Skip to main content

QSAR Approaches and Ecotoxicological Risk Assessment

  • Protocol
  • First Online:
Ecotoxicological QSARs

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1201 Accesses

Abstract

Hundreds of thousands of chemicals that can affect human health or the quality of aquatic and terrestrial ecosystems are introduced directly or indirectly into the air, water, or soil. Therefore, the awareness of the serious and harmful effects caused by these chemical compounds has revealed the absolute and compelling need to resort to the evaluation of potential risks incurred as a result of exposure to these compounds. In the aim to provide a high level of protection for human, animal, and environmental health, many regulatory agencies have established strict legislation for both toxicological and ecotoxicological risk assessments of existing and new chemical compounds. To limit the in vivo experiments which are a tedious and costly practice and generate a large sacrifice of animals, the REACH regulation recommends the use of in silico methods, such as quantitative structure–activity relationship (QSAR) models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ceriani L, Papa E, Kovarich S, Boethling R, Gramatica P (2015) Modeling ready biodegradability of fragrance materials. Environ Toxicol Chem 34(6):1224–1231

    Article  CAS  PubMed  Google Scholar 

  2. Gajewicz A (2017) What if the number of nanotoxicity data is too small for developing predictive Nano-QSAR models? An alternative read-across based approach for filling data gaps. Nanoscale 9(24):8435–8448

    Article  CAS  PubMed  Google Scholar 

  3. Kleandrova VV, Luan F, González-Díaz H, Ruso JM, Speck-Planche A, Cordeiro MN (2014) Computational tool for risk assessment of nanomaterials: novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions. Environ Sci Technol 48(24):14686–14694

    Article  CAS  PubMed  Google Scholar 

  4. Aubakirova B, Beisenova R, Boxall AB (2017) Prioritization of pharmaceuticals based on risks to aquatic environments in Kazakhstan. Integr Environ Assess Manag 13(5):832–839

    Article  CAS  PubMed  Google Scholar 

  5. Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P (2017) Computational methodologies for the risk assessment of pesticides in the European Union. J Agric Food Chem 65(10):2017. https://doi.org/10.1021/acs.jafc.7b00516

    Article  CAS  PubMed  Google Scholar 

  6. Riva F, Zuccato E, Davoli E, Fattore E, Castiglioni S (2019) Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy. J Hazard Mater 361:103–110

    Article  CAS  PubMed  Google Scholar 

  7. Raitano G, Goi D, Pieri V, Passoni A, Mattiussi M, Lutman A, Romeo I, Manganaro A, Marzo M, Porta N (2018) (Eco) toxicological maps: a new risk assessment method integrating traditional and in silico tools and its application in the Ledra River (Italy). Environ Int 119:275–286

    Article  PubMed  Google Scholar 

  8. Van den Brink PJ, Boxall AB, Maltby L, Brooks BW, Rudd MA, Backhaus T, Spurgeon D, Verougstraete V, Ajao C, Ankley GT (2018) Toward sustainable environmental quality: priority research questions for Europe. Environ Toxicol Chem 37(9):2281–2295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Musee N (2011) Nanotechnology risk assessment from a waste management perspective: are the current tools adequate? Hum Exp Toxicol 30(8):820–835

    Article  CAS  PubMed  Google Scholar 

  10. Hamadache M, Benkortbi O, Hanini S, Amrane A (2018) QSAR modeling in ecotoxicological risk assessment: application to the prediction of acute contact toxicity of pesticides on bees (Apis mellifera L.). Environ Sci Pollut Res 25(1):896–907

    Article  CAS  Google Scholar 

  11. Ortiz-Santaliestra ME, Maia JP, Egea-Serrano A, Lopes I (2018) Validity of fish, birds and mammals as surrogates for amphibians and reptiles in pesticide toxicity assessment. Ecotoxicology 27(7):819–833

    Article  CAS  PubMed  Google Scholar 

  12. Grech A, Brochot C, Dorne J-L, Quignot N, Bois FY, Beaudouin R (2017) Toxicokinetic models and related tools in environmental risk assessment of chemicals. Sci Total Environ 578:1–15

    Article  CAS  PubMed  Google Scholar 

  13. Papa E, van der Wal L, Arnot JA, Gramatica P (2014) Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis. Sci Total Environ 470:1040–1046

    Article  PubMed  CAS  Google Scholar 

  14. Villaverde JJ, Sevilla-Moran B, López-Goti C, Alonso-Prados JL, Sandín-España P (2018) Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework. Sci Total Environ 634:1530–1539

    Article  CAS  PubMed  Google Scholar 

  15. Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic, London, pp 1–46

    Book  Google Scholar 

  16. Roy K, Kar S, Das RN (2015) A primer on QSAR/QSPR modeling: fundamental concepts. Springer, Cham, pp 1–35

    Google Scholar 

  17. Devillers J. (2008) Artificial Neural Network Modeling in Environmental Toxicology. In: Livingstone D.J. (eds) Artificial Neural Networks. Methods in Molecular Biology™, vol 458. Humana Press, Switzerland, pp 59–77

    Google Scholar 

  18. Ihedioha J, Ukoha P, Ekere N (2017) Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environ Geochem Health 39(3):497–515

    Article  CAS  PubMed  Google Scholar 

  19. Ma L, Sun J, Yang Z, Wang L (2015) Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China. Environ Monit Assess 187(12):731. https://doi.org/10.1007/s10661-015-4966-8

    Article  CAS  PubMed  Google Scholar 

  20. Weissmannová HD, Pavlovský J (2017) Indices of soil contamination by heavy metals–methodology of calculation for pollution assessment (minireview). Environ Monit Assess 189(12):616. https://doi.org/10.1007/s10661-017-6340-5

