Job #: 111231

Author Name: Freeman

Title of Book: Robust Nonlinear Control Design

ISBN #: 9780817647582

Modern Birkhäuser Classics

Many of the original research and survey monographs in pure and applied mathematics published by Birkhäuser in recent decades have been groundbreaking and have come to be regarded as foundational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain accessible to new generations of students, scholars, and researchers.

Robust Nonlinear Control Design

State-Space and Lyapunov Techniques

Randy A. Freeman Petar V. Kokotović

Reprint of the 1996 Edition

Birkhäuser Boston • Basel • Berlin Randy A. Freeman Department of Electrical and Computer Engineering Northwestern University Evanston, IL 60208 U.S.A. Petar Kokotović
Department of Electrical
and Computer Engineering
University of California
Santa Barbara, CA 93106
U.S.A.

Originally published in the series Systems & Control: Foundations & Applications

ISBN-13: 978-0-8176-4758-2 DOI: 10.1007/978-0-8176-4759-9 e-ISBN-13: 978-0-8176-4759-9

Library of Congress Control Number: 2007940262

©2008 Birkhäuser Boston

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Cover design by Alex Gerasev.

Printed on acid-free paper.

987654321

www.birkhauser.com

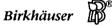
Randy A. Freeman Petar V. Kokotović

Robust Nonlinear Control Design State-Space and Lyapunov Techniques

Randy A. Freeman Department of Electrical and Computer Engineering Northwestern University Evanston, IL 60208

Petar V. Kokotović Department of Electrical and Computer Engineering University of California Santa Barbara, CA 93106

Printed on acid-free paper © 1996 Birkhäuser Boston



Copyright is not claimed for works of U.S. Government employees. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission of the copyright owner.

Permission to photocopy for internal or personal use of specific clients is granted by Birkhäuser Boston for libraries and other users registered with the Copyright Clearance Center (CCC), provided that the base fee of \$6.00 per copy, plus \$0.20 per page is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, U.S.A. Special requests should be addressed directly to Birkhäuser Boston, 675 Massachusetts Avenue, Cambridge, MA 02139, U.S.A.

ISBN 0-8176-3930-6 ISBN 3-7643-3930-6 Typeset by the authors in TEX Printed and bound by Edwards Brothers, Ann Arbor, MI Printed in the United States of America

Preface

This is the first book entirely dedicated to the design of robust nonlinear control systems. We believe that every effort in this direction is timely and will be highly rewarding in both theoretical and practical results.

Although the problem of achieving robustness with respect to disturbances and model uncertainty is as old as feedback control itself, effective systematic methods for the robust design of linear systems have been developed only recently. That such methods are already being successfully applied by a large community of practicing engineers testifies to a vital technological need.

Limitations of a popular methodology have always been among the factors stimulating new research. Such is the case with the inability of robust linear control to cope with nonlinear phenomena which become dominant when commands or disturbances cause the system to cover wide regions of its state space. In this situation it is natural to turn to nonlinear approaches to robust control design.

There are obvious reasons why robustness studies of nonlinear systems have been incomparably less numerous than their luckier linear cousins. The complexity of nonlinear phenomena is daunting even in the absence of disturbances and other uncertainties. It is not surprising that it has taken some time for a "clean" theory to discover classes of nonlinear systems with tractable analytic and geometric properties. During the last ten years, much progress has been made in this direction by nonlinear differential-geometric control theory. Most recently, a merger of this theory with classical Lyapunov stability theory led to the systematic adaptive "backstepping" design of nonlinear control systems with unknown constant parameters. However, the adaptive control paradigm is not suitable

for handling fast time-varying and functional uncertainties which are the main topic of this book.

Wide operating regimes involving large magnitudes of state and control variables, such as torques, pressures, velocities, and accelerations, are becoming increasingly common in modern aircraft, automotive systems, and industrial processes. In these regimes, nonlinearities which are not confined to "linear sectors" (namely those which exhibit super-linear growth) often cause severe, or even catastrophic, forms of instability. For this reason, our theory and design methods take such critical nonlinearities into account and focus on large-signal (global) behavior rather than small-signal (local) behavior. While not restricting nonlinear growth, we do consider systems with a particular structure.

Often a control design is performed on a model having no uncertainties. The robustness of the resulting system is then analyzed, possibly followed by a redesign to improve robustness. In contrast, our approach is to explicitly include uncertainties in the design model, taking them into account during the design itself. We therefore extend the theory behind Lyapunov design to include uncertainties by introducing the robust control Lyapunov function (rclf). Just as the existence of a control Lyapunov function is equivalent to the nonlinear stabilizability of systems without uncertainties, the existence of our rclf is equivalent to the nonlinear robust stabilizability of systems with uncertainties. The task of constructing an rclf thereby becomes a crucial step in robust nonlinear control design.

