Skip to main content

Carbon Monoxide and Heme Oxygenase in the Regulation of Pulmonary Vascular Function and Structure

  • Chapter
  • First Online:
  • 219 Accesses

Abstract

Accumulating evidence indicates that antioxidant and/or stress response genes play a critical, cytoprotective role in the systemic and pulmonary vasculature. One of these genes is heme oxygenase-1 (HO-1). HO-1 is a microsomal enzyme that is ubiquitously distributed and strongly induced by several stressors, including oxidative, environmental, and hemodynamic stresses. HO-1 catalyzes the oxidative degradation of free heme to biliverdin (BV), free iron, and carbon monoxide (CO). BV is reduced to bilirubin (BR), a potent endogenous antioxidant with potential anti-inflammatory properties, whereas iron is sequestered by ferritin, leading to additional antioxidant and antiapoptotic effects. CO is a gaseous molecule with increasingly recognized biological properties, including anti-inflammatory effects, vasodilation, and neurotransmission in the central and peripheral nervous systems. It shares many similarities with nitric oxide (NO) as an activator of soluble guanylyl cyclase, leading to an increase in cyclic GMP (cGMP) levels and causing vasodilation. Like NO, CO is an inhibitor of platelet aggregation and smooth muscle cell proliferation. These properties of HO-1 and its enzymatic products make it a suitable candidate to orchestrate regulatory functions in the lung and to potentially be a key mediator of the pathways underlying the control of lung vascular homeostasis. This chapter focuses on the protective effects of HO-1 and its products, CO and BR, in pulmonary hypertension and in the maintenance of cardiovascular function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2:2557–2568

    PubMed  CAS  Google Scholar 

  2. Fredenburgh LE, Perrella MA, Mitsialis SA (2007) The role of heme oxygenase-1 in pulmonary disease. Am J Respir Cell Mol Biol 36:158–165

    Article  PubMed  CAS  Google Scholar 

  3. Morse D, Choi AM (2005) Heme oxygenase-1: from bench to bedside. Am J Respir Crit Care Med 172:660–670

    Article  PubMed  Google Scholar 

  4. Balla G, Jacob HS, Balla J et al (1992) Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem 267:18148–18153

    PubMed  CAS  Google Scholar 

  5. Choi BM, Pae HO, Jeong YR et al (2004) Overexpression of heme oxygenase (HO)-1 renders Jurkat T cells resistant to fas-mediated apoptosis: involvement of iron released by HO-1. Free Radic Biol Med 36:858–871

    Article  PubMed  CAS  Google Scholar 

  6. Masri FA, Xu W, Comhair SA et al (2007) Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 293:L548–L554

    Article  PubMed  CAS  Google Scholar 

  7. Kourembanas S, Hannan RL, Faller DV (1990) Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest 86:670–674

    Article  PubMed  CAS  Google Scholar 

  8. Kourembanas S, Marsden PA, McQuillan LP et al (1991) Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J Clin Invest 88:1054–1057

    Article  PubMed  CAS  Google Scholar 

  9. Kourembanas S, Morita T, Christou H et al (1998) Hypoxic responses of vascular cells. Chest 114:25S–28S

    Article  PubMed  CAS  Google Scholar 

  10. Davie NJ, Crossno JT Jr, Frid MG et al (2004) Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells. Am J Physiol Lung Cell Mol Physiol 286:L668–L678

    Article  PubMed  CAS  Google Scholar 

  11. Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691

    Article  PubMed  CAS  Google Scholar 

  12. Frid MG, Brunetti JA, Burke DL et al (2006) Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol 168:659–669

    Article  PubMed  CAS  Google Scholar 

  13. Zhu P, Huang L, Ge X et al (2006) Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling. Int J Exp Pathol 87:463–474

    Article  PubMed  CAS  Google Scholar 

  14. Lane KB, Machado RD, Pauciulo MW et al (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat Genet 26:81–84

    Article  PubMed  CAS  Google Scholar 

  15. Deng Z, Morse JH, Slager SL et al (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67:737–744

    Article  PubMed  CAS  Google Scholar 

  16. Du L, Sullivan CC, Chu D et al (2003) Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med 348:500–509

    Article  PubMed  CAS  Google Scholar 

  17. Wu X, Chang MS, Mitsialis SA et al (2006) Hypoxia regulates bone morphogenetic protein signaling through C-terminal-binding protein 1. Circ Res 99:240–247

