Skip to main content

Maize Under Phosphate Limitation

  • Chapter

Abstract

Phosphorus is one of the least available macronutrient for plants in soils, and is therefore considered to be a major constraint for plant growth and crop productivity. As a consequence, plants evolved a number a biochemical and developmental adaptations to combat this deficiency. In maize, such adaptations are based on a wide spectrum of mechanisms needed to increase the P uptake, assimilation and use efficiency. These mechanisms frequently act in parallel with a morphological plasticity in root architecture. Such adaptive strategies have been reported in several phosphate efficient genotypes, identified and selected from the large natural and man-made diversity found within the maize species. Advances in research have now begun to identify at the molecular level the adaptations evolved by maize to cope with Pi limitation. In this chapter we summarize the current research on the development of tolerant genotypes and the physiological, biochemical and molecular adaptations associated with low phosphate availability. Such knowledge will allows us to identify putative targets for breeding and opens the possibility to improve nutrient acquisition and productivity in maize and other cereals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akiyama, K., Matsuzaki, K., Hayashi, H. (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827.

    CAS  PubMed  Google Scholar 

  • Alves, V., Parentoni, S., Vasconcellos, C., Bahia Filho, A., Pitta, G., Schaffert, R. (2001) Mechanisms of phosphorus efficiency in maize. In W Horst, ed, Plant Nutrition- Food Security and Sustainability of Agro-Ecosystems. Kluwer Academic Publishers, The Netherlands, pp 566–567.

    Google Scholar 

  • Andersson, M.X., Stridh, M.H., Larsson, K.E., Liljenberg, C., Sandelius, A.S. (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galac-tolipid digalactosyldiacylglycerol. FEBS Lett 537: 128–132.

    CAS  PubMed  Google Scholar 

  • Anghinoni, I., Barber, S.A. (1980) Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply. Agron J 172: 655–668.

    Google Scholar 

  • Baldwin, J.C., Karthikeyan, A.S., Raghothama, K.G. (2001) LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiol 125: 728–737.

    CAS  PubMed  Google Scholar 

  • Baligar, V., Pitta, G., Gama, E., Schaffert, R., Bahia Filho, A.d.C., Clark, R. (1997) Soil acidity effects on nutrient use efficiency in exotic maize genotypes. Plant Soil 192: 9–13.

    CAS  Google Scholar 

  • Bari, R., Datt Pant, B., Stitt, M., Scheible, W.R. (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141: 988–99.

    CAS  PubMed  Google Scholar 

  • Bariola, P.A., Howard, C.J., Taylor, C.B., Verburg, M.T., Jaglan, V.D., Green, P.J. (1994) The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant J 6: 673–685.

    CAS  PubMed  Google Scholar 

  • Barry, D., Miller, M. (1989) Phosphorus nutritional requirement of maize seedlings for maximum yield. Agron J 81: 95–99.

    Google Scholar 

  • Bates, D., Lynch, J. (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low P availability. Plant Cell Environ 19: 529–538.

    CAS  Google Scholar 

  • Bates, T.R., Lynch, J.P. (2000a) The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. Am J Bot 87: 964–970.

    CAS  Google Scholar 

  • Bates, T.R., Lynch, J.P. (2000b) Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). Am J Bot 87: 958–963.

    CAS  Google Scholar 

  • Bhadoria, P., El Dessougi, H., Liebersbach, H., Claassen, N. (2004) Phosphorus uptake kinetics, size of root system and growth of maize and groundnut in solution culture. Plant Soil 262: 327–336.

    CAS  Google Scholar 

  • Bonser, A.M., Lynch, J., Snapp, S. (1996) Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol 132: 281–288.

    CAS  PubMed  Google Scholar 

  • Bressan, W., Vasconcellos, C.A. (2002) Alteracoes morfológicas no sistema radicular do milho induzidas por fungos micorrízicos e fósforo. Pesq Agropec Brasil 37: 509–517.

    Google Scholar 

  • Bucher, M. (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173: 11–26.

    CAS  PubMed  Google Scholar 

  • Cakmak, I. (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247: 3–24.

