphosphate(S) and bisdiphosphoinositol tetrakisphosphate(S). J Biol Chem 268:4009–4015

    CAS  PubMed  Google Scholar 

  77. Lapetina EG, Michell RH (1973) A membrane-bound activity catalysing phosphatidylinositol breakdown to 1,2-diacylglycerol, D-myo-inositol 1:2-cyclic phosphate and D-myoinositol 1-phosphate. Biochem J 131:433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Michell RH, Lapetina EG (1972) Production of cyclic inositol phosphate in stimulated tissues. Nat New Biol 240(104):258–260

    Article  CAS  PubMed  Google Scholar 

  79. Dawson RM, Freinkel N, Jungalwala FB, Clarke N (1971) The enzymic formation of myoinositol 1:2-cyclic phosphate from phosphatidylinositol. Biochem J 122(4):605–607

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dawson RMC, Clarke N (1972) D-Myoinositol 1:2-cyclic phosphate 2-phosphohydrolase. Biochem J 127:113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Connolly TM, Wilson DB, Bross TE, Majerus PW (1986) Isolation and characterization of the inositol cyclic phosphate products of phosphoinositide cleavage by phospholipase C. metabolism in cell-free extracts. J Biol Chem 261:122–126

    CAS  PubMed  Google Scholar 

  82. Hughes AR, Takemura H, Putney JW Jr (1988) Kinetics of inositol 145-Trisphosphate and inositol cyclic 1:2,4,5-trisphosphate metabolism in intact rat parotid acinar cells. Relationship to calcium signalling. J Biol Chem 263:10314–10319

    CAS  PubMed  Google Scholar 

  83. Allison JH, Stewart MA (1971) Reduced brain inositol in Lithium-treated rats. Nat New Biol 233(43):267–268

    Article  CAS  PubMed  Google Scholar 

  84. Allison JH, Blisner ME, Holland WH, Hipps PP, Sherman WR (1976) Increased brain myo-inositol 1-phosphate in lithium-treated rats. Biochem Biophys Res Commun 71(2):664–670

    Article  CAS  PubMed  Google Scholar 

  85. Naccarato WF, Ray RE, Wells WW (1974) Biosynthesis of myo-inositol in rat mammary gland. Isolation and properties of the enzymes. Arch Biochem Biophys 164:194–201

    Article  CAS  PubMed  Google Scholar 

  86. Hallcher LM, Sherman WR (1960) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 255:10896–10901

    Google Scholar 

  87. Eisenberg F Jr, Bolden AH (1965) D-myo-inositol-1-phosphate, an intermediate in the biosynthesis of inositol in the mammal. Biochem Biophys Res Commun 21(2):100–105

    Article  CAS  PubMed  Google Scholar 

  88. Sherman WR, Leavitt AL, Honchar MP, Hallcher LM, Phillips BE (1981) Evidence that lithium alters phosphoinositide metabolism: chronic administration elevates primarily D-myo-inositol-1-phosphate in cerebral cortex of the rat. J Neurochem 36(6):1947–1951

    Article  CAS  PubMed  Google Scholar 

  89. Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415:81–147

    Article  CAS  PubMed  Google Scholar 

  90. Hokin LE (1987) The road to the phosphoinositide-generated second messengers. Trends Pharmacol Sci 8:53–56

    Article  CAS  Google Scholar 

  91. Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206:587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Akhtar RA, Abdel-Latif AA (1980) Requirement for calcium ions in acetylcholine-stimulated phosphodiesteratic cleavage of phosphatidyl-myo-inositol 4,5-bisphosphate in rabbit iris smooth muscle. Biochem J 192(3):783–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kirk CJ, Creba JA, Downes CP, Michell RH (1981) Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function. Biochem Soc Trans 9:377–379

    Article  CAS  PubMed  Google Scholar 

  94. Michell RH, Kirk CJ, Jones LM, Downes CP, Creba JA (1981) The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions. Philos Trans R Soc Lond [Biol] 296:123–138