    Article  PubMed  Google Scholar 

  21. Sapcanin A, Cakal M, Imamovic B, Salihovic M, Pehlic E, Jacimovic Z, Jancan G (2016) Herbicide and pesticide occurrence in the soils of children’s playgrounds in Sarajevo, Bosnia and Herzegovina. Environ Monit Assess 188(8):450. https://doi.org/10.1007/s10661-016-5463-4

    Article  CAS  PubMed  Google Scholar 

  22. Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137

    Article  CAS  PubMed  Google Scholar 

  23. Hamadache M, Khaouane L, Benkortbi O, Si Moussa C, Hanini S, Amrane A (2014) Prediction of acute herbicide toxicity in rats from quantitative structure–activity relationship modeling. Environ Eng Sci 31(5):243–252

    Article  CAS  Google Scholar 

  24. Chowdhary P, Raj A, Bharagava RN (2018) Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: a review. Chemosphere 194:229–246

    Article  CAS  PubMed  Google Scholar 

  25. Chaza C, Sopheak N, Mariam H, David D, Baghdad O, Moomen B (2018) Assessment of pesticide contamination in Akkar groundwater, northern Lebanon. Environ Sci Pollut Res 25(15):14302–14312

    Article  CAS  Google Scholar 

  26. Pattnaik P, Dangayach G, Bhardwaj AK (2018) A review on the sustainability of textile industries wastewater with and without treatment methodologies. Rev Environ Health 33(2):163–203

    Article  CAS  PubMed  Google Scholar 

  27. Shen Z, Zhang Y, Jin F, Alessi DS, Zhang Y, Wang F, McMillan O, Al-Tabbaa A (2018) Comparison of nickel adsorption on biochars produced from mixed softwood and Miscanthus straw. Environ Sci Pollut Res 25(15):14626–14635

    Article  CAS  Google Scholar 

  28. Ahmed DA, Slima DF (2018) Heavy metal accumulation by Corchorus olitorius L. irrigated with wastewater. Environ Sci Pollut Res 25(15):14996–15005

    Article  CAS  Google Scholar 

  29. Pereira R, Cachada A, Sousa JP, Niemeyer J, Markwiese J, Andersen CP (2018) Ecotoxicological effects and risk assessment of pollutants. In: Soil pollution. Academic Press, Elsevier, Cambridge, Massachusetts, pp 191–216

    Chapter  Google Scholar 

  30. Borgese L, Federici S, Zacco A, Gianoncelli A, Rizzo L, Smith D, Donna F, Lucchini R, Depero L, Bontempi E (2013) Metal fractionation in soils and assessment of environmental contamination in Vallecamonica, Italy. Environ Sci Pollut Res 20(7):5067–5075

    Article  CAS  Google Scholar 

  31. Ferrante M, Fiore M, Ledda C, Cicciù F, Alonzo E, Fallico R, Platania F, Di RM, Valenti L, Sciacca S (2013) Monitoring of heavy metals and trace elements in the air, fruits and vegetables and soil in the province of Catania (Italy). Ig Sanita Pubbl 69(1):47–54

    PubMed  Google Scholar 

  32. Özkul C (2016) Heavy metal contamination in soils around the Tunçbilek thermal power plant (Kütahya, Turkey). Environ Monit Assess 188(5):284. https://doi.org/10.1007/s10661-016-5295-2

    Article  CAS  PubMed  Google Scholar 

  33. Uzen N, Cetin O, Unlu M (2016) Effects of domestic wastewater treated by anaerobic stabilization on soil pollution, plant nutrition, and cotton crop yield. Environ Monit Assess 188(12):664. https://doi.org/10.1007/s10661-016-5680-x

    Article  CAS  PubMed  Google Scholar 

  34. Mirzaei M, Marofi S, Solgi E, Abbasi M, Karimi R, Bakhtyari HRR (2019) Ecological and health risks of soil and grape heavy metals in long-term fertilized vineyards (Chaharmahal and Bakhtiari province of Iran). Environ Geochem Health 1–17. https://doi.org/10.1007/s10653-019-00242-5

  35. Popov BB, Hristova VK, Ahmad MA, Petrovska M (2014) Monitoring of heavy metals and trace elements contamination in the soil and vegetables and air pollution in the Republic of Macedonia. Int J Enhanced Res Sci Technol Eng 3(1):205–214

    Google Scholar 

  36. Arcega-Cabrera F, Fargher L, Quesadas-Rojas M, Moo-Puc R, Oceguera-Vargas I, Noreña-Barroso E, Yáñez-Estrada L, Alvarado J, González L, Pérez-Herrera N (2018) Environmental exposure of children to toxic trace elements (Hg, Cr, As) in an urban area of Yucatan, Mexico: water, blood, and urine levels. Bull Environ Contam Toxicol 100(5):620–626

    Article  CAS  PubMed  Google Scholar 

  37. Stepanova N, Fomina S, Valeeva E, Ziyatdinova A (2018) Heavy metals as criteria of health and ecological well-being of the urban environment. J Trace Elem Med Biol 50:646–651

    Article  CAS  PubMed  Google Scholar 

  38. Vongdala N, Tran H-D, Xuan T, Teschke R, Khanh T (2019) Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. Int J Environ Res Public Health 16(1):22. https://doi.org/10.3390/ijerph16010022

    Article  CAS  Google Scholar 

  39. Bai H, Hu B, Wang C, Bao S, Sai G, Xu X, Zhang S, Li Y (2017) Assessment of radioactive materials and heavy metals in the surface soil around the Bayanwula prospective uranium mining area in China. Environ Res Public Health 14(3):300. https://doi.org/10.3390/ijerph14030300

    Article  CAS  Google Scholar 

  40. He B, Zhao X, Li P, Liang J, Fan Q, Ma X, Zheng G, Qiu J (2019) Lead isotopic fingerprinting as a tracer to identify the pollution sources of heavy metals in the southeastern zone of Baiyin, China. Sci Total Environ 660:348–357