    CAS  Google Scholar 

  • Chen, Z., Nimmo, G., Jenkins, G., Nimmo, H. (2007) BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochem J. 405(Pt 1): 191–198.

    CAS  PubMed  Google Scholar 

  • Chiou, T.J., Liu, H., Harrison, M.J. (2001) The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant J 25: 281–293.

    CAS  PubMed  Google Scholar 

  • Corrales, I., Amenos, M., Poschenrieder, C., Barcelo, J. (2007) Phosphorus efficiency and root exudates in two contrasting tropical maize varieties. J Plant Nutr 30: 887–900.

    CAS  Google Scholar 

  • Da Silva, Á.E., Gabelman, W.H. (1992) Screening maize inbred lines for tolerance to low-P stress condition. Plant Soil 146: 181–187.

    Google Scholar 

  • Daram, P., Brunner, S., Persson, B.L., Amrhein, N., Bucher, M. (1998) Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 206: 225–233.

    CAS  PubMed  Google Scholar 

  • del Pozo, J.C., Allona, I., Rubio, V., Leyva, A., de la Pena, A., Aragoncillo, C., Paz-Ares, J. (1999) A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. Plant J 1 9: 579–589.

    PubMed  Google Scholar 

  • Devaiah, B.N., Karthikeyan, A., Raghothama, K.G. (2007a) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143: 1789–801.

    CAS  Google Scholar 

  • Devaiah, B.N., Nagarajan, V.K., Raghothama, K.G. (2007b) Phosphate Homeostasis and Root Development in Arabidopsis Is Synchronized by the Zinc Finger Transcription Factor ZAT6. Plant Physiol 145: 147–159.

    CAS  Google Scholar 

  • Dietz, K.-J., Harris, G.C. (1997) Photosynthesis under nutrient deficiency. In M Pessarakli, ed, Handbook of Photosynthesis. Marcel Dekker, Inc., New York, USA, pp 951–975.

    Google Scholar 

  • Dooner, H.K., Robbins, T.P. and Jorgensen, R.A. (1991) Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet 25: 173–199.

    CAS  PubMed  Google Scholar 

  • Dowswell, C.R., Paliwal, R., Cantrell, R.P. (1996) Maize in the third world. Westview Press, Oxford, Great Britain.

    Google Scholar 

  • Duff, S.M., Moorhead, G.B., Lefebvre, D.D., Plaxton, W.C. (1989) Phosphate starvation inducible ‘Bypasses’ of adenylate and phosphate dependent glycolytic enzymes in brassica nigra suspension cells. Plant Physiol 90: 1275–1278.

    CAS  PubMed  Google Scholar 

  • Duff, S.M.G., Sarath, G., Plaxton, W.C. (1994) The role of acid phosphatase in plant phosphorus metabolism. Physiol Plant 90: 791–800.

    CAS  Google Scholar 

  • Eckardt, N. (2005) Insights into pant cellular mechanisms: of phosphate transporters and arbuscular mycorrhizal infection. Plant Cell 17: 3213–3216.

    CAS  Google Scholar 

  • Englestad, P., Hellums, D.T. (1992) Water solubility of phosphate fertilizers: agronomic aspects–a literature review. In International Fertilizer Development Center (IFDC), Muscle Shoals, Alabama, USA.

    Google Scholar 

  • Essigmann, B., Guler, S., Narang, R.A., Linke, D., Benning, C. (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 1950–1955.

    CAS  PubMed  Google Scholar 

  • Ezawa, T., Hayatsu, M., Saito, M. (2005) A new hypothesis on the strategy for acquisition of phosphorus in arbuscular mycorrhiza: up-regulation of secreted acid phosphatase gene in the host plant. Mol Plant-Microbe Interact 18: 1046–1053.

    CAS  PubMed  Google Scholar 

  • Fairhurst, T., Lefroy, R., Mutert, E. and Batjes, N. H. (1999). The important, distribution and causes of phosphorus deficiency as a constraint to crop production in the tropics. Agroforestry Forum 9 (4): 2–8.