    Article  CAS  Google Scholar 

  95. Creba J, Downes CP, Hawkins PT, Brewster G, Michell RH, Kirk CJ (1983) Rapid breakdown of phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilising hormones. Biochem J 212:733–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Berridge MJ, Dawson RM, Downes CP, Heslop JP, Irvine RF (1983) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J 212:473–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Irvine RF, Letcher AJ, Dawson RM (1984) Phosphatidylinositol-4,5-bisphosphate phosphodiesterase and phosphomonoesterase activities of rat brain. Some properties and possible control mechanisms. Biochem J 218(1):177–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Downes CP, Mussat MC, Michell RH (1982) The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane. Biochem J 203:169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schulz I, Kimura T, Wakasugi H, Haase W, Kribben A (1981) Analysis of Ca2+ fluxes and Ca2+ pools in pancreatic Acini. Philos Trans R Soc Lond Ser B Biol Sci 296(1080):105–113

    Article  CAS  Google Scholar 

  100. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial store in pancreatic cells by inositol-1,4,5-trisphosphate. Nature 306:67–68

    Article  CAS  PubMed  Google Scholar 

  101. Storey DJ, Shears SB, Kirk CJ, Michell RH (1984) Stepwise enzymic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver. Nature 312:374–376

    Article  CAS  PubMed  Google Scholar 

  102. Irvine R (2016) A tale of two inositol Trisphosphates. Biochem Soc Trans 44(1):202–211

    Article  CAS  PubMed  Google Scholar 

  103. Irvine RF, Letcher AJ, Lander DJ, Downes CP (1984) Inositol trisphosphates in Carbachol-stimulated rat parotid glands. Biochem J 223:237–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Irvine RF, Anggard EE, Letcher AJ, Downes CP (1985) Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem J 229:505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Brown NW, Marmelstein AM, Fiedler D (2016) Chemical tools for interrogating inositol pyrophosphate structure and function. Chem Soc Rev 45(22):6311–6326

    Article  CAS  PubMed  Google Scholar 

  106. Pisani F, Livermore T, Rose G, Chubb JR, Gaspari M, Saiardi A (2014) Analysis of Dictyostelium Discoideum inositol pyrophosphate metabolism by gel electrophoresis. PLoS One 9(1):e85533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gu C, Wilson MSC, Jessen HJ, Saiardi A, Shears SB (2016) Inositol pyrophosphate profiling of two Hct116 cell lines uncovers variation in Insp8 levels. PLoS One 11:e0165286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Stephens LR, Hawkins PT, Carter N, Chahwala SB, Morris AJ, Whetton AD, Downes PC (1988) L-myo-inositol 1,4,5,6-tetrakisphosphate is present in both mammalian and avian cells. Biochem J 249:271–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Stephens LR, Hawkins PT, Downes CP (1989) An analysis of myo-[3H]inositol trisphosphate found in myo-[3H]inositol prelabelled avian erythrocytes. Biochem J 262:727–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Menniti FS, Oliver KG, Nogimori K, Obie JF, Shears SB, Putney JW Jr (1990) Origins of myo-inositol tetrakisphosphates in agonist-stimulated rat pancreatoma cells stimulation by Bombesin of myo-inositol 1,3,4,5,6-pentakisphosphate breakdown to myo-inositol 3,4,5,6-tetrakisphosphate. J Biol Chem 265:11167–11176

    CAS  PubMed  Google Scholar 

  111. Wong NS, Barker CJ, Morris AJ, Craxton A, Kirk CJ, Michell RH (1992) The inositol phosphates of Wrk1 rat mammary tumour cells. Biochem J 286:459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brearley CA, Hanke DE (1996) Inositol phosphates in the duckweed Spirodela Polrhiza L. Biochem J 314:215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Stephens LR, Irvine RF (1990) Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in dictyostelium. Nature 346:580–583