    Article  CAS  PubMed  Google Scholar 

  41. Kong X, Liu T, Yu Z, Chen Z, Lei D, Wang Z, Zhang H, Li Q, Zhang S (2018) Heavy metal bioaccumulation in rice from a high geological background area in Guizhou Province, China. Environ Res Public Health 15(10):2281. https://doi.org/10.3390/ijerph15102281

    Article  CAS  Google Scholar 

  42. Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Jenkins A, Ferrier RC, Li H, Luo W (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15

    Article  CAS  PubMed  Google Scholar 

  43. Tang Z, Chai M, Cheng J, Jin J, Yang Y, Nie Z, Huang Q, Li Y (2017) Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicol Environ Saf 138:83–91

    Article  CAS  PubMed  Google Scholar 

  44. Tang Z, Zhang L, Huang Q, Yang Y, Nie Z, Cheng J, Yang J, Wang Y, Chai M (2015) Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China. Ecotoxicol Environ Saf 122:343–351

    Article  PubMed  CAS  Google Scholar 

  45. Xiao R, Wang S, Li R, Wang JJ, Zhang Z (2017) Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol Environ Saf 141:17–24

    Article  CAS  PubMed  Google Scholar 

  46. Toichuev RM, Zhilova LV, Makambaeva GB, Payzildaev TR, Pronk W, Bouwknegt M, Weber R (2018) Assessment and review of organochlorine pesticide pollution in Kyrgyzstan. Environ Sci Pollut Res 25(32):31836–31847

    Article  CAS  Google Scholar 

  47. El-Saeid M, Al-Turki A, Al-Wable M, Abdel-Nasser G (2011) Evaluation of pesticide residues in Saudi Arabia ground water. Res J Environ Sci 5(2):171–178

    Article  CAS  Google Scholar 

  48. Al-Wabel M, El-Saeid M, Al-Turki A, Abdel-Nasser G (2011) Monitoring of pesticide residues in Saudi Arabia agricultural soils. Res J Environ Sci 5(3):269–278

    Article  CAS  Google Scholar 

  49. Jung Min Ahn SK-SK (2019) Selection of priority management of rivers by assessing heavy metal pollution and ecological risk of surface sediments. Environ Geochem Health. https://doi.org/10.1007/s10653-019-00284-9

  50. Ruiz-Guerra I, Molina-Moreno V, Cortés-García FJ, Núñez-Cacho P (2019) Prediction of the impact on air quality of the cities receiving cruise tourism: the case of the Port of Barcelona. Heliyon 5(3):e01280. https://doi.org/10.1016/j.heliyon.2019.e01280

    Article  PubMed  PubMed Central  Google Scholar 

  51. Drif F, Abdennour C, Ciğerci İH, Ali MM, Mansouri O, Messarah M (2019) Preliminary assessment of stress and genotoxicity biomarkers in bivalve molluscs from the Gulf of Annaba, Algeria. Bull Environ Contam Toxicol 102:1–5. https://doi.org/10.1007/s00128-019-02583-4

    Article  CAS  Google Scholar 

  52. Rebhi A, Lounici H, Lahrech M, Morel J (2018) Response of Artemisia herba alba to hexavalent chromium pollution under arid and semi-arid conditions. Int J Phytoremediation 21:1–6. https://doi.org/10.1080/15226514.2018.1524841

    Article  CAS  Google Scholar 

  53. Bouaroudj S, Menad A, Bounamous A, Ali-Khodja H, Gherib A, Weigel DE, Chenchouni H (2019) Assessment of water quality at the largest dam in Algeria (Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural lands. Chemosphere 219:76–88

    Article  CAS  PubMed  Google Scholar 

  54. Rabhi L, Lemou A, Cecinato A, Balducci C, Cherifi N, Ladji R, Yassaa N (2018) Polycyclic aromatic hydrocarbons, phthalates, parabens and other environmental contaminants in dust and suspended particulates of Algiers, Algeria. Environ Sci Pollut Res 25(24):24253–24265

    Article  CAS  Google Scholar 

  55. Narsimha A, Qian H, Wang H (2019) Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: an approach of spatial distribution and multivariate statistical analysis. Environ Monit Assess 191:246. https://doi.org/10.1007/s10661-019-7408-1

    Article  CAS  Google Scholar 

  56. Rather MY, Tilwani YM, Dey A (2019) Assessment of heavy metal contamination in two edible fish species Carassius carassius and Triplophysa kashmirensis of Dal Lake, Srinagar, Kashmir, India. Environ Monit Assess 191(4):242. https://doi.org/10.1007/s10661-019-7382-7

    Article  CAS  PubMed  Google Scholar 

  57. Rinklebe J, Antoniadis V, Shaheen SM, Rosche O, Altermann M (2019) Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environ Int 126:76–88

    Article  CAS  PubMed  Google Scholar 

  58. Al-Omari A, Farhan I, Kandakji T (2019) Zarqa River pollution: impact on its quality. Environ Monit Assess 191(3):166. https://doi.org/10.1007/s10661-019-7283-9

    Article  CAS  PubMed  Google Scholar 

  59. Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48(2):463–487

    Article  CAS  PubMed  Google Scholar 

  60. Eid EM, Shaltout KH, Moghanm FS, Youssef MS, El-Mohsnawy E, Haroun SA (2019) Bioaccumulation and translocation of nine heavy metals by Eichhornia crassipes in Nile Delta, Egypt: perspectives for phytoremediation. Int J Phytoremediation 21:1–10. https://doi.org/10.1080/15226514.2019.1566885