    Google Scholar 

  • Fan, M., Zhu, J., Richards, C., Brown, K.M., Lynch, J.P. (2003) Physiological roles for aeren-chyma in phosphorus-stressed roots. Funct Plant Biol 30: 493–506.

    Google Scholar 

  • Fan, M., Bai, R., Zhao, X., Zhang, J. (2007) Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots. J Integr Plant Biol 4 9: 598–604.

    Google Scholar 

  • FAO (1992) Maize in Human Nutrition. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.

    Google Scholar 

  • FAO (2007) Agro-MAPS: Global Spatial Database of Agricultural Land-use Statistics www.fao. org/landandwater/agll/agromaps/interactive/page.jspx.

  • Fernández, S.M., Ramírez, R. (2000) Efecto de la fuente de fósforo sobre la morfología radical y la acumulación del elemento en siete líneas de maíz. Bioagro 12: 41–46.

    Google Scholar 

  • Fixen, P. (2002) Soil test levels in North America. Better Crops 86: 12–15.

    Google Scholar 

  • Fixen, P. (2003) Dinámica del fósforo en el suelo y en el suelo en relación al manejo de los ferti-lizantes fosfatados. In International Plant Nutrition Institute, http://www.ipni.net/ppiweb.

  • Gaume, A., Mächler, F., De Leon, C., Narro, L., Frossard, E. (2001) Low-P tolerance by maize (Zea mays L.) genotypes: significance of root growth, and organic acids and acid phosphatase root exudation. Plant Soil 228: 253–264.

    CAS  Google Scholar 

  • Gavito, M.E., Varela, L. (1995) Response of “criollo” maize to single and mixed species inocula of arbuscular mycorrhizal fungi. Plant Soil 176: 101–105.

    CAS  Google Scholar 

  • Gavito, M.E., Miller, M.H. (1998) Early phosphorus nutrition, mycorrhizae evelopment, dry matter partitioning and yield of maize. Plant Soil 199: 177–186.

    CAS  Google Scholar 

  • Glassop, D., Smith, S.E., Smith, F.W. (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222: 688–698.

    CAS  PubMed  Google Scholar 

  • Granato, T., Raper, C. (1989) Proliferation of maize ( Zea mays L.) roots in response to localized supply of nitrate. J Exp Bot 40: 263–275.

    CAS  PubMed  Google Scholar 

  • Grant, C., Bittman, S., Montrea, M., Plenchette, C., Morel, C. (2005) Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development. Can J Plant Sci 85: 3–14.

    Google Scholar 

  • Hajabbasi, M., Schumacher, T. (1994) Phosphorus effects on root growth and development in two maize genotypes. Plant Soil 158: 39–46.

    CAS  Google Scholar 

  • Halsted, M., Lynch, J. (1996) Phosphorus responses of C3 and C4 species. J Exp Bot 47: 497–505.

    CAS  Google Scholar 

  • Hammond, J.P., Broadley, M.R., White, P.J. (2004) Genetic responses to phosphorus deficiency. Ann Bot (Lond) 94: 323–332.

    CAS  Google Scholar 

  • Hardtke, C.S. (2006) Root development–branching into novel spheres. Curr Opin Plant Biol 9:66–71.

    CAS  PubMed  Google Scholar 

  • Hernandez, G., Ramirez, M., Valdes-Lopez, O., Tesfaye, M., Graham, M.A., Czechowski, T., Schlereth, A., Wandrey, M., Erban, A., Cheung, F., Wu, H.C., Lara, M., Town, C.D., Kopka, J., Udvardi, M.K., Vance, C.P. (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144: 752–767.

    CAS  PubMed  Google Scholar 

  • Herrera-Estrella, L. (1999) Transgenic plants for tropical regions: some considerations about their development and their transfer to the small farmer. Proc Natl Acad Sci USA 96: 5978 – 5981.

    CAS  PubMed  Google Scholar 

  • Hinsinger, P. (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237: 173–195.