    Article  CAS  PubMed  Google Scholar 

  114. Zhou Y, Wu S, Wang H, Hayakawa Y, Bird GS, Shears SB (2012) Activation of Plc by an endogenous cytokine (Gbp) in drosophila S3 cells and its application as a model for studying inositol phosphate signalling through Itpk1. Biochem J 448(2):273–283

    Article  CAS  PubMed  Google Scholar 

  115. Wilson MS, Saiardi A (2017) Importance of radioactive labelling to elucidate inositol polyphosphate signalling. Top Curr Chem (J) 375(1):14

    Article  CAS  Google Scholar 

  116. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Article  CAS  PubMed  Google Scholar 

  117. Gillaspy GE (2011) The cellular language of myo-inositol signaling. New Phytol 192(4):823–839

    Article  CAS  PubMed  Google Scholar 

  118. Schomerus C, Küntzel H (1992) Cdc25-dependent induction of inositol 1,4,5-trisphosphate and diacylglycerol in Saccharomyces Cerevisiae by nitrogen. FEBS Lett 307:249–252

    Article  CAS  PubMed  Google Scholar 

  119. Ongusaha PP, Hughes PJ, Davey J, Michell RH (1998) Inositol hexakisphosphate in Schizosaccharomyces Pombe: synthesis from ins(1,4,5)P3 and osmotic regulation. BJ 335:671–679

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Odom AR, Stahlberg A, Wente SR, York JD (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287:2026–2029

    Article  CAS  PubMed  Google Scholar 

  121. York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger Rna export. Science 285:96–100

    Article  CAS  PubMed  Google Scholar 

  122. Tzur A, Kafri R, LeBleu VS, Lahav G, Kirschner MW (2009) Cell growth and size homeostasis in proliferating animal cells. Science 325(5937):167–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mayr GW (1988) A novel metal-dye detection system permits picomolar-range H.P.L.C. analysis of inositol polyphosphates from non-radioactively labelled cell or tissue specimens. Biochem J 254:585–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sauer K, Huang YH, Lin H, Sandberg M, Mayr GW (2009) Phosphoinositide and inositol phosphate analysis in lymphocyte activation. Curr Protoc Immunol. Chapter 11:Unit11.11

    Google Scholar 

  125. Adelt S, Plettenburg O, Stricker R, Reiser G, Altenbach H-J, Vogel G (1999) Enzyme-assisted total synthesis of the optical antipodes D-myo-inositol 3,4,5-trisphosphate and D-myo-inositol 1,5,6-trisphosphate: aspects of their structure-activity relationship to biologically active inositol phosphates. J Med Chem 42:1262–1273

    Article  CAS  PubMed  Google Scholar 

  126. Smith RE, MacQuarrie RA, Jope RS (1991) Ion chromatographic determination of inositol tris- and tetrakisphosphates in rat brain. J Chromatogr Sci 29(12):528–531

    Article  CAS  PubMed  Google Scholar 

  127. Wilson MS, Bulley SJ, Pisani F, Irvine RF, Saiardi A (2015) A novel method for the purification of inositol phosphates from biological samples reveals that no phytate is present in human plasma or urine. Open Biol 5(3)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Pesesse X, Choi K, Zhang T, Shears SB (2004) Signalling by higher inositolpolyphosphates: synthesis of bis-diphosphoinositol tetrakisphosphate ("Insp8") is selectively activated by hyperosmotic stress. JBC 279:43378–43381

    Article  CAS  Google Scholar 

  129. Choi K, Mollapour E, Choi JH, Shears SB (2008) Cellular energetic status supervises the synthesis of bis-diphosphoinositol tetrakisphosphate independently of amp-activated protein kinase. Mol Pharmacol 74:527–536