    Article  CAS  Google Scholar 

  61. Rahman Z, Singh VP (2018) Assessment of heavy metal contamination and Hg-resistant bacteria in surface water from different regions of Delhi, India. Saudi J Biol Sci 25(8):1687–1695

    Article  CAS  PubMed  Google Scholar 

  62. Saddik M, Fadili A, Makan A (2019) Assessment of heavy metal contamination in surface sediments along the Mediterranean coast of Morocco. Environ Monit Assess 191(3):197. https://doi.org/10.1007/s10661-019-7332-4

    Article  CAS  PubMed  Google Scholar 

  63. Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU Jr, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:3510. https://doi.org/10.1021/acs.chemrev.8b00299

    Article  CAS  PubMed  Google Scholar 

  64. Sarma GK, Gupta SS, Bhattacharyya KG (2019) Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. Environ Sci Pollut Res 26:1–34. https://doi.org/10.1007/s11356-018-04093-y

    Article  CAS  Google Scholar 

  65. Xia F, Qu L, Wang T, Luo L, Chen H, Dahlgren RA, Zhang M, Mei K, Huang H (2018) Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 207:218–228

    Article  CAS  PubMed  Google Scholar 

  66. Soleimanifar H, Deng Y, Barrett K, Feng H, Li X, Sarkar D (2019) Water treatment residual-coated wood mulch for addressing urban stormwater pollution. Water Environ Res 91:523. https://doi.org/10.1002/wer.1055

    Article  CAS  PubMed  Google Scholar 

  67. Mohanakavitha T, Divahar R, Meenambal T, Shankar K, Rawat VS, Haile TD, Gadafa C (2019) Dataset on the assessment of water quality of surface water in Kalingarayan Canal for heavy metal pollution, Tamil Nadu. Data Brief 22:878–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Siddiqui E, Pandey J (2019) Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: a basin-scale study. Environ Sci Pollut Res 26(11):10926–10940

    Article  CAS  PubMed  Google Scholar 

  69. Sabarathinam C, Bhandary H, Al-Khalid A (2019) A geochemical analogy between the metal sources in Kuwait Bay and territorial sea water of Kuwait. Environ Monit Assess 191(3):142

    Article  PubMed  CAS  Google Scholar 

  70. Deng T, Wu L, Gao J-M, Zhou B, Zhang Y-L, Wu W-N, Tang Z-H, Jiang W-C, Huang W-L (2018) Occurrence and health risk assessment of organotins in waterworks and the source water of the Three Gorges Reservoir Region, China. Environ Sci Pollut Res 25(15):15019–15028

    Article  CAS  Google Scholar 

  71. Mahdavinia GR (2018) Polyvinyl alcohol-based nanocomposite hydrogels containing magnetic laponite RD to remove cadmium. Environ Sci Pollut Res 25(15):14977–14988

    Article  CAS  Google Scholar 

  72. Deknock A, De Troyer N, Houbraken M, Dominguez-Granda L, Nolivos I, Van Echelpoel W, Forio MAE, Spanoghe P, Goethals P (2019) Distribution of agricultural pesticides in the freshwater environment of the Guayas river basin (Ecuador). Sci Total Environ 646:996–1008

    Article  CAS  PubMed  Google Scholar 

  73. Gunawardena A, Wijeratne E, White B, Hailu A, Pandit R (2017) Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka. Environ Monit Assess 189(9):457. https://doi.org/10.1007/s10661-017-6172-3

    Article  PubMed  Google Scholar 

  74. Tang X-Y, Yang Y, Tam NF-Y, Tao R, Dai Y-N (2019) Pesticides in three rural rivers in Guangzhou, China: spatiotemporal distribution and ecological risk. Environ Sci Pollut Res 26(4):3569–3577

    Article  CAS  Google Scholar 

  75. Megahed AM, Dahshan H, Abd-El-Kader MA, Abd-Elall AMM, Elbana MH, Nabawy E, Mahmoud HA (2015) Polychlorinated biphenyls water pollution along the River Nile, Egypt. Sci World J 2015:1

    Article  CAS  Google Scholar 

  76. Ibrahim IM, Gilfoyle L, Reynolds R, Voulvoulis N (2019) Integrated catchment management for reducing pesticide levels in water: engaging with stakeholders in East Anglia to tackle metaldehyde. Sci Total Environ 656:1436–1447

    Article  CAS  Google Scholar 

  77. Nguyen LD, Gassara S, Bui MQ, Zaviska F, Sistat P, Deratani A (2019) Desalination and removal of pesticides from surface water in Mekong Delta by coupling electrodialysis and nanofiltration. Environ Sci Pollut Res https://doi.org/10.1007/s11356-018-3918-6

    Article  PubMed  CAS  Google Scholar 

  78. Rocha O, Neto AJG, dos Santos Lima JC, Freitas EC, Miguel M, da Silva MA, Moreira RA, Daam MA (2018) Sensitivities of three tropical indigenous freshwater invertebrates to single and mixture exposures of diuron and carbofuran and their commercial formulations. Ecotoxicology 27(7):834–844

    Article  CAS  PubMed  Google Scholar 

  79. Gaullier C, Dousset S, Billet D, Baran N (2018) Is pesticide sorption by constructed wetland sediments governed by water level and water dynamics? Environ Sci Pollut Res 25(15):14324–14335

    Article  CAS  Google Scholar 

  80. Schreiner VC, Szöcs E, Bhowmik AK, Vijver MG, Schäfer RB (2016) Pesticide mixtures in streams of several European countries and the USA. Sci Total Environ 573:680–689

    Article  CAS  PubMed  Google Scholar 

  81. Dromard CR, Guéné M, Bouchon-Navaro Y, Lemoine S, Cordonnier S, Bouchon C (2018) Contamination of marine fauna by chlordecone in Guadeloupe: evidence of a seaward decreasing gradient. Environ Sci Pollut Res 25(15):14294–14301

