Skip to main content

Multifunctional Polymer Based Structures for Human Tissues Reconstruction

  • Conference paper
  • First Online:

Abstract

In the last few decades, the field of biomaterial both for tissue repair and regeneration has undergone to a profound innovation. The advent of novel polymer processing technologies along with reliable and robust finite element computing tools have been pivotal in the recent advancement in production and design of tissue repair devices such as hip joint prosthesis, bone fixation screws and plate, intramedullar pins, and ligament prosthesis. Current tissue repair material design is tailored to the specific application both in terms of geometrical constrains and biomechanical performances. Following a bioinspired approach, these materials at present are anisotropic and heterogeneous with point-wise engineered properties and provide a complete matches of performances with their native counterpart. On the other hand, the extraordinary discoveries of the last two decades on the molecular basis of the cell signaling have induced a substantial change in the conception of scaffold material for tissue regeneration. Novel bioactivated scaffolds, able to recapitulate extracellular matrix function in a temporally coordinated and spatially orchestrated manner, represent at present the forefront of the biomaterial research. The key issue here is to encode required biological signals within the scaffold so that all aspects of cell response—adhesion and migration, proliferation and phenotype choice—can be controlled. In achieving this objective nanotechnology, bottom-up design approach and solid free-form fabrication along with the exploitation of the self-assembly molecular machinery could play key roles. In this chapter, the main achievements in the design of biomaterials for both human tissue repair and regeneration will be presented and discussed along with future challenge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Netti PA, D’Amore A, Ronca D, Ambrosio L, Nicolais L (1996) Structure–mechanical properties relationship of natural tendons and ligaments. J Mater Sci Mater Med 7:525–530

    Article  CAS  Google Scholar 

  2. Evans SL, Gregson PJ (1998) Composite technology in load-bearing orthopaedic implants. Biomaterials 19:1329–1342

    Article  CAS  Google Scholar 

  3. Nicolais L (1975) Mechanics of composites. Polym Eng Sci 15:137–149

    Article  CAS  Google Scholar 

  4. Ambrosio L, De Santis R, Iannace S, Netti PA, Nicolais L (1998) Viscoelastic behavior of composite ligament prostheses. J Biomed Mater Res 42:6–12

    Article  CAS  Google Scholar 

  5. Apicella A, Liguori A, Masi E, Nicolais L (1995) Experimental techniques and design in composite materials. Sheffield Academic Press, Sheffield, pp 323–337

    Google Scholar 

  6. De Santis R, Ambrosio L, Di Palma L, Apicella A, Nicolais L (2004) Continuous fiber reinforced polymer as bone model: a synthetic jaw. Compos Sci Technol 64:861–871

    Article  CAS  Google Scholar 

  7. Van Rietbergen B, Huiskes R, Weinans H, Sumner DR, Turner TM, Galante JO (1993) The mechanism of bone remodeling and resorption around press-fitted THA stems. J Biomech 26:369–382

    Article  Google Scholar 

  8. Apicella A, Masi E, Nicolais L, Zarone F, De Rosa N, Valletta G (1998) A finite-element model study of occlusal schemes in full-arch implant restoration. J Mater Sci Mater Med 8:191–196

    Article  Google Scholar 

  9. Mihalko WM, Beaudoin AJ, Cardea JA, Krause WR (1992) Finite-element modelling of femoral shaft fracture fixation techniques post total hip arthroplasty. J Biomech 25:469–476

    Article  CAS  Google Scholar 

  10. Kuiper JH, Huiskes R (1997) The predictive value of stress shielding for quantification of adaptive bone resorption around hip replacement. J Biomech Eng 119:228–231

    Article  CAS  Google Scholar 

  11. Huiskes R, Janssen JD, Slooff TJ (1981) A detailed comparison of experimental and theoretical stress-analyses of a human femur. In: Cowin SC (ed) Mechanical properties of bone. ASME, New York, pp 211–234

    Google Scholar 

  12. McNamara BP, Cristofolini L, Toni A, Taylor D (1997) Relationship between bone-prosthesis bonding and load transfer in total hip reconstruction. J Biomech 6:621–630

    Article  Google Scholar 

  13. De Santis R, Prisco D, Apicella A, Ambrosio L, Rengo S, Nicolais L (2000) Carbon fiber post adhesion to resin luting cement in the restoration of endodontically treated teeth. J Mater Sci Mater Med 4:201–206