    Article  CAS  PubMed  Google Scholar 

  130. Gu C, Nguyen HN, Hofer A, Jessen HJ, Dai X, Wang H, Shears SB (2017) The significance of the bifunctional kinase/phosphatase activities of Ppip5ks for coupling inositol pyrophosphate cell-signaling to cellular phosphate homeostasis. J Biol Chem 292:4544–4555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Oura T, Murata K, Morita T, Nezu A, Arisawa M, Shuto S, Tanimura A (2016) Highly sensitive measurement of inositol 1,4,5-trisphosphate by using a new fluorescent ligand and ligand binding domain combination. Chembiochem 17(16):1509–1512

    Article  CAS  PubMed  Google Scholar 

  132. Sakaguchi R, Tainaka K, Shimada N, Nakano S, Inoue M, Kiyonaka S, Mori Y, Morii T (2010) An in vivo fluorescent sensor reveals intracellular ins(1,3,4,5)P4 dynamics in single cells. Angew Chem Int Ed Engl 49(12):2150–2153

    Article  CAS  PubMed  Google Scholar 

  133. Letcher AJ, Schell MJ, Irvine RF (2008) Do mammals make all their own inositol hexakisphosphate? Biochem J 416(2):263–270

    Article  CAS  PubMed  Google Scholar 

  134. Grases F, Costa-Bauza A, Prieto RM (2005) Intracellular and extracellular myo-inositol hexakisphosphate (Insp6), from rats to humans. Anticancer Res 25(3c):2593–2597

    CAS  PubMed  Google Scholar 

  135. Perello J, Grases F (2014) Phytate levels in biological fluids of mammals. J Chromatogr B Analyt Technol Biomed Life Sci 960:255–257

    Article  CAS  PubMed  Google Scholar 

  136. Irvine RF, Bulley SJ, Wilson MS, Saiardi A (2015) There is no 'conundrum' of Insp6. Open Biol 5(11)

    Google Scholar 

  137. Grases F, Isern B, Sanchis P, Perello J, Torres JJ, Costa-Bauza A (2007) Phytate acts as an inhibitor in formation of renal calculi. Front Biosci 12:2580–2587

    Article  CAS  PubMed  Google Scholar 

  138. Schultz C, Burmester A, Stadler C (1996) Synthesis, separation, and identification of different inositol phosphates. Subcell Biochem 26:371–413

    Article  CAS  PubMed  Google Scholar 

  139. Capolicchio S, Thakor DT, Linden A, Jessen HJ (2013) Synthesis of unsymmetric diphospho-inositol polyphosphates. Angew Chem Int Ed Engl 52:6912–5916

    Article  CAS  PubMed  Google Scholar 

  140. Pavlovic I, Thakor DT, Jessen HJ (2016) Synthesis of 2-diphospho-myo-inositol 1,3,4,5,6-pentakisphosphate and a photocaged analogue. Org Biomol Chem 14(24):5559–5562

    Article  CAS  PubMed  Google Scholar 

  141. Wu M, Dul BE, Trevisan AJ, Fiedler D (2013) Synthesis and characterization of non-hydrolysable diphosphoinositol polyphosphate second messengers. Chem Sci 4(1):405–410

    Article  CAS  PubMed  Google Scholar 

  142. Riley AM, Wang H, Weaver JD, Shears SB, Potter BVL (2012) First synthetic analogues of diphosphoinositol polyphosphates: interaction with Ppip5 kinase. Chem Commun 48:11292–11294

    Article  CAS  Google Scholar 

  143. Wu M, Chong LS, Capolicchio S, Jessen HJ, Resnick AC, Fiedler D (2014) Elucidating diphosphoinositol polyphosphate function with nonhydrolyzable analogues. Angew Chem Int Ed Engl 53:9508–9511