    Article  CAS  Google Scholar 

  82. dos Santos CF, da Costa SN, Santos RFB, Meneses JO, do Couto MVS, de Almeida FTC, de Sena Filho JG, Carneiro PCF, Maria AN, Fujimoto RY (2018) Deltamethrin-induced nuclear erythrocyte alteration and damage to the gills and liver of Colossoma macropomum. Environ Sci Pollut Res 25(15):15102–15110

    Article  CAS  Google Scholar 

  83. Tsaboula A, Papadakis E-N, Vryzas Z, Kotopoulou A, Kintzikoglou K, Papadopoulou-Mourkidou E (2019) Assessment and management of pesticide pollution at a river basin level part I: aquatic ecotoxicological quality indices. Sci Total Environ 653:1597–1611

    Article  CAS  PubMed  Google Scholar 

  84. El Zrelli R, Rabaoui L, Alaya MB, Daghbouj N, Castet S, Besson P, Michel S, Bejaoui N, Courjault-Radé P (2018) Seawater quality assessment and identification of pollution sources along the central coastal area of Gabes Gulf (SE Tunisia): evidence of industrial impact and implications for marine environment protection. Mar Pollut Bull 127:445–452

    Article  PubMed  CAS  Google Scholar 

  85. Hussain B, Sultana T, Sultana S, Al-Mulhim N, Mahboob S (2018) Pollutant fate and spatio-temporal variation and degree of sedimentation of industrial-and municipal wastes in Chakbandi drain and River Chenab. Saudi J Biol Sci 25(7):1326–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Njuguna SM, Yan X, Gituru RW, Wang Q, Wang J (2017) Assessment of macrophyte, heavy metal, and nutrient concentrations in the water of the Nairobi River, Kenya. Environ Monit Assess 189(9):454. https://doi.org/10.1007/s10661-017-6159-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Medeiros AC, Faial KRF, Faial KCF, da Silva Lopes ID, de Oliveira LM, Guimarães RM, Mendonça NM (2017) Quality index of the surface water of Amazonian rivers in industrial areas in Pará, Brazil. Mar Pollut Bull 123(1–2):156–164

    Article  CAS  PubMed  Google Scholar 

  88. Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199

    Article  CAS  PubMed  Google Scholar 

  89. Anbumani S, Kakkar P (2018) Ecotoxicological effects of microplastics on biota: a review. Environ Sci Pollut Res Int 25(15):14373–14396

    Article  CAS  PubMed  Google Scholar 

  90. Azuma T, Otomo K, Kunitou M, Shimizu M, Hosomaru K, Mikata S, Mino Y, Hayashi T (2018) Performance and efficiency of removal of pharmaceutical compounds from hospital wastewater by lab-scale biological treatment system. Environ Sci Pollut Res 25(15):14647–14655

    Article  CAS  Google Scholar 

  91. Herbort AF, Sturm MT, Schuhen K (2018) A new approach for the agglomeration and subsequent removal of polyethylene, polypropylene, and mixtures of both from freshwater systems–a case study. Environ Sci Pollut Res 25(15):15226–15234

    Article  CAS  Google Scholar 

  92. Le Guet T, Hsini I, Labanowski J, Mondamert L (2018) Sorption of selected pharmaceuticals by a river sediment: role and mechanisms of sediment or Aldrich humic substances. Environ Sci Pollut Res 25(15):14532–14543

    Article  CAS  Google Scholar 

  93. Pereira BV, Matus GN, Costa MJ, Dos Santos ACA, Silva-Zacarin EC, do Carmo JB, Nunes B (2018) Assessment of biochemical alterations in the neotropical fish species Phalloceros harpagos after acute and chronic exposure to the drugs paracetamol and propranolol. Environ Sci Pollut Res 25(15):14899–14910

    Article  CAS  Google Scholar 

  94. Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, Bertollini R, Bose-O’Reilly S, Boufford JI, Breysse PN (2018) The Lancet Commission on pollution and health. Lancet 391(10119):462–512

    Article  PubMed  Google Scholar 

  95. Alias C, Benassi L, Bertazzi L, Sorlini S, Volta M, Gelatti U (2019) Environmental exposure and health effects in a highly polluted area of Northern Italy: a narrative review. Environ Sci Pollut Res 26(5):4555–4569

    Article  CAS  PubMed  Google Scholar 

  96. Basu N, Lanphear BP (2019) The challenge of pollution and health in Canada. Can J Public Health 110(2):159–164

    Article  PubMed  PubMed Central  Google Scholar 

  97. Xing L, Wang L, Zhang R (2018) Characteristics and health risk assessment of volatile organic compounds emitted from interior materials in vehicles: a case study from Nanjing, China. Environ Sci Pollut Res 25(15):14789–14798

    Article  CAS  Google Scholar 

  98. DuPont A (2018) Improving and monitoring air quality. Environ Sci Pollut Res 25(15):15253–15263

    Article  CAS  Google Scholar 

  99. Hanif I (2018) Impact of economic growth, nonrenewable and renewable energy consumption, and urbanization on carbon emissions in Sub-Saharan Africa. Environ Sci Pollut Res 25(15):15057–15067

    Article  CAS  Google Scholar 

  100. Afsar B, Elsurer Afsar R, Kanbay A, Covic A, Ortiz A, Kanbay M (2018) Air pollution and kidney disease: review of current evidence. Clin Kidney J 12(1):19–32

    Article  PubMed  PubMed Central  Google Scholar 

  101. de Luna MDG, Laciste MT, Tolosa NC, Lu M-C (2018) Effect of catalyst calcination temperature in the visible light photocatalytic oxidation of gaseous formaldehyde by multi-element doped titanium dioxide. Environ Sci Pollut Res 25(15):15216–15225