    Article  Google Scholar 

  14. Kong HJ, Mooney DJ (2007) Microenvironmental regulation of biomacromolecular therapies. Nat Rev Drug Discov 6:455–463

    Article  CAS  Google Scholar 

  15. Kleinman HK, Philip D, Hoffman MP (2003) The role of the extracellular matrix in morphogenesis. Curr Opin Biotech 14:526–532

    Article  CAS  Google Scholar 

  16. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55

    Article  CAS  Google Scholar 

  17. O’Briena FJ, Harley BA, Yannas IV, Gibsona LJ (2005) The effect of pore size on cell adhesion in collagen–GAG scaffolds. Biomaterials 26:433–441

    Article  CAS  Google Scholar 

  18. Fung YC (1993) Biomechanics:mechanical properties of living tissues. Springer-Verlag, New York

    Google Scholar 

  19. Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 2:92–102

    Article  Google Scholar 

  20. De Santis R, Mollica F, Zarone F, Ambrosio L, Nicolais L (2007) Biomechanical effects of titanium implants with full arch bridge rehabilitation on a synthetic model of the human jaw. Acta Biomater 3:121–126

    Article  CAS  Google Scholar 

  21. Rho JY, Ashman RB, Turner CH (1993) Young’s modulus of trabecular and cortical bone materials: ultrasonic and microtensile measurements. J Biomech 2:111–119

    Article  Google Scholar 

  22. Bonfield W, Grynpas MG (1997) Anisotropy of the Young’s modulus of bone. Nature 270:453–454

    Article  Google Scholar 

  23. Weiner S, Wagner HD (1998) The material bone: structure–mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  CAS  Google Scholar 

  24. Ziouposet P, Currey JD, Hamer AJ (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res 45:108–116

    Article  Google Scholar 

  25. Silver FH, Seehra GP, Freeman JW, DeVore D (2001) Viscoelastic properties of young and old human dermis: a proposed molecular mechanism for elastic energy storage in collagen and elastin. J Appl Polym Sci 79:134–142

    Article  CAS  Google Scholar 

  26. Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24:2161–2175

    Article  CAS  Google Scholar 

  27. Ambrosio L, Caprino G, Nicolais L, Nicodemo L, Huang SJ, Guida G, Ronca D (1987) Composite materials for bone fractures fixation. In: Marshall IH (ed) Composite structures. Elsevier Applied Science, London

    Google Scholar 

  28. Alexander H (1997) Composites. In: Ratner BD, Hofman AS, Schoen FJ, Lemons JE (eds) Biomaterial science. Academic Press, San Diego

    Google Scholar 

  29. Chang YFK, Goodman S (1998) Composite hip prosthesis design. II Simulation. J Biomed Mater Res 39:102–119

    Article  Google Scholar 

  30. Akay M, Aslan N (1995) An estimation of fatigue life for a carbon fibre/poly ether ether ketone hip joint prosthesis. Proc Inst Mech Eng H 229:93–103

    Google Scholar 

  31. Merolli A, Perrone V, Tranquilli Leali P, Ambrosio L, De Santis R, Nicolais L, Gabbi G (1999) Response to polyetherimide based composite materials implanted in muscle and in bone. J Mater Sci Mater Med 10:265–268

    Article  CAS  Google Scholar 

  32. De Santis R, Ambrosio L, Nicolais L (2000) Polymer based composite hip prostheses. J Inorg Biochem 79:97–102

    Article  Google Scholar 

  33. Wilke HJ, Seiz RS, Bombelli M, Claes L, Durselen L (1994) Biomechanical and histomorphological investigations on a isoelastic prosthesis. J Mater Sci Mater Med 5:384–386

    Article  Google Scholar 

  34. Chang FK, Perez JL (1990) Stiffness and strength tailoring of a hip prosthesis made of advanced composite materials. J Biomed Mater Res 24:873–899

    Article  CAS  Google Scholar 

  35. Kuiper JH, Huiskes R (1997) Mathematical optimization elastic properties: application to cementless hip stem design. J Biomech Eng T ASME 119:166–174

    Article  CAS  Google Scholar 

  36. De Santis R, Sarracino F, Mollica F, Netti PA, Ambrosio L, Nicolais L (2004) Continuous fiber reinforced polymers as connective tissue replacement. Compos Sci Technol 64:861–878