    Article  CAS  Google Scholar 

  144. Capolicchio S, Wang H, Thakor DT, Shears SB, Jessen HJ (2014) Synthesis of densely phosphorylated Bis-1,5-diphospho-myo-inositol tetrakisphosphate and its enantiomer by bidirectional P-anhydride formation. Angew Chem Int Ed Engl 53:9508–9511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Weaver JD, Wang H, Shears SB (2013) The kinetic properties of a human Ppip5k reveal that its kinase activities are protected against the consequences of a deteriorating cellular bioenergetic environment. Biosci Rep 33:228–241

    Article  CAS  Google Scholar 

  146. Irvine RF, Letcher AJ, Heslop JP, Berridge MJ (1986) The inositol tris/tetrakisphosphate pathway - demonstration of ins(1,4,5)P3 3-kinase activity in animal tissues. Nature 320:631–634

    Article  CAS  PubMed  Google Scholar 

  147. Ferris CD, Huganir RL, Supattapone S, Snyder SH (1989) Purified inositol 1,4,5-trisphosphate receptor mediates calcium influx in reconstituted lipid vesicles. Nature 342:87–89

    Article  CAS  PubMed  Google Scholar 

  148. Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342:32–38

    Article  CAS  PubMed  Google Scholar 

  149. Rossi AM, Riley AM, Tovey SC, Rahman T, Dellis O, Taylor EJ, Veresov VG, Potter BV, Taylor CW (2009) Synthetic partial agonists reveal key steps in Ip3 receptor activation. Nat Chem Biol 5(9):631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. McCarren M, Potter BVL, Miller RJ (1989) A metabolically stable analog of 1,4,5-inositol trisphosphate activates a novel K+ conductance in pyramidal cells of the rat hippocampal slice. Neuron 3:461–471

    Article  CAS  PubMed  Google Scholar 

  151. Cullen PJ, Dawson AP, Irvine RF (1995) Purification and characterization of an ins(1,3,4,5)P4 binding protein from pig platelets: possible identification of a novel non-neuronal ins(1,3,4,5)P4 receptor. Biochem J 305:139–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Theibert AB, Estevez VA, Mourney RJ, Marecek JF, Barrow RK, Prestwich GD, Snyder SH (1992) Photoaffinity labeling and characterization of isolated inositol 1,3,4,5-tetrakisphosphate and inositol hexakisphosphate binding proteins. J Biol Chem 267:9071–9079

    CAS  PubMed  Google Scholar 

  153. Estevez VA, Prestwich GD (1991) Affinity probes for ins(1,3,4,5)P4 receptors. Tetrahedron 32:1623–1626

    Article  CAS  Google Scholar 

  154. Cullen PJ, Hsuan JJ, Truong O, Letcher AJ, Jackson TR, Dawson AP, Irvine RF (1995) Identification of a specific ins(1,3,4,5)P4-binding protein as a member of the Gap1 family. Nature 376:527–530

    Article  CAS  PubMed  Google Scholar 

  155. Battram AM, Durrant TN, Agbani EO, Heesom KJ, Paul DS, Piatt R, Poole AW, Cullen PJ, Bergmeier W, Moore SF, Hers I (2017) The phosphatidylinositol 3,4,5-trisphosphate (pi(3,4,5)P3) binder Rasa3 regulates phosphoinositide 3-kinase (Pi3k)-dependent integrin Αιιbβ3 outside-in signaling. J Biol Chem 292(5):1691–1704

    Article  CAS  PubMed  Google Scholar 

  156. Schurmans S, Polizzi S, Scoumanne A, Sayyed S, Molina-Ortiz P (2015) The Ras/rap Gtpase activating protein Rasa3: from gene structure to in vivo functions. Adv Biol Regul 57:153–161

    Article  CAS  PubMed  Google Scholar 

  157. Voglmaier SM, Keen JH, Murphy J-E, Ferris CD, Prestwich GD, Snyder SH, Theibert AB (1992) Inositol hexakisphosphate receptor identified as the clathrin assembly protein Ap-2. Biochem Biophys Res Commun 187:158–163