    Article  PubMed  CAS  Google Scholar 

  18. Yang X, Long L, Southwood M et al (2005) Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 96:1053–1063

    Article  PubMed  CAS  Google Scholar 

  19. Zhang S, Fantozzi I, Tigno DD et al (2003) Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 285:L740–L754

    PubMed  CAS  Google Scholar 

  20. Yang X, Lee PJ, Long L et al (2007) BMP4 induces HO-1 via a Smad-independent, p38MAPK-dependent pathway in pulmonary artery myocytes. Am J Respir Cell Mol Biol 37:598–605

    Article  PubMed  CAS  Google Scholar 

  21. Giaid A, Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333:214–221

    Article  PubMed  CAS  Google Scholar 

  22. McQuillan LP, Leung GK, Marsden PA et al (1994) Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms. Am J Physiol 267:H1921–H1927

    PubMed  CAS  Google Scholar 

  23. Petkov V, Mosgoeller W, Ziesche R et al (2003) Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest 111:1339–1346

    PubMed  CAS  Google Scholar 

  24. Weir EK, Archer SL (1995) The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J 9:183–189

    PubMed  CAS  Google Scholar 

  25. Eddahibi S, Humbert M, Fadel E et al (2001) Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J Clin Invest 108:1141–1150

    PubMed  CAS  Google Scholar 

  26. Cowan KN, Heilbut A, Humpl T et al (2000) Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat Med 6:698–702

    Article  PubMed  CAS  Google Scholar 

  27. Choi AM, Alam J (1996) Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol 15:9–19

    PubMed  CAS  Google Scholar 

  28. Ryter SW, Kim HP, Nakahira K et al (2007) Protective functions of heme oxygenase-1 and carbon monoxide in the respiratory system. Antioxid Redox Signal 9:2157–2173

    Article  PubMed  CAS  Google Scholar 

  29. Alam J, Cai J, Smith A (1994) Isolation and characterization of the mouse heme oxygenease-1 gene. J Biol Chem 269:1001–1009

    PubMed  CAS  Google Scholar 

  30. Alam J, Igarashi K, Immenschuh S et al (2004) Regulation of heme oxygenase-1 gene transcription: recent advances and highlights from the international conference (Uppsala, 2003) on heme oxygenase. Antioxid Redox Signal 6:924–933

    PubMed  CAS  Google Scholar 

  31. Yachie A, Niida Y, Wada T et al (1999) Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 103:129–135

    Article  PubMed  CAS  Google Scholar 

  32. Exner M, Minar E, Wagner O et al (2004) The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic Biol Med 37:1097–1104

    Article  PubMed  CAS  Google Scholar 

  33. Yamada N, Yamaya M, Okinaga S et al (2000) Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet 66:187–195

    Article  PubMed  CAS  Google Scholar 

  34. Kikuchi A, Yamaya M, Suzuki S et al (2005) Association of susceptibility to the development of lung adenocarcinoma with the heme oxygenase-1 gene promoter polymorphism. Hum Genet 116:354–360

    Article  PubMed  CAS  Google Scholar 

  35. Yasuda H, Okinaga S, Yamaya M et al (2006) Association of susceptibility to the development of pneumonia in the older Japanese population with haem oxygenase-1 gene promoter polymorphism. J Med Genet 43:e17

    Article  PubMed  CAS  Google Scholar 

  36. Otterbein LE, Kolls JK, Mantell LL et al (1999) Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. J Clin Invest 103:1047–1054

    Article  PubMed  CAS  Google Scholar 

  37. Tsuburai T, Suzuki M, Nagashima Y et al (2002) Adenovirus-mediated transfer and overexpression of heme oxygenase 1 cDNA in lung prevents bleomycin-induced pulmonary fibrosis via a Fas-Fas ligand-independent pathway. Hum Gene Ther 13:1945–1960

