Skip to main content

Mechanical and Permeability Properties of Edible Films and Coatings for Food and Pharmaceutical Applications

  • Chapter
  • First Online:
Edible Films and Coatings for Food Applications

Abstract

Use of natural polymers, such as proteins and polysaccharides, as coating or film materials for protection of food has grown extensively in recent years. These natural polymers can prevent deterioration of food by extending shelf life of the product and maintaining sensory quality and safety of various types of foods (Robertson 1993). Generally, film and coating systems are designed to take advantage of barrier properties of polymers and other molecules to guard against physical/mechanical impacts, chemical reactions and microbiological invasion. In addition, the use of natural polymers presents added advantages due to their edible nature, availability, low cost and biodegradability. The latter particularly is of paramount interest due to demand for reducing the amount of non-biodegradable synthetic packaging. Furthermore, these polymers can be easily modified in order to improve their physicochemical properties for filming and coating applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avena-Bustillos RJ, Krochta, JM (1993). Water vapor permeability of caseinate-based edible films as affected by pH, calcium crosslink and lipid content. J. Food Sci. 58, 904–907

    Article  CAS  Google Scholar 

  • Baldwin EA (1991). Edible coatings for fresh fruits and vegetables: past, present, and future. In: JM Krochta, EA Baldwin, M Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality. Technomic Publishing Company, Lancaster, PA. pp. 25–64

    Google Scholar 

  • Baldwin EA, Nisperos MO, Baker RA (1995). Use of edible coating to preserve quality of lightly and slightly processed products. Crit. Rev. Food Sci. Nutr. 35, 509–524

    Article  CAS  Google Scholar 

  • Ben A, Kurth LB (1995). Edible film coating for meat cuts and primal. Meat 95, The Australian Meat Industry Research Conference, CSIRO, September 10–12

    Google Scholar 

  • Brault D, D’Aprano G, Lacroix M (1997). Formation of free-standing sterilized edible films from irradiated caseinates. J. Agric. Food Chem. 45, 2964–2969

    Article  CAS  Google Scholar 

  • Brode GL (1991). Polysaccharides: natural for cosmetic and pharmaceuticals. In: GG Gebelein, TC Cheng, VC Yang (Eds.), Cosmetic and pharmaceutical applications of polymers. Plenum, New York, NY. pp. 105–115

    Google Scholar 

  • Brode GL, Goddard ED, Harris WC, Sale GA (1991). Cationic polysaccharides for cosmetics and therapeutics. In: CG Gebelein, TC Cheng, VC Yang (Eds.), Cosmetic and pharmaceutical applications of polymers. Plenum, New York, NY. pp. 117–128

    Google Scholar 

  • Butler BL, Vergano PJ, Testin RF, Bunn JM, Wiles JL (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. J. Food Sci. 61, 953–956

    Article  CAS  Google Scholar 

  • Cies´la K, Salmieri S, Lacroix M (2006a). γ-Irradiation influence on the structure and properties of calcium caseinate-whey protein isolate based films. Part 1. Radiation effect on the structure of proteins gels and films. J. Agric. Food Chem. 54, 6374–6384

    Article  Google Scholar 

  • Cies´la K, Salmieri S, Lacroix M (2006b). γ-Irradiation influence on the structure and properties of calcium caseinate-whey protein isolate based-films. Part 2. Influence of polysaccharide addition and radiation treatment on the structure and functional properties of the films. J. Agric. Food Chem. 54, 8899–8908

    Article  Google Scholar 

  • Conca KR (2002). Protein-based films and coating for military packaging applications. In: A Gennadios (Ed.), Protein-based films and coatings. CRC, Boca Raton, FL. pp. 551–577

    Google Scholar 

  • Cuq B, Gontard N, Guilbert S (1995). Edible films and coatings as active layers. In: ML Rooney (Ed.), Active food packaging. Blackie Academic and Professional, Glasgow. pp. 111–142

    Google Scholar 

  • Cuq B, Gontard N, Guilbert S (1998). Proteins as agricultural polymers for packaging production. Cereal Chem. 75, 1–9

    Article  CAS  Google Scholar 

  • Darder M, Colilla M, Ruiz-Hitzky E (2003). Biopolymer clay nanocomposites based on chitosan intercalated in montmorillonite. Chem. Mater. 15, 3774–3780

    Article  CAS  Google Scholar 

  • Debeaufort F, Voilley A (1995). Effect of surfactants and drying rate on barrier properties of emulsified edible films. Int. J. Food Sci. Technol. 30, 183–190