    CAS  Google Scholar 

  • Hochholdinger, F., Woll, K., Sauer, M., Dembinsky, D. (2004) Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Ann Bot (Lond) 93: 359–368.

    CAS  Google Scholar 

  • Hodge, A. (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162: 9–24.

    Google Scholar 

  • Horst, W.J. (2000) Fitting maize into sustainable cropping systems on acid soils of the tropics. International Atomic Energy Agency-TECDOC-1159, ISSN 1011-4289, 47–59.

    Google Scholar 

  • Howeler, R., Sieverding, E., Saif, S. (1987) Practical aspects of mycorrhizal technology in some tropical crops and pastures. Plant Soil 100: 249–283.

    Google Scholar 

  • Huber, S., Edwards, G. (1975) Inhibition of phosphoenolpyruvate carboxylase from C4 plants by malate and aspartate. Can J Bot 53: 1925–1933.

    CAS  Google Scholar 

  • Iqbal, R.M., Iqbal Chauhan, H.Q. (2003) Relationship between different growth and yield parameters in maize under varying levels of phosphorus. J Biol Sci 3: 921–925.

    Google Scholar 

  • Jacob, J., Lawlor, D. (1991) Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. J Exp Bot 42: 1003–1011.

    CAS  Google Scholar 

  • Jacob, J., Lawlor, D. (1993) In vivo photosynthetic electron transport does not limit photosyn-thetic capacity in phosphate-deficient sunflower and maize leaves. Plant Cell Environ 16: 785–795.

    CAS  Google Scholar 

  • Jungk, A., Asher, C., Edwards, D., Meyer, D. (1990) Influence of phosphate status on phosphate uptake kinetics of maize (Zea mays) and soybean (Glycine max). Plant Soil 124: 175–182.

    CAS  Google Scholar 

  • Kaeppler, S.M., Parke, J.L., Mueller, S.M., Senior, L., Stuber, C., Tracy, W.F. (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci 40: 358–364.

    Google Scholar 

  • Kothari, S., Marschner, H., Römheld, V. (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytol 116: 637–645.

    CAS  Google Scholar 

  • Lafitte, H. (2001) Estreses abióticos que afectan al maíz. In RL Paliwal, G Granados H R Lafitte, AD Violic, JP Marathee, eds, El maíz en los trópicos. CIMMYT, Rome, Italy, pp. 95–106.

    Google Scholar 

  • Leakey, A.D., Uribelarrea, M., Ainsworth, E.A., Naidu, S.L., Rogers, A., Ort, D.R., Long, S.P. (2006) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol 140: 779–790.

    CAS  PubMed  Google Scholar 

  • Li, D., Zhu, H., Liu, K., Liu, X., Leggewie, G., Udvardi, M., Wang, D. (2002) Purple acid phos-phatases of Arabidopsis thaliana. J Biol Chem 277: 27772–27781.

    CAS  PubMed  Google Scholar 

  • Li, K., Xu, Z., Zhang, K., Yang, A., Zhang, J. (2006) Efficient production and characterization for maize inbred lines with low-phosphorus tolerance. Plant Sci 172: 255–264.

    Google Scholar 

  • Li, K., Xu, C., Zhang, K., Yang, A., Zhang, J. (2007) Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize ( Zea mays L.) plants. Proteomics 7: 1501–1512.

    CAS  PubMed  Google Scholar 

  • Lim, J., Jung, J.W., Lim, C.E., Lee, M.H., Kim, B.J., Kim, M., Bruce, W.B., Benfey, P.N. (2005) Conservation and diversification of SCARECROW in maize. Plant Mol Biol 59: 619–30.

    CAS  PubMed  Google Scholar 

  • Liu, C., Muchhal, U.S., Raghothama, K.G. (1997) Differential expression of TPSI1, a phosphate starvation-induced gene in tomato. Plant Mol Biol 33: 867–874.

    CAS  PubMed  Google Scholar 

  • Liu, C., Muchhal, U.S., Mukatira, U.T., Kononowicz, A.K., Raghothama, K.G. (1998) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol 116: 91–99.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Mi, G., Chen, F., Zhang, J., Zhang, F. (2004) Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Sci 167: 217–223.

