Skip to main content

An Algorithm for Parameter Estimation in Nosocomial Infections

  • Chapter
Mathematical Modeling of Biological Systems, Volume II

Summary

Parameter estimation in nosocomial infections poses specific problems for estimation techniques. The mathematical description of the spread of nosocomial infections incorporates transmission as a dynamic part; the outcome is discrete and the amount of available information is usually small. We transfer an estimation technique developed previously for plant epidemics to nosocomial infections and demonstrate its application to a data set related to methicillin-resistant Staphyloccocus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stollenwerk, N., Briggs, K.M.: Master equation solution of a plant disease model. Phys. Lett. A, 274, 84–91 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  2. Stollenwerk, N.: Parameter estimation in nonlinear systems with dynamic noise. In: Matthies M., Malchow H. & Kriz J. (eds) Integrative Systems Approaches to Natural and Social Sciences—System Science 2000. Springer, Berlin Heidelberg New York (2001).

    Google Scholar 

  3. Escolano, S., Golmard, S.L. et al.: A multi-state model for evolution of intensive care unit patients: prediction of nosocomial infections and deaths. Stat. Med., 19, 3465–82 (2000).

    Article  Google Scholar 

  4. Meyer, E., Schwab, F. et al.: Temporal changes in bacterial resistance in German intensive care units, 2001–2003: data from the SARI (surveillance of antimicrobial use and antimicrobial resistance in intensive care units) project. J. Hosp. Infect., 60, 348–52 (2005).

    Article  Google Scholar 

  5. Cooper, B.S., Stone, S.P. et al.: Isolation measures in the hospital management of methicillin resistant Staphylococcus aureus (MRSA): systematic review of the literature. BMJ, 329, 533 (2004).

    Article  Google Scholar 

  6. Farrington, M., Trundle, C. et al.: Effects on nursing workload of different methicillinresistant Staphylococcus aureus (MRSA) control strategies. J. Hosp. Infect., 46, 118–22 (2000).

    Article  Google Scholar 

  7. Cooper, B., Lipsitch, M.: The analysis of hospital infection data using hidden Markov models. Biostatistics, 5, 223–37 (2004).

    Article  MATH  Google Scholar 

  8. Pelupessy, I., Bonten, M.J. et al.: How to assess the relative importance of different colonization routes of pathogens within hospital settings. Proc. Natl. Acad. Sci. USA, 99, 5601–5. Epub 2002 Apr 9. (2002).

    Article  Google Scholar 

  9. Austin, D.J., Anderson, R.M.: Transmission dynamics of epidemic methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci in England and Wales. J. Infect. Dis., 179, 883–891 (1999).

    Article  Google Scholar 

  10. Lipsitch, M., Bergstrom, C.T. et al.: The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc. Natl. Acad. Sci. USA, 97, 1938–43 (2000).

    Article  Google Scholar 

  11. Sagel, U., Mikolajczyk, R.T. et al.: Using mandatory data collection on multiresistant bacteria for internal surveillance in a hospital. Biom. J., 46, 93 (2004).

    Article  Google Scholar 

  12. Sagel, U., Mikolajczyk, R.T. et al.: Using mandatory data collection on multiresistant bacteria for internal surveillance in a hospital. Methods Inf. Med., 43, 483–485 (2004).

    Google Scholar 

  13. Farrington, M., Redpath, C. et al.: Winning the battle but losing the war: methicillinresistant Staphylococcus aureus (MRSA) infection at a teaching hospital. QJM, 91, 539–48 (1998).

    Article  Google Scholar 

  14. Grundmann, H., Hori, S. et al.: Determining confidence intervals when measuring genetic diversity and the discriminatory abilities of typing methods for microorganisms. J. Clin. Microbiol., 39, 4190–2 (2001).

    Article  Google Scholar 

  15. Enright, M.C., Robinson, D.A., Randler, G., Feil, E.J., Grundmann, H., Spratt, B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA), Proc. Natl. Acad. Sci. USA, 99, 7687–7692 (2002).

    Article  Google Scholar 

  16. Robinson, D.A., Kearns, A.M. et al.: Re-emergence of early pandemic Staphylococcus aureus as a community-acquired methicillin-resistant clone. Lancet, 365, 1256–8 (2005).

    Article  Google Scholar 

  17. Cooper, B.S., Medley, G.F. et al.: Methicillin-resistant Staphylococcus aureus in hospitals and the community: stealth dynamics and control catastrophes. Proc. Natl. Acad. Sci. USA, 101, 10223–8 (2004).

    Article  Google Scholar 

  18. Fridkin, S.K., Hageman, J.C. et al.: Methicillin-resistant Staphylococcus aureus disease in three communities. N. Engl. J. Med., 352, 1436–44 (2005).

    Article  Google Scholar 

  19. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1992).

    Google Scholar 

  20. Gardiner, C.W.: Handbook of Stochastic Methods. Springer, Berlin Heidelberg New York (1985).

    Google Scholar 

  21. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys., 22, 403–434 (1976).

    Article  MathSciNet  Google Scholar 

  22. Gillespie, D.T.: Monte Carlo simulation of random walks with residence time dependent transition probability rates. J. Comp. Phys., 28, 395–407 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  23. Feistel, R.: Betrachtung der Realisierung stochastischer Prozesse aus automatentheoretischer Sicht. Wiss. Z. WPU Rostock, 26, 663–670 (1977).

    Google Scholar 

  24. Stollenwerk, N., Drepper, F., Siegel, H.: Testing nonlinear stochastic models on phytoplankton biomass time series. Ecological Modelling, 144, 261–277 (2001).

    Article  Google Scholar 

  25. Stollenwerk, N., Maiden, M.C.J., Jansen, V.A.A.: Diversity in pathogenicity can cause outbreaks of meningococcal disease. Proc. Natl. Acad. Sci. USA, 101, 10229–10234 (2004).

    Article  Google Scholar 

  26. Jansen, V.A.A., Stollenwerk, N., Jensen, H.J., Ramsay, M.E., Edmunds,W.J., Rhodes, C.J.: Measles outbreaks in a population with declining vaccine uptake. Science, 301, 804 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Stollenwerk, N., Mikolajczyk, R. (2008). An Algorithm for Parameter Estimation in Nosocomial Infections. In: Deutsch, A., et al. Mathematical Modeling of Biological Systems, Volume II. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4556-4_3

Download citation

Publish with us

Policies and ethics