    Article  CAS  Google Scholar 

  102. Ishtiaq M, Jehan N, Khan SA, Muhammad S, Saddique U, Iftikhar B (2018) Potential harmful elements in coal dust and human health risk assessment near the mining areas in Cherat, Pakistan. Environ Sci Pollut Res 25(15):14666–14673

    Article  CAS  Google Scholar 

  103. Fei X, Lou Z, Christakos G, Ren Z, Liu Q, Lv X (2018) The association between heavy metal soil pollution and stomach cancer: a case study in Hangzhou city, China. Environ Geochem Health 40(6):2481–2490

    Article  CAS  PubMed  Google Scholar 

  104. Yajima I, Zou C, Li X, Nakano C, Omata Y, Kumasaka M (2015) Analysis of heavy-metal-mediated disease and development of a novel remediation system based on fieldwork and experimental research. Nihon Eiseigaku Zasshi 70(2):105–109

    Article  PubMed  Google Scholar 

  105. Lin W-W, Chen Z-X, Kong M-L, Xie Y-Q, Zeng X-W (2017) Air pollution and children’s health in Chinese. In: Ambient air pollution and health impact in China. Springer, Singapore, pp 153–180

    Google Scholar 

  106. Sun H (2018) Association of soil selenium, strontium, and magnesium concentrations with Parkinson’s disease mortality rates in the USA. Environ Geochem Health 40(1):349–357

    Article  PubMed  CAS  Google Scholar 

  107. Tsai CC, Wu CL, Kor CT, Lian IB, Chang CH, Chang TH, Chang CC, Chiu PF (2018) Prospective associations between environmental heavy metal exposure and renal outcomes in adults with chronic kidney disease. Nephrology 23(9):830–836

    Article  CAS  PubMed  Google Scholar 

  108. Pratush A, Kumar A, Hu Z (2018) Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. Int Microbiol 21(3):97–106

    Article  CAS  PubMed  Google Scholar 

  109. Cui X, Cheng H, Liu X, Giubilato E, Critto A, Sun H, Zhang L (2018) Cadmium exposure and early renal effects in the children and adults living in a tungsten-molybdenum mining areas of South China. Environ Sci Pollut Res 25(15):15089–15101

    Article  CAS  Google Scholar 

  110. Dada OA, Adekola FA, Odebunmi EO (2016) Kinetics and equilibrium models for sorption of Cu (II) onto a novel manganese nano-adsorbent. J Dispers Sci Technol 37(1):119–133

    Article  CAS  Google Scholar 

  111. Eklund B, Watermann B (2018) Persistence of TBT and copper in excess on leisure boat hulls around the Baltic Sea. Environ Sci Pollut Res 25(15):14595–14605

    Article  CAS  Google Scholar 

  112. Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2018) Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ Sci Pollut Res 25(15):15159–15173

    Article  CAS  Google Scholar 

  113. Brouwer M, Huss A, van der Mark M, Nijssen PC, Mulleners WM, Sas AM, Van Laar T, de Snoo GR, Kromhout H, Vermeulen RC (2017) Environmental exposure to pesticides and the risk of Parkinson’s disease in the Netherlands. Environ Int 107:100–110

    Article  CAS  PubMed  Google Scholar 

  114. Hamadache M, Benkortbi O, Hanini S, Amrane A, Khaouane L, Moussa CS (2016) A quantitative structure activity relationship for acute oral toxicity of pesticides on rats: validation, domain of application and prediction. J Hazard Mater 303:28–40

    Article  CAS  PubMed  Google Scholar 

  115. Hamadache M, Hanini S, Benkortbi O, Amrane A, Khaouane L, Moussa CS (2016) Artificial neural network-based equation to predict the toxicity of herbicides on rats. Chemom Intell Lab Syst 154:7–15

    Article  CAS  Google Scholar 

  116. Kim J, Swartz M, Langlois P, Romitti P, Weyer P, Mitchell L, Luben T, Ramakrishnan A, Malik S, Lupo P (2017) Estimated maternal pesticide exposure from drinking water and heart defects in offspring. Environ Res Public Health 14(8):889

    Article  Google Scholar 

  117. Guibal R, Lissalde S, Leblanc J, Cleries K, Charriau A, Poulier G, Mazzella N, Rebillard J-P, Brizard Y, Guibaud G (2017) Two sampling strategies for an overview of pesticide contamination in an agriculture-extensive headwater stream. Environ Sci Pollut Res 25(15):14280–14293

    Article  PubMed  CAS  Google Scholar 

  118. Costa R, Pereira JL, Santos MA, Pacheco M, Guilherme S (2018) The role of contamination history and gender on the genotoxic responses of the crayfish Procambarus clarkii to a penoxsulam-based herbicide. Ecotoxicology 27(7):908–918

    Article  CAS  PubMed  Google Scholar 

  119. Harmouche-Karaki M, Matta J, Helou K, Mahfouz Y, Fakhoury-Sayegh N, Narbonne J-F (2018) Serum concentrations of selected organochlorine pesticides in a Lebanese population and their associations to sociodemographic, anthropometric and dietary factors: ENASB study. Environ Sci Pollut Res 25(15):14350–14360

    Article  CAS  Google Scholar 

  120. Boyle NK, Sheppard WS (2017) A scientific note on seasonal levels of pesticide residues in honey bee worker tissues. Apidologie 48(1):128–130

    Article  Google Scholar 

  121. Heard MS, Baas J, Dorne J-L, Lahive E, Robinson AG, Rortais A, Spurgeon DJ, Svendsen C, Hesketh H (2017) Comparative toxicity of pesticides and environmental contaminants in bees: are honey bees a useful proxy for wild bee species? Sci Total Environ 578:357–365