    CAS  Google Scholar 

  • Lopez-Bucio, J., Hernandez-Abreu, E., Sanchez-Calderon, L., Nieto-Jacobo, M.F., Simpson, J., Herrera-Estrella, L. (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129: 244–256.

    CAS  PubMed  Google Scholar 

  • Lynch, J. (1995) Root architecture and plant productivity. Plant Physiol 109: 7–13.

    CAS  PubMed  Google Scholar 

  • Lynch, J.P. (1998) The role of nutrient efficient crops in modern agriculture. J Crop Prod 1: 241–264.

    Google Scholar 

  • Lynch, J.P., Brown, K.M. (2001) Topsoil Foraging: an architectural adaptation to low phosphorus availability. Plant Soil 237: 225–237.

    CAS  Google Scholar 

  • Lynch, J.P., Ho, M.D. (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269: 45–56.

    CAS  Google Scholar 

  • Ma, Z., Bielenberg, D., Brown, K., Lynch, J. (2001a) Regulation of root hair density by P availability in Arabidopsis thaliana. Plant Cell Environ 24: 459–467.

    CAS  Google Scholar 

  • Ma, Z., Walk, T., Marcus, A., Lynch, J. (2001b) Morphological synergism in root hair length, density, initiation and geometry for P acquisition in Arabidopsis thaliana: a modeling approach. Plant Soil 236: 221–235.

    CAS  Google Scholar 

  • Ma, Z., Baskin, T., Brown, K., Lynch, J.P. (2003) Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol. 131: 1381–1390.

    CAS  PubMed  Google Scholar 

  • Marschner, H. (1995) Mineral Nutrition in Plants, 2nd Ed. Academic Press, San Diego, CA.

    Google Scholar 

  • McCully, M., Canny, M. (1988) Pathways and processes of water and nutrient movement in roots. Plant Soil 111: 159–170.

    CAS  Google Scholar 

  • Ming, Z., Wen, J., Ishill, R., Li, C. (2006) Genotypic differences in photosynthesis and dynamic characteristics of NPQ in maize. Asian J Plant Sci 5: 709–712.

    CAS  Google Scholar 

  • Misson, J., Raghothama, K.G., Jain, A., Jouhet, J., Block, M.A., Bligny, R., Ortet, P., Creff, A., Somerville, S., Rolland, N., Doumas, P., Nacry, P., Herrerra-Estrella, L., Nussaume, L., Thibaud, M.C. (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102: 11934–11939.

    CAS  PubMed  Google Scholar 

  • Miura, K., Rus, A., Sharkhuu, A., Yokoi, S., Karthikeyan, A.S., Raghothama, K.G., Baek, D., Koo, Y.D., Jin, J.B., Bressan, R.A., Yun, D.J., Hasegawa, P.M. (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102; 7760–5.

    CAS  PubMed  Google Scholar 

  • Mollier, A., Pellerin, S. (1999) Maize root system growth and development as influenced by phosphorus deficiency. J Exp Bot 50: 487–497.

    CAS  Google Scholar 

  • Morcuende, R., Bari, R., Gibon, Y., Zheng, W., Pant, B.D., Blasing, O., Usadel, B., Czechowski, T., Udvardi, M.K., Stitt, M., Scheible, W.R. (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30: 85–112.

    CAS  PubMed  Google Scholar 

  • Morris, M.L., Lopez-Pereira, M.A. (1999) Impacts of maize breeding research in Latin America, 1966–1997. International Maize and Wheat Improvement Center, Mexico City (Mexico). Economics Program Report. Mexico City (Mexico). ISBN: 970-648-034-X.

    Google Scholar 

  • Nagy, R., Vasconcelos, M.J., Zhao, S., McElver, J., Bruce, W., Amrhein, N., Raghothama, K.G., Bucher, M. (2006) Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biol (Stuttg) 8: 186–197.

    CAS  Google Scholar 

  • Nakajima, K., Benfey, P.N. (2002) Signaling in and out: control of cell division and differentiation in the shoot and root. Plant Cell 14 Suppl, S265–76.