    Article  CAS  Google Scholar 

  37. De Santis R, Mollica F, Ambrosio L, Nicolais L (2005) An experimental and theoretical composite model of the human mandible. J Mater Sci Mater Med 16:1191–1197

    Article  CAS  Google Scholar 

  38. Ambrosio L, Netti PA, Iannace S, Huang SJ, Nicolais L (1996) Composite hydrogels for intervertebral disc prostheses. J Mater Sci Mater Med 7:251–254

    Article  CAS  Google Scholar 

  39. Ambrosio L, De Santis R, Nicolais L (1998) Composite hydrogels for implants. Proc Inst Mech Eng H 212:93–99

    CAS  Google Scholar 

  40. Gloria A, Causa F, De Santis R, Netti PA, Ambrosio L (2007) Dynamic-mechanical properties of a novel composite intervertebral disc. J Mater Sci Mater Med 18:2159–2165

    Article  CAS  Google Scholar 

  41. Manto L, De Santis R, Carrillo G, Ambrosio G, Ambrosio L, Nicolais L (2005) Novel composite intervertebral disc cage for spine fusion. J Bone Joint Surg Br 87-B:68-a

    Google Scholar 

  42. Flahiff CM, Blackwell AS, Hollis JM, Feldman DS (1996) Analysis of a biodegradable composite for bone healing. J Biomed Mater Res 32:419–424

    Article  CAS  Google Scholar 

  43. Dauner M, Planck H, Caramano L, Missirlis Y, Panagiotopoulos E (1998) Resorbable continuous-fibre reinforce polymers for osteosynthesis. J Mater Sci Mater Med 9:173–179

    Article  CAS  Google Scholar 

  44. Causa F, Sarracino F, De Santis R, Netti PA, Ambrosio L, Nicolais L (2006) Basic structural parameters for the design of composite structures as ligament augmentation devices. J Appl Biomater Biomech 4:21–30

    CAS  Google Scholar 

  45. Roy TD, Simon JL, Ricci JL, Rekow ED, Thompson VP, Russell Parsons J (2003) Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J Biomed Mater Res 66A:283–291

    Article  CAS  Google Scholar 

  46. Giordano C, Sanginario V, Ambrosio L, Di Silvio L, Santin M (2006) Chemical–physical characterization and in vitro preliminary biological assessment of hyaluronic acid benzyl ester-hydroxyapatite composite. J Biomater Appl 20:237–253

    Article  CAS  Google Scholar 

  47. Schmitt M, Weiss P, Bourges X, Amador Del Valle G, Daculsi G (2002) Crystallization at the polymer/calcium–phosphate interface in a sterilized injectable bone substitute IBS. Biomaterials 23:2789–2794

    Article  CAS  Google Scholar 

  48. Navarro M, del Valle S, Martinez S, Zeppetelli S, Ambrosio L, Planell JA, Ginebra MP (2004) New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials 25:4233–4241

    Article  CAS  Google Scholar 

  49. Lin FH, Chen TM, Lin CP, Lee CJ (1999) The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Artif Organs 23:186–194

    Article  CAS  Google Scholar 

  50. Mikos AG, Herring SW, Ochareon P, Elisseeff J, Lu HH, Kandel R, Schoen FJ, Toner M, Mooney D, Atala A, Van Dyke ME, Kaplan D, Vunjak-Novakovic G (2006) Engineering complex tissues. Tissue Eng 12:3307–3339

    Article  CAS  Google Scholar 

  51. Matsumoto T, Mooney DJ (2006) Cell instructive polymers. Adv Biochem Eng Biotechnol 102:113–137

    CAS  Google Scholar 

  52. Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci Polym Ed 12:107–124

    Article  CAS  Google Scholar 

  53. Tabata Y (2005) Significance of release technology in tissue engineering. Drug Discov Today 10:1639–1646

    Article  CAS  Google Scholar 

  54. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–40

    CAS  Google Scholar 

  55. Sun W, Darling A, Starly B, Nam J (2004) Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem 39:29–47

    Article  CAS  Google Scholar 

  56. Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1:910–917

    Article  CAS  Google Scholar 

  57. Teo WE, He W, Ramakrishna S (2006) Electrospun scaffold tailored for tissue-specific extracellular matrix. Biotechnol J 1:918–929