    CAS  Google Scholar 

  • Donhowe IG, Fennema O (1994). Edible films and coatings: characteristics, formation, definitions and testing methods. In: JM Krochta, EA Baldwin, MO Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality. Technomic Publishing Company, Lancaster, PA. pp. 1–24

    Google Scholar 

  • Dutkiewicz J, Tuora M (1992). New forms of chitosans polyelectrolyte complexes. In: CJ Brine, PA Standford, JP Zikakis (Eds.), Advances in Chitin and Chitosan. Elsevier, London. pp. 496–505

    Google Scholar 

  • Fairley P, Krochta JM, German JB (1997). Interfacial interactions in edible emulsion films from whey protein isolate. Food Hydrocolloids, 11, 245–252

    Article  CAS  Google Scholar 

  • Flanagan J, Singh H (2006). Microemulsions: a potential delivery system for bioactives in food. Crit. Rev. Food Sci. Nutr. 46, 221–237

    Article  CAS  Google Scholar 

  • Floros JD, Dock LL, Han JH (1997). Active packaging technologies and applications. Food Cosmet. Drug Packaging. 20, 10–16

    Google Scholar 

  • Gennadios A, Hanna MA, Kurth B (1997). Application of edible coatings on meats, poultry and seafoods: a review. Lebensm. Wiss. Technol. 30, 337–350

    Article  CAS  Google Scholar 

  • Greener IK, Fennema, O. (1989). Evaluation of edible, bilayer films for use as moisture barriers for food. J. Food Sci. 54, 1400–1406

    Article  CAS  Google Scholar 

  • Greener IK, Fennema O (1994). Edible films and coatings: characteristics, formation, definitions and testing methods. In: JM Krochta, EA Baldwin, M Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality. Technomic Publishing Company, Lancaster, PA. pp. 1–24

    Google Scholar 

  • Gueguen J, Viroben G, Noireaux P, Subirade M (1998). Influence of plasticizers on the properties of films from pea proteins. Ind. Crops Prod. 7, 149–157

    Article  CAS  Google Scholar 

  • Guilbert S, Gontard N, Gorris LGM (1996). Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. Lebensm. Wiss. Technol. 29, 10–17

    Article  CAS  Google Scholar 

  • Hamilton RJ, Kalu C, McNeill GP, Padley FB, Pierce JH (1998) Effects of tocopherols, ascorbyl palmitate, and lecithin on autoxidation of fish oil. J. Am. Oil Chem. Soc. 75(7), 813–822

    Article  CAS  Google Scholar 

  • Henrique CM, Teófilo RF, Sabino L, Ferreira MMC, Cereda MP (2007). Classification of cassava starch films by physicochemical properties and water vapor permeability quantification by FT-IR and PLS. J. Food Sci. 72(4), 184– 189

    Article  Google Scholar 

  • Hoagland PD, Parris N (1996). Chitosan/pectin laminated films. J. Agric. Food Chem. 44, 1915–1919

    Article  Google Scholar 

  • Hugon F (1998). Étude et maîtrise des transferts d’eau dans des céréales enrobées. D.R.T. ENSBANA, Université de Bourgogne, Dijon, France

    Google Scholar 

  • Imeson A, Ledward DA, Mitchell JR (1977). On the nature of the interaction between some anionic polysaccharide acid proteins. J. Sci. Food Agric. 28, 661

    Article  CAS  Google Scholar 

  • Kamper SL, Fennema, O (1984). Water vapor permeability of an edible, fatty acid, bilayer film. J. Food Sci. 49, 1482–1484

    Article  CAS  Google Scholar 

  • Karbowiak T, Debeaufort F, Voilley A (2007) Influence of thermal process on structure and functional properties of emulsion based edible films. Food Hydrocolloids 21(2), 879–888

    Article  CAS  Google Scholar 

  • Kester JJ, Fennema OR (1986). Edible films and coatings: a review. Food Technol. 12, 47–59.

    Google Scholar 

  • Kim SJ, Ustunol Z (2001). Thermal properties, heat sealability and seal attributes of whey protein isolate/lipid emulsion edible films. J. Food Sci. 66(7), 985–990

    Article  CAS  Google Scholar 

  • Koelsch CM, Labuza TP (1992). Functional, physical and morphological properties of methyl cellulose and fatty acid-based edible barriers. Lebensm. Wiss. Technol. 25, 404–411

    CAS  Google Scholar 

  • Krochta JM (1997). Edible protein films and coatings. In: S Damodaran, A Paraf (Eds.), Food proteins and their applications in foods. Marcel Dekker, New York, NY. pp. 529–549

    Google Scholar 

  • Krochta JM, De Mulder-Johnston C (1997). Edible and bi-odegradable polymer films. Challenges and opportunities. Food Technol. 51, 61–74

    Google Scholar 

  • Kroger M, Igoe RS (1971). Edible containers. Food Prod. Dev. 5, 74, 76, 78–79, 82

    Google Scholar 

  • Labell F (1991). Edible packaging. Food Process. Eng. 52, 24

    Google Scholar 

  • Labuza TP, Contreras-Medellin R (1981). Prediction of moisture protection requirements for foods. Cereal Foods World 26(7) 335–343

    Google Scholar 

  • Lacroix M, Mateescu MA, Le Tien C, Patterson G (2001). Biocompatible composition as carriers or excipients for pharmaceutical formulations and for food protection. PCT/CA00/01386

    Google Scholar 

  • Lee KW (1994). Modification of polyimide surface morphology: relationship between modification depth and adhesion strength. J. Adhes. Sci. Technol. 8(10), 1077–1092

    Article  CAS  Google Scholar 

  • Letendre M, D’Aprano G, Lacroix M, Salmieri S, St-Gelais D (2002a). Physicochemical properties and bacterial resistance of biodegradable milk protein films containing agar and pectin. J. Agric. Food Chem. 50, 6017–6022

    Article  CAS  Google Scholar 

  • Letendre M, D’Aprano G, Delmas-Patterson G, Lacroix M (2002b). Isothermal calorimetry study of calcium caseinate and whey protein isolate edible films cross-linked by heating and γ- irradiation. J. Agric. Food Chem. 50, 6053–6057

    Article  CAS  Google Scholar 

  • Le Tien C, Letendre M, Ispas-Szabo P, Mateescu MA, Delmas-Patterson G, Yu HL, Lacroix M (2000). Development of biodegradable films from whey proteins by cross-linking and entrapment in cellulose. J. Agric. Food Chem. 48, 5566–5575

    Article  CAS  Google Scholar 

  • Le Tien C, Lacroix M, Ispas-Szabo P, Mateescu MA (2003a). N-acylated chitosan: hydrophobic matrices for controlled drug release. J. Control. Release 93, 1–13

    Article  CAS  Google Scholar 

  • Le Tien C, Lacroix M, Ispas-Szabo P, Mateescu MA (2003b). Modified alginate and chitosan for lactic acid bacteria immobilization. J. Control. Release 93, 1–13

    Article  CAS  Google Scholar 

  • Le Tien C, Millette M, Lacroix M, Mateescu MA (2004). Modified alginate matrice for the immobilization of bioactive agents. Biotechnol. Appl. Biochem. 39, 189–198

    Article  CAS  Google Scholar 

  • Lim LT, Mine Y, Britt IJ, Tung MA (2002). Formation and properties of egg white protein films and coatings. In: A Gennadios (Ed.), Proteins-based films and coatings. CRC, Boca Raton, FL. pp. 233–252

    Google Scholar 

  • Lovegren NV, Feuge RO (1954). Permeability of acetostearin products to water vapor. J. Agric. Food Chem. 2, 558–563

    Article  CAS  Google Scholar 

  • Makino Y, Hirata T (1997). Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone. Postharvest Biol. Technol. 10, 247–254

    Article  CAS  Google Scholar 

  • Mangiacapra P, Gorrasi G, Sorrentino A,Vittoria V (2005). Biodegradable nanocomposites obtained by ball milling of pectin and montmorillonites. Carbohydr. Polym. 64(4), 516–523

    Article  Google Scholar 

  • Martin-Polo M, Mauguin C, Voilley A (1992). Hydrophobic films and their efficiency against moisture transfer. 1-Influence of the film preparation technique. J. Agric. Food Chem. 40, 407–412

    Article  CAS  Google Scholar 

  • McHugh TH (2000). Protein-lipid interactions in edible films and coatings. Nahrung 44, 148–151

    Article  CAS  Google Scholar 

  • McHugh TH, Krochta J (1994). Permeability properties of edible films. In: J Krochta, EA Baldwin, M Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality. Technomic Publishing Company, Lancaster, PA. pp. 139–188

    Google Scholar 

  • Mezgheni E, D’Aprano G, Lacroix M (1998a). Formation of sterilized edible films based on caseinates: effects of calcium and plasticizers. J. Agric. Food Chem. 46, 318–324

    Article  CAS  Google Scholar 

  • Mezgheni E, Vachon C, Lacroix M (1998b). Biodegradability behaviour of cross-linked calcium caseinates films. Biotechnol. Prog. 14, 534–536

    Article  CAS  Google Scholar 

  • Moberger L, Larsson K, Buchheim W, Timmen H (1987). A study of fat oxidation in a microemulsion system. J. Dispers. Sci. Technol. 8, 207–215

    Article  CAS  Google Scholar 

  • Morgan BH (1971). Edible packaging update. Food Prod. Dev. 5, 75–77, 108

    CAS  Google Scholar 

  • Morillon V, Debeaufort F, Blond G, Capelle M,Voiley A (2002). Factors affecting the moisture permeability of lipid-based edible films: a review. Crit. Rev. Food Sci. Nutr. 42(1), 67–89

    Article  CAS  Google Scholar 

  • Mueller C, Cappacio G, Hiltner A, Baer E (1998). Heat sealing of LLDPE: relationships to melting and interdiffusion. J. Appl. Polym. Sci. 70(11), 2021–2030

    Article  CAS  Google Scholar 

  • Mulbacher J, Ispas-Szabo P, Lenaerts V, Mateescu MA (2001). Cross-linked high amylose starch derivatives as matrices for controlled release of high drug loadings. J. Control. Release 76, 51–58

    Article  Google Scholar 

  • Ouattara B, Giroux M, Smoragiewicz W, Saucier L, Lacroix M (2002). Combined effect of gamma irradiation, ascorbic acid and edible film on the improvement of microbial and biochemical characteristics of ground beef. J. Food Prot. 6, 981–987

    Google Scholar 

  • Oussalah M, Caillet S, Salmieri S, Saucier L, Lacroix M (2006a). Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. J. Food Prot. 69(10), 2364–2369

    CAS  Google Scholar 

  • Oussalah M, Caillet S, Salmieri S, Saucier L, Lacroix M (2006b). Antimicrobial effects of alginate-based films containing essential oils on Listeria monocytogenes and Salmonella Typhimurium present in bologna and ham. J. Food Prot. 70(4), 901–908

    Google Scholar 

  • Park JW, Testin RF, Park HJ, Vergano PJ, Weller CL (1994). Fatty acid concentration effect on tensile strength, elongation, and water vapor permeability of laminated edible film. J. Food Sci. 59, 916–919

    Article  CAS  Google Scholar 

  • Perez-Gago MB, Krochta JM (1999). Water vapor permeability of whey protein emulsion films as affected by pH. J. Food Sci. 64(4), 695–698

    Article  CAS  Google Scholar 

  • Perez-Gago M, Krochta J (2000). Drying temperature effect on water vapor permeability and mechanical properties of whey protein-lipid emulsion films. J. Agric. Food Chem. 48, 2687–2692

    Article  CAS  Google Scholar 

  • Perez-Gago M, Krochta J (2001). Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films. J. Agric. Food Chem. 49, 996–1002

    Article  CAS  Google Scholar 

  • Peyron A (1991). L’enrobage et les produits filmogènes: un nouveau mode d’emballage. Viandes Prod. Carnes 12, 41–46

    Google Scholar 

  • Possart W, Deckhoff S (1999). Adhesion mechanism in a cyanurate prepolymer on silicon and on aluminium. Int. J. Adhes. Adhes. 19, 425–434

    Article  CAS  Google Scholar 

  • Ressouany M, Vachon C, Lacroix M (1998). Irradiation dose and calcium effect on the mechanical properties of cross-linked caseinate films. J. Agric. Food Chem. 46, 1618–1623

    Article  CAS  Google Scholar 

  • Ressouany M, Vachon C, Lacroix M (2000). Microbial resistance of caseinate films crosslinked by gamma irradiation. J. Dairy Res. 67, 119–124

    Article  CAS  Google Scholar 

  • Rhim JW, Gennadios A, Fu D, Weller CL, Hanna MA (1999). Properties of ultraviolet irradiated protein films. Lebensm. Wiss. Technol. 32, 129–133

    Article  CAS  Google Scholar 

  • Robertson GL (1993). Food packaging. Principles and practice. Marcel Dekker, New York, NY. 686 p

    Google Scholar 

  • Rutenberg MW, Solarek D (1984). Starch derivatives: production and uses. In: X Chap, RL Whistler, JN Be Miller, EF Paschall (Eds.), Starch: chemistry and technology, 2nd Edition. Academic, Orlando, FL. pp. 311–387

    Google Scholar 

  • Sabato SF, Ouattara B, Yu H, D’Aprano G, Lacroix M (2001). Mechanical and barrier properties of cross-linked soy and whey protein based films. J. Agric. Food Chem. 49, 1397–1403

    Article  CAS  Google Scholar 

  • Sacharow S (1972). Edible films. Packaging, 43, 6, 9

    Google Scholar 

  • Salmieri S, Lacroix M (2006). Physicochemical properties of alginate/polycaprolactone-based films containing essential oils. J. Agric. Food Chem. 54, 10205–10214

    Article  CAS  Google Scholar 

  • Sherwin CP, Smith DE, Fulcher RG (1998). Effect of fatty acid type on dispersed phase particle size distributions in emulsion edible films. J. Agric. Food Chem. 46, 534–4538

    Article  Google Scholar 

  • Shih FF (1994). Interaction of soy isolate with polysaccharide and its effect on film properties. J. Am. Oil Chem. Soc. 71, 1281–1285

    Article  CAS  Google Scholar 

  • Sinha RS, Bousmina M (2005). Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater. Sci. 50, 962–1079

    Article  Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol. 18, 84–95

    Article  CAS  Google Scholar 

  • Stanley DW, Stone AP, Hultin HO (1994). Solubility of beef and chicken myofibrillar proteins in low ionic strength media. J. Agric. Food Chem. 42, 863–867

    Article  CAS  Google Scholar 

  • Stefansson G, Hultin HO (1994). On the solubility of cod muscle proteins in water. J. Agric. Food Chem. 42, 2656–2664

    Article  CAS  Google Scholar 

  • Stollman U, Hohansson F, Leufven A (1994). Packaging and food quality. In: CMD Man, AA Jones (Eds.), Shelf life evaluation of foods. Blackie Academic and Professional, New York, NY. pp. 52–71

    Google Scholar 

  • Stuchell YM, Krochta JM (1994). Enzymatic treatments and thermal effects on edible soy protein films. J. Food Sci. 59, 1332–1337

    Article  CAS  Google Scholar 

  • Tapia MS, Roias-Graü EJ, Rodriguez J, Ramirez J, Carmona A, Martin-Belloso O (2007). Alginate and gellan based edible films for probiotic coatings on fresh cut fruits. J. Food Sci. 72(4), 190–196

    Article  Google Scholar 

  • Thakur BR, Singh RK, Handa AK (1997). Chemistry and uses of pectin- a review. Crit. Rev. Food Sci. Nutr. 37, 47–73

    Article  CAS  Google Scholar 

  • Vachon C, Yu HL, Yefsah R, Alain R, St-Gelais D, Lacroix M (2000). Mechanical and structural properties of milk protein edible films cross-linked by heating and gamma irradiation. J. Agric. Food Chem. 48, 3202–3209

    Article  CAS  Google Scholar 

  • Wang L, Khor E, Lim LYS (2001). Chitosan-alginate-CaCl2 system for membrane coat application. J. Pharm. Sci. 90, 1134–1142

    Article  CAS  Google Scholar 

  • Wong DWS, Tillin SJ, Hudson JS, Pavlath AE (1994). Gas exchange in cut apples with bilayer coatings. J. Agric. Food Chem. 42, 2278–2285

    Article  CAS  Google Scholar 

  • Wu Y, Weller CL, Hamouz F, Cuppett SL, Schnepf M (2002). Development and applications of multicomponent edible coatings and films: a review. Adv. Food Nutr. Res. 44, 347–394

    Article  CAS  Google Scholar 

  • Yan XL, Khor E, Lim LY (2001). Chitosan-alginate films prepared with chitosans of different molecular weights. J. Biomed. Mater. Res. 58(4), 358–365

    Article  CAS  Google Scholar 

  • Yildirim M, Hettiarachchy NS (1998). Properties of films produced by cross-linking whey proteins and 11S globulin using transglutaminase. J. Food Sci. 63, 248–252

    Article  CAS  Google Scholar 

  • Zheng JP, Li P, Ma YL, Yao KD (2002). Gelatine/montmorillonite hybrid nanocomposite. I. Preparation and properties. J. Appl. Polym. Sci. 86, 1189–1194

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Lacroix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lacroix, M. (2009). Mechanical and Permeability Properties of Edible Films and Coatings for Food and Pharmaceutical Applications. In: Huber, K., Embuscado, M. (eds) Edible Films and Coatings for Food Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92824-1_13

Download citation

Publish with us

Policies and ethics