    Google Scholar 

  • Nandi, S., Pant, R., Nissen, P. (1987) Multiphasic uptake of phosphate by corn roots. Plant Cell Environ 10: 463–474.

    CAS  Google Scholar 

  • Natr, L. (1992) Mineral nutrients-a ubiquitous stress factor for photosynthesis. Photosynthetica 27: 271–294.

    CAS  Google Scholar 

  • Neumann, G., Römheld, V. (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211: 121–130.

    CAS  Google Scholar 

  • Nielsen, N.E., Barber, S.A. (1978) Differences among genotypes of corn in the kinetics of P uptake. Agron J 70: 695–698.

    CAS  Google Scholar 

  • Nielsen, T., Krapp, A., Roper-Schwarz, U., Stitt, M. (1998) The sugar mediated regulation encoding the small subunit of Rubisco and the regulatory subunit of ADP glucosa pyrophosphory-lase is modified by phosphate and nitrogen. Plant, Cell Environ 21: 443–454.

    CAS  Google Scholar 

  • Paszkowski, U., Boller, T. (2002) The growth defect of lrt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta 214: 584–590.

    CAS  PubMed  Google Scholar 

  • Pellerin, S., Mollier, A., Plenet, D. (2000) Phosphorus Deficiency affects the rate of emergence and number of maize adventitious nodal roots. Agron J 92: 690–697.

    Google Scholar 

  • Pieters, A.J., Paul, M.J., Lawlor, D.W. (2001) Low sink demand limits photosynthesis under Pi deficiency. J Exp Bot 52: 1083–1091.

    CAS  PubMed  Google Scholar 

  • Pingali, P.L., Pandey, S. (2001) Part 1: Meeting world maize needs: technological opportunities and priorities for the public sector. In PL Pingali, ed, CIMMYT 1999–2000 World Maize Facts and Trends. Meeting World Maize Needs: Technological Opportunities and Priorities for the Public Sector. CIMMYT, Mexico, D. F., pp 1–24.

    Google Scholar 

  • Plénet, D., Etchebest, S., Mollier, A., Pellerin, S. (2000a) Growth analysis of maize field crops under phosphorus deficiency. I. Leaf Growth. Plant Soil 223: 117–130.

    Google Scholar 

  • Plénet, D., Mollier, A., Pellerin, S. (2000b) Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield components. Plant Soil 224: 259–272.

    Google Scholar 

  • Poirier, Y. and Bucher, M. (2002) Phosphate transport and homeostasis in Arabidopsis. In C Somerville, E Meyerowitz, eds., The Arabidopsis Book. Vo l 2007. American Society of Plant Biologists, Rockville MD, pp. DOI: 10.1199/tab.0024, www.aspb.org/publications/arabidopsis/.

  • Raghothama, K.G. (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50: 665–693.

    CAS  PubMed  Google Scholar 

  • Raghothama, K.G., Karthikeyan, A.S. (2005) Phosphate acquisition. Plant Soil 274: 37–49.

    CAS  Google Scholar 

  • Ramírez, R. (2006) Eficiencia del uso del fósforo de la roca fosfórica por cultivares de maíz. Interciencia 31: 45–49.

    Google Scholar 

  • Rao, I., Friesen, D., Osaki, M. (1995) Plant adaptation to phosphorus-limited tropical soils. In M Pessarakli, ed, Handbook of Plant and Crop Physiology. Marcel Dekker, Inc., New York, USA, pp 61–95.

    Google Scholar 

  • Rao, I.M., Arulanantham, A.R., Norman, T. (1989) Leaf phosphate status, photosynthesis and carbon partitioning in sugar beet. Plant Physiol 90: 820–826.

    CAS  PubMed  Google Scholar 

  • Reiter, R., Coors, J., Sussman, M., Gabelman, W. (1991) Genetic analysis of tolerance to low-phosphorus stress in maize using restriction fragment length polymorphisms. Theor Appl Genet 82: 561–568.