    Article  CAS  Google Scholar 

  58. Guarino V, Causa F, Ambrosio L (2007) Bioactive scaffolds for bone and ligament tissue. Expert Rev Med Devices 4:405–418

    Article  CAS  Google Scholar 

  59. Beniash E, Hartgerink JD, Storrie H, Stendahl JC, Stupp SI (2005) Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomater 1:387–397

    Article  Google Scholar 

  60. Day RM, Boccaccini AR, Maquet V, Shurey S, Forbes A, Gabe SM, Jerome R (2004) In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications. J Mater Sci Mater Med 15:729–734

    Article  CAS  Google Scholar 

  61. Ng KW, Hutmacher DW, Schantz JT, Ng CS, Too HP, Lim TC, Phan TT, Teoh SH (2001) Evaluation of ultra-thin poly(epsilon-caprolactone) films for tissue-engineered skin. Tissue Eng 7:441–455

    Article  CAS  Google Scholar 

  62. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100:5413–5418

    Article  CAS  Google Scholar 

  63. Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo (poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101:111–125

    Article  CAS  Google Scholar 

  64. Paul W, Sharma CP (2004) Ceramic drug delivery: a perspective. J Biomater Appl 17:253–264

    Article  Google Scholar 

  65. LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98

    Article  Google Scholar 

  66. Horn EM, Beaumont M, Shu XZ, Harvey A, Prestwich GD, Horn KM, Gibson AR, Preul MC, Panitch A (2007) Influence of cross-linked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury. J Neurosurg Spine 6:133–140

    Article  Google Scholar 

  67. Duflo S, Thibeault SL, Li W, Shu XZ, Prestwich GD (2006) Vocal fold tissue repair in vivo using a synthetic extracellular matrix. Tissue Eng 12:2171–2180

    Article  CAS  Google Scholar 

  68. Brun P, Abatangelo G, Radice M, Zacchi V, Guidolin D, Daga GD, Cortivo R (1999) Chondrocyte aggregation and reorganization into three-dimensional scaffolds. J Biomed Mater Res 46:337–346

    Article  CAS  Google Scholar 

  69. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492

    Article  CAS  Google Scholar 

  70. Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233

    Article  CAS  Google Scholar 

  71. Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:187–206

    Article  CAS  Google Scholar 

  72. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  CAS  Google Scholar 

  73. Yamane S, Iwasaki N, Kasahara Y, Harada K, Majima T, Monde K, Nishimura S, Minami A (2007) Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res 81:586–593

    Article  CAS  Google Scholar 

  74. Rouwkema J, Rivron NC, van Blitterswijk CA (2005) Vascularization in tissue engineering. Trends Biotechnol 26:434–441

    Article  CAS  Google Scholar 

  75. Ranucci CS, Kumar A, Batra SP, Moghe PV (2000) Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2-D and 3-D cellular morphogenesis. Biomaterials 21:783–793

    Article  CAS  Google Scholar 

  76. Yang S, Leong K, Du Z, Chua C (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7:679–689

    Article  CAS  Google Scholar 

  77. Oh SH, Park IK, Kim JM, Lee JH (2007) In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28:1664–1671

    Article  CAS  Google Scholar 

  78. Lim SM, Oh SH, Park IK, Lee JH (2007) Investigation of pore size effect on cell compatibility using pore size gradient chitosan scaffold. Key Eng Mater 342:285–288

    Article  Google Scholar 

  79. Beckstead BL, Pana S, Bhrany AD, Bratt-Leal AM, Ratner BD, Giachelli CM (2005) Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Biomaterials 26:6217–6228

    Article  CAS  Google Scholar 

  80. Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L, Zhu R (2006) Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 27:4573–4580

    Article  CAS  Google Scholar 

  81. Petrie Aronin CE, Sadik KW, Lay AL, Rion DB, Tholpady SS, Ogle RC, Botchwey EA (2009) Comparative effects of scaffold pore size, pore volume, and total void volume on cranial bone healing patterns using microsphere-based scaffolds. J Biomed Mater Res A 89:632–641

    Google Scholar 

  82. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27:5892–5900

    Article  CAS  Google Scholar 

  83. Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T (2004) Osteoinduction of porous bioactive titanium metal. Biomaterials 25:443–450