    Article  CAS  PubMed  Google Scholar 

  122. Hallmann CA, Foppen RP, van Turnhout CA, de Kroon H, Jongejans E (2014) Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511(7509):341

    Article  CAS  PubMed  Google Scholar 

  123. Sánchez-Bayo F, Goka K, Hayasaka D (2016) Contamination of the aquatic environment with neonicotinoids and its implication for ecosystems. Front Environ Sci 4:71. https://doi.org/10.3389/fenvs.2016.00071

    Article  Google Scholar 

  124. Can A, Yildiz I, Guvendik G (2013) The determination of toxicities of sulphonylurea and phenylurea herbicides with quantitative structure–toxicity relationship (QSTR) studies. Environ Toxicol Pharmacol 35(3):369–379

    Article  CAS  PubMed  Google Scholar 

  125. Basant N, Gupta S, Singh KP (2015) Predicting toxicities of diverse chemical pesticides in multiple avian species using tree-based QSAR approaches for regulatory purposes. J Chem Inf Model 55(7):1337–1348

    Article  CAS  PubMed  Google Scholar 

  126. Basant N, Gupta S, Singh KP (2016) Modeling the toxicity of chemical pesticides in multiple test species using local and global QSTR approaches. Toxicol Res 5(1):340–353

    Article  CAS  Google Scholar 

  127. Sun L, Zhang C, Chen Y, Li X, Zhuang S, Li W, Liu G, Lee PW, Tang Y (2015) In silico prediction of chemical aquatic toxicity with chemical category approaches and substructural alerts. Toxicol Res 4(2):452–463

    Article  CAS  Google Scholar 

  128. Toropov AA, Toropova AP, Marzo M, Dorne JL, Georgiadis N, Benfenati E (2017) QSAR models for predicting acute toxicity of pesticides in rainbow trout using the CORAL software and EFSA’s OpenFoodTox database. Environ Toxicol Pharmacol 53:158–163

    Article  CAS  PubMed  Google Scholar 

  129. Qin L-T, Chen Y-H, Zhang X, Mo L-Y, Zeng H-H, Liang Y-P (2018) QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide. Chemosphere 198:122–129

    Article  CAS  PubMed  Google Scholar 

  130. Khan PM, Roy K, Benfenati E (2019) Chemometric modeling of Daphnia magna toxicity of agrochemicals. Chemosphere 224:470. https://doi.org/10.1016/j.chemosphere.2019.02.147

    Article  CAS  PubMed  Google Scholar 

  131. Villaverde JJ, Sevilla-Morán B, López-Goti C, Calvo L, Alonso-Prados JL, Sandín-España P (2018) Photolysis of clethodim herbicide and a formulation in aquatic environments: fate and ecotoxicity assessment of photoproducts by QSAR models. Sci Total Environ 615:643–651

    Article  CAS  PubMed  Google Scholar 

  132. Como F, Carnesecchi E, Volani S, Dorne J, Richardson J, Bassan A, Pavan M, Benfenati E (2017) Predicting acute contact toxicity of pesticides in honeybees (Apis mellifera) through a k-nearest neighbor model. Chemosphere 166:438–444

    Article  CAS  PubMed  Google Scholar 

  133. Roy K, Das RN (2013) QSTR with extended topochemical atom (ETA) indices. 16. Development of predictive classification and regression models for toxicity of ionic liquids towards Daphnia magna. J Hazard Mater 254:166–178

    Article  PubMed  CAS  Google Scholar 

  134. Roy K, Das RN, Popelier PL (2014) Quantitative structure–activity relationship for toxicity of ionic liquids to Daphnia magna: aromaticity vs. lipophilicity. Chemosphere 112:120–127

    Article  CAS  PubMed  Google Scholar 

  135. Ma S, Lv M, Deng F, Zhang X, Zhai H, Lv W (2015) Predicting the ecotoxicity of ionic liquids towards Vibrio fischeri using genetic function approximation and least squares support vector machine. J Hazard Mater 283:591–598

    Article  CAS  PubMed  Google Scholar 

  136. Das RN, Sintra TE, Coutinho JA, Ventura SP, Roy K, Popelier PL (2016) Development of predictive QSAR models for Vibrio fischeri toxicity of ionic liquids and their true external and experimental validation tests. Toxicol Res 5(5):1388–1399

    Article  CAS  Google Scholar 

  137. Das RN, Roy K, Popelier PL (2015) Interspecies quantitative structure–toxicity–toxicity (QSTTR) relationship modeling of ionic liquids. Toxicity of ionic liquids to V. fischeri, D. magna and S. vacuolatus. Ecotoxicol Environ Saf 122:497–520

    Article  CAS  PubMed  Google Scholar 

  138. Ghanem OB, Mutalib MA, Lévêque J-M, El-Harbawi M (2017) Development of QSAR model to predict the ecotoxicity of Vibrio fischeri using COSMO-RS descriptors. Chemosphere 170:242–250

    Article  CAS  PubMed  Google Scholar 

  139. He W, Yan F, Jia Q, Xia S, Wang Q (2018) QSAR models for describing the toxicological effects of ILs against Staphylococcus aureus based on norm indexes. Chemosphere 195:831–838

    Article  CAS  PubMed  Google Scholar 

  140. Khan MI, Zaini D, Shariff AM, Moniruzzaman M (2018) Probabilistic ecotoxicological risk assessment of imidazolium ionic liquids with amino acid and halide anions. J Mech Eng Sci 12(3):3798–3810

    Article  CAS  Google Scholar 

  141. Kar S, Roy K (2010) First report on interspecies quantitative correlation of ecotoxicity of pharmaceuticals. Chemosphere 81(6):738–747