    CAS  Google Scholar 

  • Reymond, M., Svistoonoff, S., Loudet, O., Nussame, L., Desnos, T. (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 29: 115–125(111).

    CAS  PubMed  Google Scholar 

  • Robinson, D. (1994) The responses of plants to non-uniform supplies of nutrients. New Phytol 127: 635–674.

    CAS  Google Scholar 

  • Rubio, V., Linhares, F., Solano, R., Martin, A.C., Iglesias, J., Leyva, A., Paz-Ares, J. (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & Dev 15: 2122–33.

    CAS  Google Scholar 

  • Sachay, J., Wallace, R., Johns, M. (1991) Phosphate stress response in hydroponically grown maize. Plant Soil 132: 85–90.

    CAS  Google Scholar 

  • Sanchez-Calderon, L., Lopez-Bucio, J., Chacon-Lopez, A., Cruz-Ramirez, A., Nieto-Jacobo, F., Dubrovsky, J.G., Herrera-Estrella, L. (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46: 174–184.

    CAS  PubMed  Google Scholar 

  • Schaffert, R., Alves, V., Parentoni, S., Raghothama, K. (2000) Genetic control of phosphorus uptake and utilization efficiency in maize and sorghum under marginal soil conditions. In JM Ribaut, D Poland, eds, Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments. A Strategic Planning Workshop, 21–25 Jun 1999. CIMMYT, El Batan, Texcoco, Mexico, pp 79–85.

    Google Scholar 

  • Shenoy, V., Kalagudi, G. (2005) Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol Adv 23: 501–513.

    CAS  PubMed  Google Scholar 

  • Sierra, J., Noël, C., Dufour, L., Ozier-Lafontaine, H., Welcker, C., Desfontaines, L. (2003) Mineral nutrition and growth of tropical maize as affected by soil acidity. Plant Soil 252: 215–226.

    CAS  Google Scholar 

  • Stryker, R., Gilliam, J., Jackson, W. (1974) Non uniform phosphorus distribution in the root zone of corn: growth and phosphorus uptake. Soil Sci Soc Am Proc 38: 334–340.

    CAS  Google Scholar 

  • Svistoonoff, S., Creff, A., Reymond, M., Sigoillot-Claude, C., Ricaud, L., Blanchet, A., Nussaume, L., Desnos, T. (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39: 792–796.

    CAS  PubMed  Google Scholar 

  • Theodorou, M.E., Plaxton, W.C. (1993) Metabolic Adaptations of Plant Respiration to Nutritional Phosphate Deprivation. Plant Physiol 101: 339–344.

    CAS  PubMed  Google Scholar 

  • Torres de Toledo Machado, C., Cangiani Furlani, A.M. (2004) Kinetics of phosphorus uptake and root morphology of local and improved varieties of maize. Sci Agric (Piracicaba, Braz.) 61: 69–76.

    Google Scholar 

  • Tu, S., Cananaugh, J., Boswell, R. (1990) Phosphate uptake by excised maize root tips studied by in vivo 31P nuclear magnetic resonance spectroscopy. Plant Physiol 93: 778–784.

    CAS  PubMed  Google Scholar 

  • Uhde-Stone, C., Zinn, K.E., Ramirez-Yanez, M., Li, A., Vance, C.P., Allan, D.L. (2003) Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol 131: 1064–1079.

    CAS  PubMed  Google Scholar 

  • Usuda, H., Shimogawara, K. (1991) Phosphate deficiency in maize. I. Leaf phosphate status, growth, photosynthesis and carbon partitioning. Plant Cell Physiol 32: 497–504.

    CAS  Google Scholar 

  • Vance, C.P., Uhde-Stone, C., Allan, D.L. (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157: 423–447.

    CAS  Google Scholar 

  • Varney, G., Canny, M. (1993) Rates of water uptake into the mature roots system of maize plants. New Phytol 123: 775–786.

    Google Scholar 

  • Vieten, A., Sauer, M., Brewer, P.B., Friml, J. (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12: 160–8.

    CAS  PubMed  Google Scholar 

  • von Uexküll, H.R., Mutert, E. (1995) Global extent, development and economic impact of acid soils. Plant Soil 171: 1–15.

    Google Scholar 

  • Wang, X., Canny, M., McCully, M. (1991) The water status of the roots of soil-grown maize in relation to the maturity of their xylem. Physiol Plant 82: 157–162.

    Google Scholar 

  • Wang, X., McCully, M., Canny, M. (1994) The branch roots of Zea. IV. The maturation and openness of xylem conduits in first-order branches of soil-grown roots. New Phytol 126: 21–29.

    Google Scholar 

  • Wasaki, J., Yonetani, R., Shinano, T., Kai, M., Osaki, M. (2003) Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytol 158: 239–248.

    CAS  Google Scholar 

  • Wasaki, J., Shinano, T., Onishi, K., Yonetani, R., Yazaki, J., Fujii, F., Shimbo, K., Ishikawa, M., Shimatani, Z., Nagata, Y., Hashimoto, A., Ohta, T., Sato, Y., Miyamoto, C., Honda, S., Kojima, K., Sasaki, T., Kishimoto, N., Kikuchi, S., Osaki, M. (2006) Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J Exp Bot 57: 2049–2059.

    CAS  PubMed  Google Scholar 

  • Weisbach, C., Tiessen, H., Jimenez-Osornio, J.J. (2002) Soil fertility during shifting cultivation in the tropical Karst soils of Yucatan. Agronomie 22: 253–263.

    Google Scholar 

  • Wen, T., Schnable, P. (1994) Analysis of mutant of three genes that influence root hair development in Zea mays (Graminae) suggest that root hairs are dispensable. Am J Bot 81: 833–842.

    Google Scholar 

  • Williamson, L.C., Ribrioux, S.P., Fitter, A.H., Leyser, H.M. (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126: 875–882.

    CAS  PubMed  Google Scholar 

  • Wright, D.P., Scholes, J.D., Read, D.J., Rolfe, S.A. (2005) European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytol 167: 881–896.

    CAS  PubMed  Google Scholar 

  • Wu, P., Ma, L., Hou, X., Wang, M., Wu, Y., Liu, F., Deng, X. (2003) Phosphate starvation triggers distinct alterations of genome expression in arabidopsis roots and leaves. Plant Physiol 132: 1260–1271.

    CAS  PubMed  Google Scholar 

  • Xie, Q., Frugis, G., Colgan, D., Chua, N.H. (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes & Dev 14: 3024–36.

    CAS  Google Scholar 

  • Xie, Q., Guo, H.S., Dallman, G., Fang, S., Weissman, A.M., Chua, N.H. (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419: 167–170.

    CAS  PubMed  Google Scholar 

  • Yi, K., Wu, Z., Zhou, J., Du, L., Guo, L., Wu, Y., Wu, P. (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138: 2087–96.

    CAS  PubMed  Google Scholar 

  • Zhu, J., Lynch, J.P. (2004) The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings. Funct Plant Biol 31: 949–958.

    CAS  Google Scholar 

  • Zhu, J., Kaeppler, S., Lynch, J. (2005a) Topsoil foraging and phosphorus acquisition efficiency in maize ( Zea mays). Funct Plant Biol 32: 749–762.

    CAS  Google Scholar 

  • Zhu, J., Kaeppler, S.M., Lynch, J.P. (2005b) Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant Soil 270: 299–310.

    CAS  Google Scholar 

  • Zhu, J., Kaeppler, S.M., Lynch, J.P. (2005c) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111: 688–695.

    CAS  Google Scholar 

  • Zhu, J., Mickelson, S., Kaeppler, S., Lynch, J. (2006) Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theor Appl Genet 113: 1–10.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Calderón-Vázquez, C., Alatorre-Cobos, F., Simpson-Williamson, J., Herrera-Estrella, L. (2009). Maize Under Phosphate Limitation. In: Bennetzen, J.L., Hake, S.C. (eds) Handbook of Maize: Its Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79418-1_19

Download citation

Publish with us

Policies and ethics