    Article  CAS  PubMed  Google Scholar 

  158. Krauss M, Kinuta M, Wenk MR, De CP, Takei K, Haucke V (2003) Arf6 stimulates clathrin/Ap-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma. J Cell Biol 162(1):113–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lemmon MA, Ferguson KM, Abrams CS (2002) Pleckstrin homology domains and the cytoskeleton. FEBS Lett 513(1):71–76

    Article  CAS  PubMed  Google Scholar 

  160. Shears SB (2001) Assessing the omnipotence of inositol hexakisphosphate. Cell Signal 13:151–158

    Article  CAS  PubMed  Google Scholar 

  161. Torres J, Domínguez S, Cerdá FM, Obal G, Mederos A, Irvine RF, Dìaz A, Kremer C (2005) Solution behaviour of myo-inositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentamagnesium species under cytosolic/nuclear conditions. J Inorg Biochem 99:828–840

    Article  CAS  PubMed  Google Scholar 

  162. Ali N, Craxton A, Shears SB (1993) Hepatic ins(1,3,4,5)P4 3-phosphatase is compartmentalized inside endoplasmic reticulum. J Biol Chem 268:6161–6167

    CAS  PubMed  Google Scholar 

  163. Van Der KJ, Van Haastert PJ (1995) Desalting inositolpolyphosphates by dialysis. Anal Biochem 225(1):183–185

    Article  Google Scholar 

  164. Abdullah M, Hughes PJ, Craxton A, Gigg R, Desai T, Marecek JF, Prestwich GD, Shears SB (1992) Purification and characterization of inositol 1,3,4-trisphosphate 5/6-kinase from rat liver using an inositol hexakisphosphate affinity column. J Biol Chem 267:22340–22345

    CAS  PubMed  Google Scholar 

  165. Jiao C, Summerlin M, Bruzik KS, Hanakahi L (2015) Synthesis of biotinylated inositol hexakisphosphate to study DNA double-strand break repair and affinity capture of Ip6-binding proteins. Biochemistry 54(41):6312–6322

    Article  CAS  PubMed  Google Scholar 

  166. Wu M, Chong LS, Perlman DH, Resnick AC, Fiedler D (2016) Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms. Proc Natl Acad Sci U S A 113:E6757–E6765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Vajanaphanich M, Schultz C, Rudolf MT, Wasserman M, Enyedi P, Craxton A, Shears SB, Tsien RY, Barrett KE, Traynor-Kaplan AE (1994) Long-term uncoupling of chloride secretion from intracellular calcium levels by ins(3,4,5,6)P4. Nature 371:711–714

    Article  CAS  PubMed  Google Scholar 

  168. Li W, Schultz C, Llopis J, Tsien RY (1997) Membrane-permeant esters of inositol polyphosphates, chemical synthesis and biological applications. Tetrahedron 53:12017–12040

    Article  CAS  Google Scholar 

  169. Li W, Llopis J, Whitney M, Zlokarnik G, Tsien RY (1998) Cell-Permeant caged Insp3 Ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392(6679):936–941

    Article  CAS  PubMed  Google Scholar 

  170. Pavlovic I, Thakor DT, Vargas JR, McKinlay CJ, Hauke S, Anstaett P, Camuna RC, Bigler L, Gasser G, Schultz C, Wender PA, Jessen HJ (2016) Cellular delivery and photochemical release of a caged inositol-pyrophosphate induces Ph-domain translocation in Cellulo. Nat Commun 7:10622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chakraborty A, Koldobskiy MA, Bello NT, Maxwell M, Potter JJ, Juluri KR, Maag D, Kim S, Huang AS, Dailey MJ, Saleh M, Snowman AM, Moran TH, Mezey E, Snyder SH (2010) Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 143(6):897–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bhandari R, Saiardi A, Ahmadibeni Y, Snowman AM, Resnick AC, Kristiansen TZ, Molina H, Pandey A, Werner JK Jr, Juluri KR, Xu Y, Prestwich GD, Parang K, Snyder SH (2007) Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event. Proc Natl Acad Sci U S A 104:15305–15310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Saiardi A, Bhandari A, Resnick R, Cain A, Snowman AM, Snyder SH (2004) Inositol pyrophosphate: physiologic phosphorylation of proteins. Science 306:2101–2105