Our recursive methods for constructing rclf's remove the "matching condition" constraint which severely limited the applicability of early robust Lyapunov designs. Already these designs exploited a worst-case differential game formulation, and we adopt a similar viewpoint in our approach to robust control design. Our solution of an inverse optimal robust stabilization problem shows that every rclf is the value function associated with a meaningful game. The resulting inverse optimal designs prevent the wasteful cancellation of nonlinearities which are beneficial in achieving the control objective, and they also inherit the desirable stability margins guaranteed by optimality.

The theoretical foundation of the entire book is established in Chapter 3 where we develop the rclf framework. Chapter 4 contains new results

in inverse optimality and relates them to crucial issues in control design and performance. The bulk of the design content of this book appears in Chapters 5–8. In Chapter 5 we present the recursive Lyapunov design procedure we call *robust backstepping*. This design procedure is modified to accommodate measurement disturbances in Chapter 6. A dynamic feedback version of backstepping is developed in Chapter 7. In Chapter 8 we combine these robust and dynamic backstepping methods to obtain a robust nonlinear version of classical proportional/integral (PI) control. Illustrative examples appear throughout the book, while Chapters 7 and 8 include detailed design examples.

This book is intended for graduate students and researchers in control theory, serving as both a summary of recent results and a source of new research problems. We assume the reader has a basic knowledge of nonlinear analysis and design tools, including Lyapunov stability theory, input/output linearization, and optimal control. For those readers not familiar with elementary concepts from set-valued analysis, we provide a review of set-valued maps in Chapter 2.

* * *

We thank Tamer Başar for helping to direct our path, especially as we developed the inverse optimality results in Chapter 4. Also, we benefited greatly from frequent discussions with Miroslav Krstić and Ioannis Kanellakopoulos, whose contributions in adaptive nonlinear control directly inspired the dynamic backstepping methods in Chapters 7 and 8. We are grateful for the insights we gained from these colleagues. We thank Mohammed Dahleh, Laurent Praly, and Eduardo Sontag for sharing with us their technical expertise which helped shape many of our results. We are grateful to John Cheng of Rockwell International for providing us with physical examples motivating the material in Chapter 8. Many other researchers and educators influenced the content of this book, including Mrdjan Janković, Art Krener, Philippe Martin, Rodolphe Sepulchre, Stephen Simons, and Mark Spong.

Finally, this work would not have been possible without the patient support of our wives, Lisa and Anna—it is *analisa* that lies behind each of our control designs.

The research presented in this book was supported in part by the National Science Foundation under Grant ECS-9203491 and by the Air Force Office of Scientific Research under Grant F49620-92-J-0495, both through the University of California at Santa Barbara, and by the U.S. Department of Energy under Grant DE-FG-02-88-ER-13939 through the University of Illinois at Urbana-Champaign.

Randy Freeman Evanston, Illinois

Petar Kokotović Santa Barbara, California

March 1996

Contents

1	Inti	coduct	ion	1
	1.1	A Lya	punov framework for robust control	3
	1.2	Invers	e optimality in robust stabilization	6
	1.3	Recur	sive Lyapunov design	9
2	Set-	-Value	d Maps	.5
	2.1	Conti	nuity of set-valued maps	7
		2.1.1	Upper and lower semicontinuity	7
		2.1.2	Lipschitz and Hausdorff continuity	9
	2.2	Margi	nal functions	21
	2.3	Inters	$\operatorname{ections}$	23
		2.3.1	Continuity of intersections	23
		2.3.2	Lipschitz continuity of intersections	24
	2.4	Select		8
		2.4.1	Michael's theorem	28
		2.4.2	Minimal selections	28
		2.4.3	Lipschitz selections	29
	2.5	Paran		30
	2.6			32
3	Rol	oust C	ontrol Lyapunov Functions 3	3
	3.1	Nonlii	near robust stabilization	35
		3.1.1	System description	35
		3.1.2	Problem statement	39
	3.2	Nonlii	near disturbance attenuation	10
		3.2.1	Input-to-state stability	1
		3.2.2		12
		3.2.3	Disturbance attenuation vs. robust stabilization 4	13
	3.3	Robus		15
		3.3.1		16
		3.3.2	3 1	18
		3.3.3		19

x CONTENTS

		3.3.4	Rclf: absence of disturbance input	51
	3.4	Relf in	nplies robust stabilizability	53
		3.4.1	Small control property	56
		3.4.2	Output feedback	58
		3.4.3		60
	3.5	Robus	t stabilizability implies relf	61
	3.6		ary	63
4	Inve	erse Op	ptimality	65
	4.1	Optim	al stabilization: obstacles and benefits	66
		4.1.1	Inverse optimality, sensitivity reduction, and sta-	
			bility margins	67
		4.1.2	An introductory example	69
	4.2	Pointy	vise min-norm control laws	71
		4.2.1	General formula	72
		4.2.2	Jointly affine systems	75
		4.2.3	Feedback linearizable systems	76
	4.3	Inverse	e optimal robust stabilization	78
		4.3.1	A preliminary result	78
		4.3.2	A differential game formulation	79
		4.3.3	Main theorem	81
	4.4	Proof	of the main theorem	83
		4.4.1	Terminology and technical lemmas	83
		4.4.2	Construction of the function r	85
		4.4.3	Proof of the key proposition	88
		4.4.4	Proof of optimality	91
	4.5	Extens	sion to finite horizon games	93
		4.5.1	A finite horizon differential game	94
		4.5.2	Main theorem: finite horizon	95
		4.5.3	Proof of the main theorem	96
	4.6	Summ	ary	100
5	Rol	oust Ba	ackstepping 1	101
	5.1	Lyapu	nov redesign	103
		5.1.1	Matched uncertainty	103
		5.1.2	Beyond the matching condition	105
	5.2	Recur	sive Lyapunov design	107
		5.2.1	Class of systems: strict feedback form	108
		5.2.2	Construction of an relf	
		5.2.3	Backstepping design procedure	115
		5.2.4	A benchmark example	117
	5.3	Flatte	ened relf's for softer control laws	

CONTENTS xi

		5.3.1	Hardening of control laws		119
		5.3.2	Flattened rclf's		123
		5.3.3	Design example: elimination of chattering		126
	5.4	Nonsm	nooth backstepping		
		5.4.1	Clarke's generalized directional derivative		
		5.4.2	Nonsmooth relf's		
		5.4.3	Backstepping with nonsmooth nonlinearities		
	5.5	Summ	-		
6	Mea	asurem	ent Disturbances		137
	6.1	Effects	s of measurement disturbances		138
		6.1.1	Loss of global stability		138
		6.1.2	Loss of global stabilizability		139
	6.2	Design	for strict feedback systems		143
		6.2.1	Measurement constraint for ISS		143
		6.2.2	Backstepping with measurement disturbances .		145
		6.2.3	Initialization step		148
		6.2.4	Recursion step		150
		6.2.5	Design procedure and example		157
	6.3	Summa	ary		160
7	Dyr	namic I	Partial State Feedback		161
	7.1	Nonlin	ear observer paradigm		162
		7.1.1	Extended strict feedback systems		162
		7.1.2	Assumptions and system structure		163
	7.2	Contro	oller design		167
		7.2.1	Main result		167
		7.2.2	Controller design for $n = 1 \dots \dots \dots$		168
		7.2.3	Conceptual controllers and derivatives		172
		7.2.4	Backstepping lemma		
		7.2.5	Controller design for $n \geq 2 \ldots \ldots \ldots$		
		7.2.6	Proof of the main result		179
	7.3	Design	example		180
		7.3.1	Truth model and design model		182
		7.3.2	Full state feedback design		
		7.3.3	Partial state feedback design		194
	7.4	Summa	ary		201
8	Rob	oust No	onlinear PI Control		203
	8.1	Proble	$m\ formulation\ \ldots\ldots\ldots\ldots\ldots$		204
		8.1.1	Class of systems		204
		8.1.2	Design objective		206
	82	Contro	Aller design		208

xii CONTENTS

	8.2.1	Main result	20
	8.2.2	Technical lemma	20
	8.2.3	Controller design for $r = 1 \dots \dots \dots$	21
	8.2.4	Backstepping construction	21
	8.2.5	Controller design for $r \geq 2 \ldots \ldots \ldots$	21
	8.2.6	Proof of the main result	22
8.3	Design	$ \textbf{example} \dots \dots \dots \dots \dots \dots \dots \dots$	22
8.4	Summ	ary	22
Арг	endix:	Local K-continuity in metric spaces	22
		inuity	
A.2	Local	\mathcal{K} -continuity	23
		ntinuity	
Bib	liograp	hy	24
Inde	ex		25