    Article  PubMed  CAS  Google Scholar 

  38. Yet S-F, Tian R, Layne MD et al (2001) Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res 89:168–173

    Article  PubMed  CAS  Google Scholar 

  39. Yet SF, Layne MD, Liu X et al (2003) Absence of heme oxygenase-1 exacerbates atherosclerotic lesion formation and vascular remodeling. FASEB J 17:1759–1761

    PubMed  CAS  Google Scholar 

  40. Duckers HJ, Boehm M, True AL et al (2001) Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med 7:693–698

    Article  PubMed  CAS  Google Scholar 

  41. Fujita T, Toda K, Karimova A et al (2001) Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med 7:598–604

    Article  PubMed  CAS  Google Scholar 

  42. Soares MP, Lin Y, Anrather J et al (1998) Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med 4:1073–1077

    Article  PubMed  CAS  Google Scholar 

  43. Siner JM, Jiang G, Cohen ZI et al (2007) VEGF-induced heme oxygenase-1 confers cytoprotection from lethal hyperoxia in vivo. FASEB J 21:1422–1432

    Article  PubMed  CAS  Google Scholar 

  44. Lee T-S, Chau L-Y (2002) Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 8:240–246

    Article  PubMed  CAS  Google Scholar 

  45. Chen S, Kapturczak MH, Wasserfall C et al (2005) Interleukin 10 attenuates neointimal proliferation and inflammation in aortic allografts by a heme oxygenase-dependent pathway. Proc Natl Acad Sci USA 102:7251–7256

    Article  PubMed  CAS  Google Scholar 

  46. Barinaga M (1993) Carbon monoxide: killer to brain messenger in one step. Science 259:309

    Article  PubMed  CAS  Google Scholar 

  47. Vremen H, Wong R, Stevenson D (2000) Carbon monoxide in breath, blood, and other tissues. In: Penny D (ed) Carbon monoxide toxicity. CRC, Boca Raton, pp 19–60

    Chapter  Google Scholar 

  48. Stewart RD, Fisher TN, Hosko MJ et al (1972) Carboxyhemoglobin elevation after exposure to dichloromethane. Science 176:295–296

    Article  PubMed  CAS  Google Scholar 

  49. Donnelly LE, Barnes PJ (2001) Expression of heme oxygenase in human airway epithelial cells. Am J Respir Cell Mol Biol 24:295–303

    PubMed  CAS  Google Scholar 

  50. Yasuda H, Yamaya M, Yanai M et al (2002) Increased blood carboxyhaemoglobin concentrations in inflammatory pulmonary diseases. Thorax 57:779–783

    Article  PubMed  CAS  Google Scholar 

  51. Smith R (1986) Toxic responses of the blood. In: Klaassen C, Amdur M, Doull J (eds) Casarett and Doull’s toxicology, the basic science of poisons, 3rd edn. Macmillan, New York, pp 223–244

    Google Scholar 

  52. Furchgott RF, Jothianandan D (1991) Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 28:52–61

    PubMed  CAS  Google Scholar 

  53. Morita T, Kourembanas S (1995) Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J Clin Invest 96:2676–2682

    Article  PubMed  CAS  Google Scholar 

  54. Morita T, Perrella MA, Lee M-E et al (1995) Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci U S A 92:1475–1479

    Article  PubMed  CAS  Google Scholar 

  55. Caudill TK, Resta TC, Kanagy NL et al (1998) Role of endothelial carbon monoxide in attenuated vasoreactivity following chronic hypoxia. Am J Physiol 275:R1025–R1030

    PubMed  CAS  Google Scholar 

  56. Cardell LO, Ueki IF, Stjarne P et al (1998) Bronchodilatation in vivo by carbon monoxide, a cyclic GMP related messenger. Br J Pharmacol 124:1065–1068

    Article  PubMed  CAS  Google Scholar 

  57. Koehler RC, Traystman RJ (2002) Cerebrovascular effects of carbon monoxide. Antioxid Redox Signal 4:279–290

    Article  PubMed  CAS  Google Scholar 

  58. Wang R, Wu L (1997) The chemical modification of KCa channels by carbon monoxide in vascular smooth muscle cells. J Biol Chem 272:8222–8226

    Article  PubMed  CAS  Google Scholar 

  59. Morita T, Mitsialis SA, Koike H et al (1997) Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J Biol Chem 272:32804–32809

    Article  PubMed  CAS  Google Scholar 

  60. Otterbein LE, Zuckerbraun BS, Haga M et al (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 9:183–190

    Article  PubMed  CAS  Google Scholar 

  61. True AL, Olive M, Boehm M et al (2007) Heme oxygenase-1 deficiency accelerates formation of arterial thrombosis through oxidative damage to the endothelium, which is rescued by inhaled carbon monoxide. Circ Res 101:893–901

    Article  PubMed  CAS  Google Scholar 

  62. Stocker R, Yamamoto Y, McDonagh AF et al (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046

    Article  PubMed  CAS  Google Scholar 

  63. Dennery PA, McDonagh AF, Spitz DR et al (1995) Hyper­bilirubinemia results in reduced oxidative injury in neonatal Gunn rats exposed to hyperoxia. Free Radic Biol Med 19:395–404

    Article  PubMed  CAS  Google Scholar 

  64. Erdogan D, Gullu H, Yildirim E et al (2006) Low serum bilirubin levels are independently and inversely related to impaired flow-mediated vasodilation and increased carotid intima-media thickness in both men and women. Atherosclerosis 184:431–437

    Article  PubMed  CAS  Google Scholar 

  65. Clark JE, Foresti R, Sarathchandra P et al (2000) Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol Heart Circ Physiol 278:H643–H651

    PubMed  CAS  Google Scholar 

  66. Fondevila C, Shen XD, Tsuchiyashi S et al (2004) Biliverdin therapy protects rat livers from ischemia and reperfusion injury. Hepatology 40:1333–1341

    Article  PubMed  CAS  Google Scholar 

  67. Adin CA, Croker BP, Agarwal A (2005) Protective effects of exogenous bilirubin on ischemia-reperfusion injury in the isolated, perfused rat kidney. Am J Physiol Renal Physiol 288:F778–F784

    Article  PubMed  CAS  Google Scholar 

  68. Yamashita K, McDaid J, Ollinger R et al (2004) Biliverdin, a natural product of heme catabolism, induces tolerance to cardiac allografts. FASEB J 18:765–767

    PubMed  CAS  Google Scholar 

  69. Sarady-Andrews JK, Liu F, Gallo D et al (2005) Biliverdin administration protects against endotoxin-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol 289:L1131–L1137

    Article  PubMed  CAS  Google Scholar 

  70. Wang HD, Yamaya M, Okinaga S et al (2002) Bilirubin ameliorates bleomycin-induced pulmonary fibrosis in rats. Am J Respir Crit Care Med 165:406–411

    Article  PubMed  Google Scholar 

  71. Ollinger R, Bilban M, Erat A et al (2005) Bilirubin: a natural inhibitor of vascular smooth muscle cell proliferation. Circulation 112:1030–1039

    Article  PubMed  Google Scholar 

  72. Vitali SH, Mitsialis SA, Liang OD et al (2009) Divergent cardiopulmonary actions of heme oxygenase enzymatic products in chronic hypoxia. PLoS One 4:e5978

    Article  PubMed  Google Scholar 

  73. Yet S-F, Perrella MA, Layne MD et al (1999) Hypoxia induces severe right ventricular dilatation and infarction in heme oxyg­enase-1 null mice. J Clin Invest 103:R23–R29

    Article  PubMed  CAS  Google Scholar 

  74. Christou H, Morita T, Hsieh CM et al (2000) Prevention of hypoxia-induced pulmonary hypertension by enhancement of endogenous heme oxygenase-1 in the rat. Circ Res 86:1224–1229

    PubMed  CAS  Google Scholar 

  75. Zhou H, Liu H, Porvasnik SL et al (2006) Heme oxygenase-1 mediates the protective effects of rapamycin in monocrotaline-induced pulmonary hypertension. Lab Invest 86:62–71

    Article  PubMed  CAS  Google Scholar 

  76. Minamino T, Christou H, Hsieh C-M et al (2001) Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci USA 98:8798–8803