    Article  CAS  Google Scholar 

  84. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734

    Article  CAS  Google Scholar 

  85. Yoshikawa H, Myoui A (2005) Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 8:131–136

    Article  CAS  Google Scholar 

  86. Savarino L, Baldini N, Greco M, Capitani O, Pinna S, Valentini S, Lombardo B, Esposito MT, Pastore L, Ambrosio L, Battista S, Causa F, Zeppetelli S, Guarino V, Netti PA (2007) The performance of poly-e-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials 28:3101–3109

    Article  CAS  Google Scholar 

  87. Montjovent MO, Mark S, Mathieu L, Scaletta C, Scherberich A, Delabarde C, Zambelli PY, Bourban PE, Applegate LA, Pioletti DP (2007) Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Bone 42:554–564

    Article  CAS  Google Scholar 

  88. Stokols S, Tuszynski MH (2004) The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25:5839–5846

    Article  CAS  Google Scholar 

  89. Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610

    Article  CAS  Google Scholar 

  90. Yu TT, Shoichet MS (2005) Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering. Biomaterials 26:1507–1514

    Article  CAS  Google Scholar 

  91. Moore MJ, Friedman JA, Lewellyn EB, Mantila SM, Krych AJ, Ameenuddin S, Knight AM, Lu L, Currier BL, Spinner RJ, Marsh RW, Windebank AJ, Yaszemski MJ (2006) Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials 27:419–429

    Article  CAS  Google Scholar 

  92. Du C, Moradian-Oldak J (2006) Tooth regeneration: challenges and opportunities for biomedical material research. Biomed Mater 1:R10–R17

    Article  CAS  Google Scholar 

  93. Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32:1728–1743

    Article  Google Scholar 

  94. Moore MJ, Jabbari E, Ritman EL, Lu L, Currier BL, Windebank AJ, Yaszemski MJ (2004) Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography. J Biomed Mater Res 71:258–267

    Article  CAS  Google Scholar 

  95. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378

    Article  CAS  Google Scholar 

  96. Marshall AJ, Irvin CA, Barker T, Sage EH, Hauch KD, Ratner BD (2004) Biomaterials with tightly controlled pore size that promote vascular in-growth. ACS Polym Prepr 45:100–101

    CAS  Google Scholar 

  97. Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14:323–330

    Article  CAS  Google Scholar 

  98. Hou Q, Grijpma DW, Feijen J (2002) Preparation of porous poly(ε-caprolactone) structures. Macromol Rapid Commun 23:247–252

    Article  CAS  Google Scholar 

  99. Gong S, Wang H, Sun Q, Xue S, Wang J (2006) Mechanical properties and in vitro biocompatibility of porous zein scaffolds. Biomaterials 27:3793–3799

    Article  CAS  Google Scholar 

  100. Lee SB, Kim YH, Chong MS, Hong SH, Lee YM (2005) Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials 26:1961–1968

    Article  CAS  Google Scholar 

  101. Yuan Z, Favis BD (2006) Macroporous poly(l-lactide) of controlled pore size derived from the annealing of co-continuous polystyrene/poly(l-lactide) blends. Biomaterials 25:2161–2170

    Article  CAS  Google Scholar 

  102. Barry JJ, Silva MM, Popov VK, Shakesheff KM, Howdle SM (2006) Supercritical carbon dioxide: putting the fizz into biomaterials. Philos Trans R Soc A 364:249–261

    Article  CAS  Google Scholar 

  103. Luetzow K, Klein F, Weigel T, Apostel R, Weiss A, Lendlein A (2007) Formation of poly(e-caprolactone) scaffolds loaded with small molecules by integrated processes. J Biomech 40:S80–S88

    Article  Google Scholar 

  104. Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47:8–17

    Article  CAS  Google Scholar 

  105. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486

    Article  Google Scholar 

  106. Guarino V, Causa F, Salerno A, Ambrosio L, Netti PA (2008) Design and manufacture of micro-porous polymeric materials with hierarchal complex structure for biomedical application. Mater Sci Tech Ser 24:1111–1117

    Article  CAS  Google Scholar 

  107. Min BM, Lee SW, Lim JN, You Y, Lee TS, Kang PH, Park WH (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45:7137–7142

    Article  CAS  Google Scholar 

  108. Jiang H, Zhao P, Zhu K (2007) Fabrication and characterization of zein-based nanofibrous scaffolds by an electrospinning method. Macromol Biosci 7:517–525

    Article  CAS  Google Scholar 

  109. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569

    Article  CAS  Google Scholar 

  110. Salerno A, Oliviero M, Di Maio E, Iannace S, Netti PA (2007) Design and preparation of m-bimodal porous scaffold for tissue engineering. J Appl Polym Sci 106:3335–3342

    Article  CAS  Google Scholar 

  111. Salerno A, Iannace S, Netti PA (2008) Open-pore biodegradable foams prepared via gas foaming and microparticulate templating. Macromol Biosci 8:655–664

    Article  CAS  Google Scholar 

  112. Harris DL, Kim B, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 42:396–402

    Article  CAS  Google Scholar 

  113. Guarino V, Causa F, Netti PA, Ciapetti G, Pagani S, Martini D, Baldini N, Ambrosio L (2008) The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration. J Biomed Mater Res A 86:548–557

    Google Scholar 

  114. Nam J, Huang Y, Agarwal S, Lannutti J (2007) Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng 13:2249–2257

    Article  CAS  Google Scholar 

  115. Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29:2348–2358

    Article  CAS  Google Scholar 

  116. Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029–1034

    Article  CAS  Google Scholar 

  117. Moroni L, Hendriks JA, Schotel R, de Wijn JR, van Blitterswijk CA (2007) Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications. Tissue Eng 13:361–371

    Article  CAS  Google Scholar 

  118. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  Google Scholar 

  119. Whitesides GM, Boncheva M (2002) Supramolecular chemistry and self-assembly special feature: beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 99:4769–4774

    Article  CAS  Google Scholar 

  120. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  CAS  Google Scholar 

  121. Silva EA, Mooney DJ (2004) Synthetic extracellular matrices for tissue engineering and regeneration. Curr Top Dev Biol 64:181–205

    Article  CAS  Google Scholar 

  122. Leach JK (2006) Multifunctional cell-instructive materials for tissue regeneration. Regen Med 1:447–455

    Article  CAS  Google Scholar 

  123. Boontheekul T, Mooney DJ (2003) Protein-based signaling systems in tissue engineering. Curr Opin Biotechnol 14:559–565

    Article  CAS  Google Scholar 

  124. Saltzman WM, Olbricht WL (2002) Building drug delivery into tissue engineering. Nat Rev Drug Discov 1:177–186

    Article  CAS  Google Scholar 

  125. Chen RR, Silva EA, Yuen WW, Mooney DJ (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24:258–264

    Article  CAS  Google Scholar 

  126. Suciati T, Howard D, Barry J, Everitt NM, Shakesheff KM, Rose FR (2006) Zonal release of proteins within tissue engineering scaffolds. J Mater Sci Mater Med 17:1049–1056

    Article  CAS  Google Scholar 

  127. Ungaro F, Biondi M, Indolfi L, De Rosa G, La Rotonda MI, Quaglia F, Netti PA (2005) Bioactivated polymer scaffolds for tissue engineering. In: Ashammakai N, Rice RL, Sun W (eds) Topics in tissue engineering. http://www.oulu.fi/spareparts/ebook_topics_in_t_e_vol2/index.html

  128. Ungaro F, Biondi M, D’Angelo I, Indolfi L, Quaglia F, Netti PA, La Rotonda MI (2006) Microsphere-integrated collagen scaffolds for tissue engineering: effect of microsphere formulation and scaffold properties on protein release kinetics. J Control Release 113:128–136

    Article  CAS  Google Scholar 

  129. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  CAS  Google Scholar 

  130. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362

    Article  CAS  Google Scholar 

  131. Hung AM, Stupp SI (2007) Simultaneous self-assembly, orientation, and patterning of peptide-amphiphile nanofibers by soft lithography. Nano Lett 7:1165–1171

    Article  CAS  Google Scholar 

  132. Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, Fairbrother DH, Cascio B, Elisseeff JH (2007) Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat Mater 6:385–392

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Netti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this paper

Cite this paper

Netti, P.A., Ambrosio, L. (2011). Multifunctional Polymer Based Structures for Human Tissues Reconstruction. In: Nicolais, L., Meo, M., Milella, E. (eds) Composite Materials. Springer, London. https://doi.org/10.1007/978-0-85729-166-0_4

Download citation

Publish with us

Policies and ethics