    Article  CAS  PubMed  Google Scholar 

  174. Williams FJ, Fiedler D (2015) A fluorescent sensor and gel stain for detection of pyrophosphorylated proteins. ACS Chem Biol 10(9):1958–1963

    Article  CAS  PubMed  Google Scholar 

  175. Poyner DR, Cooke F, Hanley MR, Reynolds DJM, Hawkins PT (1993) Characterization of metal ion-induced 3Hinositol hexakisphosphate binding to rat cerebellar membarnes. J Biol Chem 268:1032–1038

    CAS  PubMed  Google Scholar 

  176. Macbeth MR, Schubert HL, Vandemark AP, Lingam AT, Hill CP, Bass BL (2005) Inositol hexakisphosphate is bound in the Adar2 core and required for Rna editing. Science 309(5740):1534–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sakaguchi R, Endoh T, Yamamoto S, Tainaka K, Sugimoto K, Fujieda N, Kiyonaka S, Mori Y, Morii T (2009) A single circularly permuted Gfp sensor for Inositol-1,3,4,5-tetrakisphosphate based on a split Ph domain. Bioorg Med Chem 17(20):7381–7386. https://doi.org/10.1016/j.bmc.2009.08.015

    Article  CAS  PubMed  Google Scholar 

  178. Worley J, Luo X, Capaldi AP (2013) Inositol pyrophosphates regulate cell growth and the environmental stress response by activating the Hdac Rpd3l. Cell Rep 3:1476–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Brehm MA, Wundenberg T, Williams J, Mayr GW, Shears SB (2013) A non-catalytic role for inositol 1,3,4,5,6-pentakisphosphate 2-kinase in the synthesis of ribosomal Rna. J Cell Sci 126:437–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kim S, Kim SF, Maag D, Maxwell MJ, Resnick AC, Juluri KR, Chakraborty A, Koldobskiy MA, Cha SH, Barrow R, Snowman AM, Snyder SH (2011) Amino acid signaling to Mtor mediated by inositol polyphosphate multikinase. Cell Metab 13(2):215–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Rao F, Xu J, Khan AB, Gadalla MM, Cha JY, Xu R, Tyagi R, Dang Y, Chakraborty A, Snyder SH (2014) Inositol hexakisphosphate kinase-1 mediates assembly/disassembly of the Crl4-signalosome complex to regulate DNA repair and cell death. Proc Natl Acad Sci U S A 111(45):16005–16010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Padmanabhan U, Dollins DE, Fridy PC, York JD, Downes CP (2009) Characterization of a selective inhibitor of inositol hexakisphosphate kinases: use in defining biological roles and metabolic relationships of inositol pyrophosphates. J Biol Chem 284:10571–10582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ghoshal S, Zhu Q, Asteian A, Lin H, Xu H, Ernst G, Barrow JC, Xu B, Cameron MD, Kamenecka TM, Chakraborty A (2016) Tnp [N2-(M-Trifluorobenzyl), N6-(P-Nitrobenzyl)purine] ameliorates diet induced obesity and insulin resistance Via inhibition of the Ip6k1 pathway. Molecular Metabolism 5:903–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory is supported by the Intramural Research Program of the NIH/National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Shears .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shears, S.B. (2020). A Short Historical Perspective of Methods in Inositol Phosphate Research. In: Miller, G. (eds) Inositol Phosphates. Methods in Molecular Biology, vol 2091. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0167-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0167-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0166-2

  • Online ISBN: 978-1-0716-0167-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics