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Preface

This is the first book entirely dedicated to the design of robust nonlinear
control systems. We believe that every effort in this direction is timely
and will be highly rewarding in both theoretical and practical results.

Although the problem of achieving robustness with respect to distur-
bances and model uncertainty is as old as feedback control itself, effective
systematic methods for the robust design of linear systems have been de-
veloped only recently. That such methods are already being successfully
applied by a large community of practicing engineers testifies to a vital
technological need.

Limitations of a popular methodology have always been among the
factors stimulating new research. Such is the case with the inability of
robust linear control to cope with nonlinear phenomena which become
dominant when commands or disturbances cause the system to cover
wide regions of its state space. In this sitnation it is natural to turn to
nonlinear approaches to robust control design.

There are obvious reasons why robustness studies of nonlinear systems
have been incomparably less numerous than their luckier linear cousins.
The complexity of nonlinear phenomena is daunting even in the absence
of disturbances and other uncertainties. It is not surprising that it has
taken some time for a “clean” theory to discover classes of nonlinear sys-
tems with tractable analytic and geometric properties. During the last
ten years, much progress has been made in this direction by nonlinear
differential-geometric control theory. Most recently, a merger of this the-
ory with classical Lyapunov stability theory led to the systematic adaptive
“backstepping” design of nonlinear control systems with unknown con-
stant parameters. However, the adaptive control paradigm is not suitable
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for handling fast time-varying and functional uncertainties which are the
main topic of this book.

Wide operating regimes involving large magnitudes of state and con-
trol variables, such as torques, pressures, velocities, and accelerations,
are becoming increasingly common in modern aircraft, automotive sys-
tems, and industrial processes. In these regimes, nonlinearities which are
not confined to “linear sectors” (namely those which exhibit super-linear
growth) often cause severe, or even catastrophic, forms of instability. For
this reason, our theory and design methods take such critical nonlineari-
ties into account and focus on large-signal (global) behavior rather than
small-signal (local) behavior. While not restricting nonlinear growth, we
do consider systems with a particular structure.

Often a control design is performed on a model having no uncertain-
ties. The robustness of the resulting system is then analyzed, possibly
followed by a redesign to improve robustness. In contrast, our approach
is to explicitly include uncertainties in the design model, taking them into
account during the design itself. We therefore extend the theory behind
Lyapunov design to include uncertainties by introducing the robust con-
trol Lyapunov function (rclf). Just as the existence of a control Lyapunov
function is equivalent to the nonlinear stabilizability of systems without
uncertainties, the existence of our rclf is equivalent to the nonlinear robust
stabilizability of systems with uncertainties. The task of constructing an
rclf thereby becomes a crucial step in robust nonlinear control design.

Our recursive methods for constructing rclf’s remove the “matching
condition” constraint which severely limited the applicability of early ro-
bust Lyapunov designs. Already these designs exploited a worst-case
differential game formulation, and we adopt a similar viewpoint in our
approach to robust control design. Our solution of an inverse optimal
robust stabilization problem shows that every rclf is the value function
associated with a meaningful game. The resulting inverse optimal designs
prevent the wasteful cancellation of nonlinearities which are beneficial in
achieving the control objective, and they also inherit the desirable stabil-
ity margins guaranteed by optimality.

The theoretical foundation of the entire book is established in Chap-
ter 3 where we develop the rclf framework. Chapter 4 contains new results
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in inverse optimality and relates them to crucial issues in control design
and performance. The bulk of the design content of this book appears
in Chapters 5-8. In Chapter 5 we present the recursive Lyapunov design
procedure we call robust backstepping. This design procedure is modified
to accommodate measurement disturbances in Chapter 6. A dynamic
feedback version of backstepping is developed in Chapter 7. In Chapter 8
we combine these robust and dynamic backstepping methods to obtain
a robust nonlinear version of classical proportional/integral (PI) control.
Tlustrative examples appear throughout the book, while Chapters 7 and 8
include detailed design examples.

This book is intended for graduate students and researchers in con-
trol theory, serving as both a summary of recent results and a source of
new research problems. We assume the reader has a basic knowledge of
nonlinear analysis and design tools, including Lyapunov stability theory,
input/output linearization, and optimal control. For those readers not
familiar with elementary concepts from set-valued analysis, we provide a
review of set-valued maps in Chapter 2.

We thank Tamer Bagar for helping to direct our path, especially as we
developed the inverse optimality results in Chapter 4. Also, we benefited
greatly from frequent discussions with Miroslav Krsti¢ and Ioannis Kanel-
lakopoulos, whose contributions in adaptive nonlinear control directly in-
spired the dynamic backstepping methods in Chapters 7 and 8. We are
grateful for the insights we gained from these colleagues. We thank Mo-
hammed Dahleh, Laurent Praly, and Eduardo Sontag for sharing with us
their technical expertise which helped shape many of our results. We are
grateful to John Cheng of Rockwell International for providing us with
physical examples motivating the material in Chapter 8. Many other
researchers and educators influenced the content of this book, includ-
ing Mrdjan Jankovi¢, Art Krener, Philippe Martin, Rodolphe Sepulchre,
Stephen Simons, and Mark Spong.

Finally, this work would not have been possible without the patient
support of our wives, Lisa and Anna—it is analisa that lies behind each
of our control designs.
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