    Article  CAS  PubMed  Google Scholar 

  142. Das RN, Sanderson H, Mwambo AE, Roy K (2013) Preliminary studies on model development for rodent toxicity and its interspecies correlation with aquatic toxicities of pharmaceuticals. Bull Environ Contam Toxicol 90(3):375–381

    Article  CAS  PubMed  Google Scholar 

  143. De García SAO, Pinto GP, García-Encina PA, Irusta-Mata R (2014) Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants. Ecotoxicology 23(8):1517–1533

    Article  CAS  Google Scholar 

  144. Sangion A, Gramatica P (2016) Ecotoxicity interspecies QAAR models from Daphnia toxicity of pharmaceuticals and personal care products. SAR QSAR Environ Res 27(10):781–798

    Article  CAS  PubMed  Google Scholar 

  145. Sangion A, Gramatica P (2016) Hazard of pharmaceuticals for aquatic environment: prioritization by structural approaches and prediction of ecotoxicity. Environ Int 95:131–143

    Article  CAS  PubMed  Google Scholar 

  146. Khan K, Benfenati E, Roy K (2019) Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: ranking and prioritization of the DrugBank database compounds. Ecotoxicol Environ Saf 168:287–297

    Article  CAS  PubMed  Google Scholar 

  147. Singh KP, Gupta S, Kumar A, Mohan D (2014) Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology. Chem Res Toxicol 27(5):741–753

    Article  CAS  PubMed  Google Scholar 

  148. Petrescu A-M, Putz MV, Ilia G (2015) Quantitative structure–activity/ecotoxicity relationships (QSAR/QEcoSAR) of a series of phosphonates. Environ Toxicol Pharmacol 40(3):800–824

    Article  CAS  PubMed  Google Scholar 

  149. Levet A, Bordes C, Clément Y, Mignon P, Morell C, Chermette H, Marote P, Lantéri P (2016) Acute aquatic toxicity of organic solvents modeled by QSARs. J Mol Model 22(12):288

    Article  CAS  PubMed  Google Scholar 

  150. Basant N, Gupta S, Singh KP (2016) Predicting the acute neurotoxicity of diverse organic solvents using probabilistic neural networks based QSTR modeling approaches. Neurotoxicology 53:45–52

    Article  CAS  PubMed  Google Scholar 

  151. Belanger SE, Brill JL, Rawlings JM, McDonough KM, Zoller AC, Wehmeyer KR (2016) Aquatic toxicity structure-activity relationships for the zwitterionic surfactant alkyl dimethyl amine oxide to several aquatic species and a resulting species sensitivity distribution. Ecotoxicol Environ Saf 134:95–105

    Article  CAS  Google Scholar 

  152. Basant N, Gupta S (2017) QSAR modeling for predicting mutagenic toxicity of diverse chemicals for regulatory purposes. Environ Sci Pollut Res 24(16):14430–14444

    Article  CAS  Google Scholar 

  153. Basant N, Gupta S (2017) Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides. Nanotoxicology 11(3):339–350

    Article  CAS  PubMed  Google Scholar 

  154. de Morais e Silva L, Lorenzo VP, Lopes WS, Scotti L, Scotti MT (2019) Predictive computational tools for assessment of ecotoxicological activity of organic micropollutants in various water sources in Brazil. Mol Inf. https://doi.org/10.1002/minf.201800156

    Article  CAS  Google Scholar 

  155. Ha H, Park K, Kang G, Lee S (2019) QSAR study using acute toxicity of Daphnia magna and Hyalella azteca through exposure to polycyclic aromatic hydrocarbons (PAHs). Ecotoxicology 28(3):333–342

    Article  CAS  PubMed  Google Scholar 

  156. Liu L, Yang H, Cai Y, Cao Q, Sun L, Wang Z, Li W, Liu G, Lee PW, Tang Y (2019) In silico prediction of chemical aquatic toxicity for marine crustaceans via machine learning. Toxicol Res 8:341. https://doi.org/10.1039/c8tx00331a

    Article  CAS  Google Scholar 

  157. Stoyanova-Slavova IB, Slavov SH, Pearce B, Buzatu DA, Beger RD, Wilkes JG (2014) Partial least square and k-nearest neighbor algorithms for improved 3D quantitative spectral data–activity relationship consensus modeling of acute toxicity. Environ Toxicol Chem 33(6):1271–1282

    Article  CAS  PubMed  Google Scholar 

  158. Perales E, García JI, Pires E, Aldea L, Lomba L, Giner B (2017) Ecotoxicity and QSAR studies of glycerol ethers in Daphnia magna. Chemosphere 183:277–285

    Article  CAS  PubMed  Google Scholar 

  159. Su Q, Lu W, Du D, Chen F, Niu B, Chou K-C (2017) Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression. Oncotarget 8(30):49359

    Article  PubMed  PubMed Central  Google Scholar 

  160. Tugcu G, Saçan MT (2018) A multipronged QSAR approach to predict algal low-toxic-effect concentrations of substituted phenols and anilines. J Hazard Mater 344:893–901

    Article  CAS  PubMed  Google Scholar 

  161. Mu Y, Wang Z, Wu F, Zhong B, Yang M, Sun F, Feng C, Jin X, Leung KM, Giesy JP (2018) Model for predicting toxicities of metals and metalloids in coastal marine environments worldwide. Environ Sci Technol 52(7):4199–4206

    Article  CAS  PubMed  Google Scholar 

  162. de Silva LDM, Alves MF, Scotti L, Lopes WS, Scotti MT (2018) Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches. Ecotoxicol Environ Saf 153:151–159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeltif Amrane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hamadache, M., Benkortbi, O., Amrane, A., Hanini, S. (2020). QSAR Approaches and Ecotoxicological Risk Assessment. In: Roy, K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0150-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0150-1_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0149-5

  • Online ISBN: 978-1-0716-0150-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics