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Preface

Data mining is the process of finding useful patterns or correlations among data. These
patterns, associations, or relationships between data can provide information about a
specific problem being studied, and information can then be used for improving the
knowledge on the problem. Data mining techniques are widely used in various sectors
of the economy. Initially they were used by large companies to analyze consumer
data from different perspectives. Data was then analyzed and useful information was
extracted with the goal of increasing profitability.

The idea of using information hidden in relationships among data inspired re-
searchers in agricultural fields to apply these techniques for predicting future trends
of agricultural processes. For example, data collected during wine fermentation can
be used to predict the outcome of the fermentation while still in the early days of
this process. In the same way, soil water parameters for a certain soil type can be
estimated knowing the behavior of similar soil types.

The principles used by some data mining techniques are not new. In ancient Rome,
the famous orator Cicero used to say pares cum paribus facillime congregantur (birds
of a feather flock together or literally equals with equals easily associate). This
old principle is successfully applied to classify unknown samples based on known
classification of their neighbors. Before writing this book, we thoroughly researched
applications of data mining techniques in the fields of agriculture and environmental
studies. We found papers describing systems developed to classify apples, separating
good apples from bad ones on a conveyor belt. We found literature describing a system
that classifies chicken breast quality, and others describing systems able to predict
climate forecasting and soil classification, and so forth. All these systems use various
data mining techniques.

Therefore, given the scientific interest and the positive results obtained using the
data mining techniques, we thought that it was time to provide future specialists in
agriculture and environment-related fields with a textbook that will explain basic
techniques and recent developments in data mining. Our goal is to provide students
and researchers with a book that is easy to read and understand. The task was chal-
lenging. Some of the data mining techniques can be transformed into optimization
problems, and their solutions can be obtained using appropriate optimization meth-
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ods. Although this transformation helps finding a solution to the problem, it makes
the presentation difficult to understand by students that do not have a strong mathe-
matical background.

The clarity of the presentation was the major obstacle that we worked hard to
overcome. Thus, whenever possible, examples in Euclidean space are provided and
corresponding figures are shown to help understand the topic. We make abundant
use of MATLAB® to create examples and the corresponding figures that visualize
the solution. Besides, each technique presented is ranked using a well-known pub-
lication on the relevance of data mining techniques. For each technique, the reader
will find published examples of its use by researchers around the world and simple
examples that will help in its understanding. We made serious efforts to shed light
on when to use the method and the quality of the expected results. An entire chapter
is dedicated to the validation of the techniques presented in the book, and examples
in MATLAB are used again to help the presentation. Another chapter discusses the
potential implementation of data mining techniques in a parallel computing envi-
ronment; practical applications often require high-speed computing environments.
Finally, one appendix is devoted to the MATLAB environment and another one is
dedicated to the implementation of one of the presented data mining techniques in
C programming language.

It is our hope that readers will find this book to be of use. We are very thankful
to our students that helped us shape this course. As always, their comments were
useful and appropriate and helped us create a consistent course. We thank Vianney
Houles, Guillermo Baigorria, Erhun Kundakcioglu, Sepehr M. Nasseri, Neng Fan,
and Sonia Cafieri for reading all the material and for finding subtle inconsistencies.
Last but certainly not least, we thank Vera Tomaino for reading the entire book very
carefully and for working all exercises. Her input was very useful to us.

Finally, we thank Springer for trusting and giving us another opportunity to work
with them.

Gainesville, Florida Antonio Mucherino
January 2009 Petraq J. Papajorgji
Panos M. Pardalos
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