    Article  PubMed  CAS  Google Scholar 

  77. Ito T, Okada T, Miyashita H et al (2007) Interleukin-10 expression mediated by an adeno-associated virus vector prevents monocrotaline-induced pulmonary arterial hypertension in rats. Circ Res 101:734–741

    Article  PubMed  CAS  Google Scholar 

  78. Zuckerbraun BS, Chin BY, Wegiel B et al (2006) Carbon monoxide reverses established pulmonary hypertension. J Exp Med 203:2109–2119

    Article  PubMed  CAS  Google Scholar 

  79. Dolinay T, Szilasi M, Liu M et al (2004) Inhaled carbon monoxide confers antiinflammatory effects against ventilator-induced lung injury. Am J Respir Crit Care Med 170:613–620

    Article  PubMed  Google Scholar 

  80. Sato K, Balla J, Otterbein L et al (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol 166:4185–4194

    PubMed  CAS  Google Scholar 

  81. Guo Y, Stein AB, Wu WJ et al (2004) Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. Am J Physiol Heart Circ Physiol 286:H1649–H1653

    Article  PubMed  CAS  Google Scholar 

  82. Stein AB, Guo Y, Tan W et al (2005) Administration of a CO-releasing molecule induces late preconditioning against myocardial infarction. J Mol Cell Cardiol 38:127–134

    Article  PubMed  CAS  Google Scholar 

  83. Foresti R, Goatly H, Green CJ et al (2001) Role of heme oxyg­enase-1 in hypoxia-reoxygenation: requirement of substrate heme to promote cardioprotection. Am J Physiol Heart Circ Physiol 281:H1976–H1984

    PubMed  CAS  Google Scholar 

  84. Redout EM, Wagner MJ, Zuidwijk MJ et al (2007) Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res 75:770–781

    Article  PubMed  CAS  Google Scholar 

  85. Pachori AS, Smith A, McDonald P et al (2007) Heme-oxygenase-1-induced protection against hypoxia/reoxygenation is dependent on biliverdin reductase and its interaction with PI3K/Akt pathway. J Mol Cell Cardiol 43:580–592

    Article  PubMed  CAS  Google Scholar 

  86. Yamboliev IA, Gerthoffer WT (2001) Modulatory role of ERK MAPK-caldesmon pathway in PDGF-stimulated migration of cultured pulmonary artery SMCs. Am J Physiol Cell Physiol 280:C1680–C1688

    PubMed  CAS  Google Scholar 

  87. Katayose D, Isoyama S, Fujita H et al (1993) Separate regulation of heme oxygenase and heat shock protein 70 mRNA expression in the rat heart by hemodynamic stress. Biochem Biophys Res Commun 191:587–594

    Article  PubMed  CAS  Google Scholar 

  88. Delcayre C, Samuel JL, Marotte F et al (1988) Synthesis of stress proteins in rat cardiac myocytes 2-4 days after imposition of hemodynamic overload. J Clin Invest 82:460–468

    Article  PubMed  CAS  Google Scholar 

  89. Hsu HH, Ko WJ, Hsu JY et al (2009) Simvastatin ameliorates established pulmonary hypertension through a heme oxygenase-1 dependent pathway in rats. Respir Res 10:32

    Article  PubMed  Google Scholar 

  90. Grosser N, Hemmerle A, Berndt G et al (2004) The antioxidant defense protein heme oxygenase 1 is a novel target for statins in endothelial cells. Free Radic Biol Med 37:2064–2071

    Article  PubMed  CAS  Google Scholar 

  91. Motterlini R, Mann BE, Foresti R (2005) Therapeutic applications of carbon monoxide-releasing molecules. Expert Opin Investig Drugs 14:1305–1318

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Kourembanas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kourembanas, S. (2011). Carbon Monoxide and Heme Oxygenase in the Regulation of Pulmonary Vascular Function and Structure. In: Yuan, JJ., Garcia, J., West, J., Hales, C., Rich, S., Archer, S. (eds) Textbook of Pulmonary Vascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87429-6_53

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87429-6_53

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87428-9

  • Online ISBN: 978-0-387-87429-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics