Skip to main content

Potential Protective Effects of Probiotics and Prebiotics Against Colorectal Cancer

  • Reference work entry
Prebiotics and Probiotics Science and Technology

Abstract

Colorectal cancer (CRC) is the fourth most frequent cause of cancer related mortality in the world. Approximately 944,000 new cases were diagnosed globally in 2000 and this accounts for 9.2% of all new cancer cases (IARC, 2000). In Western societies namely Europe, North America and Australasia, it is the second most prevalent cancer after lung/breast (Boyle and Langman, 2000). About 363,000 new cases were reported in Europe in 2000 and it affects 6% of men and women by age 75, in almost equal proportion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACF :

aberrant crypt foci

AOM :

azoxymethane

CRC :

Colorectal cancer

DMH :

1,2-dimethylhydrazine

FOS :

fructo-oligosaccharide

Glu-P-1 :

2-amino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole

Glu-P-2 :

2-aminodipyrido[1,2-a:3′,2′-d]imidazole

HFA :

human flora associated

IQ :

2-amino-3-methyl-3H-imidazo(4,5-f)quinoline

LAB :

lactic acid producing bacteria

MeIQ :

2-amino3,4-dimethylimidazo[4,5-f]quinoline

MeIQx :

2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline

MNNG :

N-methyl-N’-nitro-N-nitrosoguanidine

NDO :

non-digestible oligosaccharide

PhIP :

2-amino-1-methyl-6-phenylimidazo-[4,5b]pyridine

TOS :

trans-galactosylated oligosaccharide

Trp-P-1 :

3-amino-1,4-dimethyl-5H-pyrido-[4,3-b]indole

Trp-P-2 :

3-amino-1-methyl-5H-pyrido[4,3b]indole

References

  • Abdelali H, Cassand P, Soussotte V, Daubeze M, Bouley C, Narbonne JF (1995) Effect of dairy products on initiation of precursor lesions of colon cancer in rats. Nutr Cancer 24:121–132

    CAS  Google Scholar 

  • Archer S, Hodin R (1999) Histone acetylation and cancer. Curr Opin Genet Dev 9:171–174

    CAS  Google Scholar 

  • Aso Y, Akaza H, Kotake T, Tsukamoto T, Imai K, Naito S (1995) Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double – blind trial. Eur Urol 27:104–109

    CAS  Google Scholar 

  • Ayebo AD, Angelo IA, Shahani KM (1980) Effect of ingesting Lactobacillus acidophilus milk upon fecal flora and enzyme activity in humans. Milchwissenschaft 35:730–733

    Google Scholar 

  • Basson M, Liu YW, Hanly A, Emenecker N, Shenoy S, Gould, Rothberg BE (2000) Identification and comparative analysis of human short chain fatty acid response genes. J Gast Surg 4:501–502

    CAS  Google Scholar 

  • Bertazzoni-Minelli E, Benini A, Vicentini L, Andreoli E, Oselladore M, Cerutti R (1996) Effect of Lactobacillus acidophilus and Bifidobacterium bifidum administration on colonic microbiota and its metabolic activity in premenstrual syndrome. Microb Ecol Health Dis 9:247–260

    Google Scholar 

  • Biasco G, Paganelli GM, Brandi G, Brillanti S, Lami F, Callegari C, Gizzi G (1991) Effect of Lactobacillus acidophilus and Bifidobacterium bifidum on rectal cell kinetics. Ital J Gastroenterol 23:142

    CAS  Google Scholar 

  • Bolognani F, Rumney CJ, Pool-Zobel BL, Rowland IR (2001) Effect of lactobacilli, bifidobacteria and inulin on the formation of aberrant crypt foci in rats. Eur J Nutr 40:293–300

    CAS  Google Scholar 

  • Bolognani F, Rumney CJ, Rowland IR (1997) Influence of carcinogen binding by lactic acid producing bacteria on tissue distribution and in vivo mutagenicity of dietary carcinogens. Food Chem Toxicol 35:535–545

    CAS  Google Scholar 

  • Borruel N, Carol M, Casellas F, Antolin M, de Lara, Espin E, Naval J, Guarner F, Malagelada JR (2002) Increased mucosaltumour necrosis factor production in Crohns disease can be down regulated ex vivo by probiotic bacteria. Gut 51659–51664

    Google Scholar 

  • Boutron MC, Faivre J, Marteau P, Couillault C, Senesse P, Quipourt V (1996) Calcium, phosphorous, vitamin D, dairy products and colorectal carcinogenesis: a French case-control study. Br J Cancer 74:145–151

    CAS  Google Scholar 

  • Boutron-Ruault MC, Marteau P, Lavergne-Slove A, Myara A, Gerhardt MF, Franchisseur C, Bornet F (2005) Effects of a 3-mo consumption of short-chain fructo-oligosaccharides on parameters of colorectal carcinogenesis in patients with or without small or large colorectal adenomas. Nutr Cancer 53(2):160–168

    CAS  Google Scholar 

  • Boyle P, Langman JS (2000) ABC of colorectal cancer – epidemiology. Br Med J 321:805–808

    CAS  Google Scholar 

  • Buddington KK, Donahoo JB, Buddington RK (2002) Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J Nutr 132(3):472–477

    CAS  Google Scholar 

  • Burns AJ, Rowland IR (2004) Antigenotoxicity of probiotics and prebiotics on fecal water-induced DNA damage in human colon adenocarcinoma cells. Mutat Res 551(1–2):233–243

    CAS  Google Scholar 

  • Caderni G, Femia AP, Giannini A, Favuzza A, Luceri C, Salvadori M, Dolara P (2003) Identification of mucin depleted foci in the unsectioned colon of azoxymethane treated rats: correlation with carcinogenesis. Cancer Res 63:2388–2392

    CAS  Google Scholar 

  • Caldini G, Trotta F, Corsetti A, Cenci G (2008) Evidence for in vitro anti-genotoxicity of cheese non-starter lactobacilli. Antonie Van Leeuwenhoek 93(1–2):51–59

    CAS  Google Scholar 

  • Caldini G, Trotta F, Villarini M, Moretti M, Pasquini R, Scassellati-Sforzolini G, Cenci G (2005) Screening of potential lactobacilli antigenotoxicity by microbial and mammalian cell-based tests. Int J Food Microbiol 102(1):37–47

    CAS  Google Scholar 

  • Carman RJ, Vantassell RL, Kingston DGI, Bashir M, Wilkins TD (1988) Conversion of IQ, a dietary pyrolysis carcinogen to a direct acting mutagen by normal intestinal bacteria of humans. Mutat Res 206:335–342

    CAS  Google Scholar 

  • Cenci G, Caldini G, Trotta F, Bosi P (2008) In vitro inhibitory activity of probiotic spore-forming bacilli against genotoxins. Lett Appl Microbiol 46(3):331–337

    CAS  Google Scholar 

  • Cenci G, Rossi J, Trotta F, Caldini G (2002) Lactic acid bacteria isolated from dairy products inhibit genotoxic effect of 4-nitroquinoline-1-oxide in SOS-chromotest. Syst Appl Microbiol 25(4):483–490

    CAS  Google Scholar 

  • Challa A, Rao DR, Chawan CB, Shackelford L (1997) Bifidobacterium longum and lactulose suppress azoxymethane induced aberrant crypt foci in rats. Carcinogenesis 18:517–521

    CAS  Google Scholar 

  • Chinthalapally R, Sanders M, Indranie C, Simi B, Reddy B (1999) Prevention of preneoplastic lesions by the probiotic Lactobacillus acidophilus NCFMTM in F344 rats. Int J Oncol 14:939–944

    Google Scholar 

  • Choi SS, Kang BY, Chung MJ, Kim SD, Park SH, Kim JS, Kang CY, Ha NJ (2005) Safety assessment of potential lactic acid bacteria Bifidobacterium longum SPM1205 isolated from healthy Koreans. J Microbiol 43(6):493–498

    CAS  Google Scholar 

  • Cole CB, Fuller R, Carter SM (1989) Effect of probiotic supplements of Lactobacillus acidophilus and Bifidobacterium adolescentis 2204 on β-glucosidase and β-glucuronidase activity in the lower gut of rats associated with a human fecal flora. Microb Ecol Health Dis 2:223–225

    Google Scholar 

  • Commane DM, Shortt CT, Silvi S, Cresci A, Hughes RM, Rowland IR (2005) Effects of fermentation products of pro- and prebiotics on transepithelial resistance in an in vitro model of the colon. Nutr Cancer 51:102–109

    CAS  Google Scholar 

  • Corsetti A, Caldini G, Mastrangelo M, Trotta F, Valmorri S, Cenci G (2008) Raw milk traditional Italian ewe cheeses as a source of Lactobacillus casei strains with acid-bile resistance and antigenotoxic properties. Int J Food Microbiol 125(3):330–335

    CAS  Google Scholar 

  • Ebringer L, Ferencik M, Lahitova N, Kacani L, Michalkova D (1995) Anti-mutagenic and immuno-stimulatory properties of lactic acid bacteria. World J Microbiol Biotechnol 11:294–298

    Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    CAS  Google Scholar 

  • Femia AP, Luceri C, Dolara P, Giannini A, Biggeri A, Salvadori M, Clune Y, Collins KJ, Paglierani M, Caderni G (2002) Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane induced colon carcinogenesis in rats. Carcinogenesis 23:1953–1960

    CAS  Google Scholar 

  • Fukui M, Fujino T, Tsutsui K, Maruyama T, Yoshimura H, Shinohara T, Fukui M, Nada O (2001) The tumor-preventing effect of a mixture of several lactic acid bacteria on 1,2-dimethylhydrazine-induced colon carcinogenesis in mice. Oncol Rep 8(5):1073–1078

    CAS  Google Scholar 

  • Gallaher DD, Stallings WH, Blessing LL, Busta FF, Brady LJ (1996) Probiotics cecal microflora, and aberrant crypts in the rat colon. J Nutr 126:1362–1371

    CAS  Google Scholar 

  • Garcia Lafuente A, Antolin M, Guarner F, Crespo E, Malagelada JR (2001) Modulation of colonic barrier function by the composition of the commensal flora in the rat. Gut 48:503–507

    CAS  Google Scholar 

  • Gill CI, Heavey P, McConville E, Bradbury I, Fassler C, Mueller S, Cresci A, Dore J, Norin E, Rowland I (2007) Effect of fecal water on an in vitro model of colonic mucosal barrier function. Nutr Cancer 57:59–65

    Google Scholar 

  • Gill HS, Rutherford KJ, Cross ML, Gopal PK (2001) Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr 74:833–839

    CAS  Google Scholar 

  • Glinghammar B, Venturi M, Rowland IR, Rafter JJ (1997) Shift from a dairy product-rich to a dairy product-free diet: influence on cytotoxicity and genotoxicity of fecal water-potential risk factors for colon cancer. Am J Clin Nutr 66:1277–1282

    CAS  Google Scholar 

  • Goldin BR, Gorbach SL (1976) The relationship between diet and rat fecal bacterial enzymes implicated in colon cancer. J Natl Cancer Inst 57:371–375

    CAS  Google Scholar 

  • Goldin BR, Gorbach SL (1980) Effect of Lactobacillus acidophilus dietary supplements on 1,2-dimethylhydrazine dichloride-induced intestinal cancer in rats. J Natl Cancer Inst 64:263–265

    CAS  Google Scholar 

  • Goldin BR, Gorbach SL (1984a) Alterations of the intestinal microflora by diet, oral antibiotics, and Lactobacillus: decreased production of free amines from aromatic nitro compounds, azo dyes, and glucuronides. J Natl Cancer Inst 73:689–695

    CAS  Google Scholar 

  • Goldin BR, Gorbach SL (1984b) The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. Am J Clin Nutr 39:756–761

    CAS  Google Scholar 

  • Goldin BR, Gualtieri LJ, Moore RP (1996) The effect of Lactobacillus GG on the initiation and promotion of DMH – induced intestinal tumours in the rat. Nutr Cancer 25:197–204

    CAS  Google Scholar 

  • Gostner A, Blaut M, Schäffer V, Kozianowski G, Theis S, Klingeberg M, Dombrowski Y, Martin D, Ehrhardt S, Taras D, Schwiertz A, Kleessen B, Lührs H, Schauber J, Dorbath D, Menzel T, Scheppach W (2006) Effect of isomalt consumption on fecal microflora and colonic metabolism in healthy volunteers. Br J Nutr 95(1):40–50

    CAS  Google Scholar 

  • Haberer P, du Toit M, Dicks LMT, Ahrens F, Holzapfel WH (2003) Effect of potentially probiotic lactobacilli on fecal enzyme activity in minipigs on a high-fat, high-cholesterol diet-a preliminary in vivo trial. Int J Food Microbiol 87(3):287–291

    CAS  Google Scholar 

  • Hague A, Manning A, Hanlon K, Huschtcha L, Hart D, Paraskeva C (1993) Sodium butyrate induces apoptosis in human colonic tumour cell lines in a p53 independent pathway implications for the possible role of dietary fibre in the prevention of large-bowel cancer. Int J Cancer 55:498–505

    CAS  Google Scholar 

  • Hayakawa K, Mizutani J, Wada K, Masai T, Yoshihara I, Mitsuoka T (1990) Effects of soybean oligosaccharides on human fecal microflora. Microb Ecol Health Dis 3:293–303

    Google Scholar 

  • Hayatsu H, Hayatsu T (1993) Suppressing effect of Lactobacillus casei administration on the urinary mutagenicity arising from ingestion of fried ground beef in the human. Cancer Lett 73:173–179

    CAS  Google Scholar 

  • Holzapfel WH, Haberer P, Snel J, Schillinger U, Huis_in_t_Veld JH (1998) Overview of gut flora and probiotics. Int J Food Microbiol 41:85–101

    CAS  Google Scholar 

  • Horie H, Zelsig M, Hitayama K, Midtvedt I, Moller L, Raffer J (2003) Probiotic mixture decreases DNA adduct formation in colonic epithelium induced by the food mutagen 2-amino-9H-pyrido[2,3-b]indole in a human-florn associated mouse model. Eur J Cancer Prev 12:101–107

    CAS  Google Scholar 

  • Hsu CK, Liao JW, Chung YC, Hsieh CP, Chan YC (2004) Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J Nutr 134(6):1523–1538

    CAS  Google Scholar 

  • Huang Y, Kotula L, Adams MC (2003) The in vivo assessment of safety and gastrointestinal survival of an orally administered novel probiotic, Propionibacterium jensenii 702, in a male Wistar rat model. Food Chem Toxicol 41(12):1781–1787

    CAS  Google Scholar 

  • Hughes R, Kurth MJ, McGilligan V, McGlynn H, Rowland I (2008) Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro. Nutr Cancer 60(2):259–266

    CAS  Google Scholar 

  • Hughes R, Rowland I (2003) Nutritional and microbial modification of carcinogenesis. In: Fuller R, Perdigon G (eds) Gut flora, nutrition, immunity and health. Blackwell Publishing, Oxford, pp. 208–236

    Google Scholar 

  • Hughes RM, Rowland IR (2001) Stimulation of apoptosis by two prebiotic chicory fructans in the rat colon. Carcinogenesis 22:43–47

    CAS  Google Scholar 

  • IARC (1997) Cancer incidence in five continents, vol. VII. Iarc Scientific Publications, France, pp. i–xxxiv, 1–1240

    Google Scholar 

  • IARC (2000) GLOBOCAN 2000: Cancer Incidence, Mortality and Prevalence. Worldwide: International Agency for Research on Cancer (IARC), Oxford

    Google Scholar 

  • Ishikawa H, Akedo I, Otani T, Suzuki T, Nakamura T, Takeyama I, Ishiguro S, Miyaoka E, Sobue T, Kakizoe T (2005) Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. Int J Cancer 116:762–767

    CAS  Google Scholar 

  • Jacobsen H, Poulsen M, Dragsted LO, Ravn-Haren G, Meyer O, Lindecrona RH (2006) Carbohydrate digestibility predicts colon carcinogenesis in azoxymethane-treated rats. Nutr Cancer 55(2):163–170

    CAS  Google Scholar 

  • Kajander K, Krogius-Kurikka L, Rinttilä T, Karjalainen H, Palva A, Korpela R (2007) Effects of multispecies probiotic supplementation on intestinal microbiota in irritable bowel syndrome. Aliment Pharmacol Ther 26(3):463–473

    CAS  Google Scholar 

  • Kampman E, Giovanucci P, Rimm E, Stampfer MJ, Colditz GA, Kok FJ, Willett WC (1994a) Calcium, vitamin D, dairy foods, and the occurrence of colorectal adenomas among men and women in two prospective studies. Am J Epidem 139:16–29

    CAS  Google Scholar 

  • Kampman E, van’t Veer P, Hiddink GJ, van Aken-Schneijder P, Kok FJ, Hermus RJ (1994b) Fermented dairy products, dietary calcium and colon cancer: a case-control study in the Netherlands. Int J Cancer 59:170–176

    CAS  Google Scholar 

  • Kennedy RJ, Hoper M, Weir H (2000) Probiotic therapy stabilizes the gut mucosal barrier in the IL10 knockout mouse model of ulcerative colitis (abstract). Br J Surg 87:699

    Google Scholar 

  • Klinder A, Förster A, Caderni G, Femia AP, Pool-Zobel BL (2004) Fecal water genotoxicity is predictive of tumor-preventive activities by inulin-like oligofructoses, probiotics (Lactobacillus rhamnosus and Bifidobacterium lactis), and their synbiotic combination. Nutr Cancer 49(2):144–155

    CAS  Google Scholar 

  • Koller VJ, Marian B, Stidl R, Nersesyan A, Winter H, Simić T, Sontag G, Knasmüller S (2008) Impact of lactic acid bacteria on oxidative DNA damage in human derived colon cells. Food Chem Toxicol 46(4):1221–1229

    CAS  Google Scholar 

  • Kulkarni N, Reddy BS (1994) Inhibitory effect of Bifidobacterium longum cultures on the azoxymethane induced aberrant crypt foci formation and fecal bacterial β-glucuronidase. Proc Soc Exp Biol Med 207:278–283

    CAS  Google Scholar 

  • Lee NK, Park JS, Park E, Paik HD (2007) Adherence and anticarcinogenic effects of Bacillus polyfermenticus SCD in the large intestine. Lett Appl Microbiol 44(3):274–278

    Google Scholar 

  • Le Leu RK, Brown IL, Hu Y, Bird AR, Jackson M, Esterman A, Young GP (2005) A synbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen-damaged cells in rat colon. J Nutr 135:996–1001

    CAS  Google Scholar 

  • Li W, Li CB (2003) Lack of inhibitory effects of lactic acid bacteria on 1,2-dimethylhydrazine-induced colon tumors in rats. World J Gastroenterol 9(11):2469–2473

    Google Scholar 

  • Lidbeck A, Geltner Allinger U, Orrhage KM, Ottova L, Brismar B, Gustafsson JA, Rafter JJ, Nord CE (1991) Impact of Lactobacillus acidophilus supplements on the fecal microflora and soluble fecal bile acids in colon cancer patients. Microb Ecol Health Dis 4:81–88

    Google Scholar 

  • Lidbeck A, Nord CE, Gustafsson JA, Rafter J (1992) Lactobacilli, anticarcinogenic activities and human intestinal microflora. Eur J Cancer Prev 1:341–353

    CAS  Google Scholar 

  • Lo PR, Yu RC, Chou CC, Huang EC (2004) Determinations of the antimutagenic activities of several probiotic bifidobacteria under acidic and bile conditions against benzo[a]pyrene by a modified Ames test. Int J Food Microbiol 93(2):249–257

    CAS  Google Scholar 

  • Macfarlane GT, Gibson G (1995) Microbiological aspects of the production of short chain fatty acids in the large bowel. In: Cummings JH, Rombeau JL, Sakata T (eds) Physiological and clinical aspects of short chain fatty acids. University Press, Cambridge, pp. 87–107

    Google Scholar 

  • Madrigal-Santillán E, Madrigal-Bujaidar E, Márquez-Márquez R, Reyes A (2006) Antigenotoxic effect of Saccharomyces cerevisiae on the damage produced in mice fed with aflatoxin B1 contaminated corn. Food Chem Toxicol 44(12):2058–2063

    Google Scholar 

  • Mallett AK, Rowland IR (1988) Factors affecting the gut microflora. In: Rowland IR (ed) Role of the gut flora in toxicity and cancer. Academic Press, London, pp. 347–382

    Google Scholar 

  • Marotta F, Naito Y, Minelli E, Tajiri H, Bertuccelli J, Wu CC, Min CH, Hotten P, Fesce E (2003) Chemopreventive effect of a probiotic preparation on the development of preneoplastic and neoplastic colonic lesions: an experimental study. Hepatogastroenterology 50(54):1914–1918

    CAS  Google Scholar 

  • Marteau P, Pochart P, Flourie B, Pellier P, Santos L, Desjeux J-F, Rambaud J-C (1990) Effect of chronic ingestion of a fermented dairy product containing Lactobacillus acidophilus and Bifidobacterium bifidum on metabolic activities of the colonic flora in humans. Am J Clin Nutr 52:685–688

    CAS  Google Scholar 

  • Marteau P, Vaerman JP, Dehennin JP, Bord S, Brassart D, Pochart P, Desjeux JF, Rambeau JC (1997) Effects of intrajejunal perfusion and chronic ingestion of Lactobacillus johnsonii strain La1 on serum concentrations and jejunal secretions of immunoglobulins and serum proteins in healthy humans. Gastroenterol Clin Biol 21:293–298

    CAS  Google Scholar 

  • Massey RC, Key PE, Mallett AK, Rowland IR (1988) An investigation of the endogenous formation of apparent total N-nitroso compounds in conventional microflora and germ-free rats. Food Chem Toxicol 26:595–600

    CAS  Google Scholar 

  • Matsuzaki T, Chin J (2000) Modulating immune responses with probiotic bacteria, immunol. Cell Biol 78:67–73

    CAS  Google Scholar 

  • McIntosh GH, Royle PJ, Playne MJ (1999) A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male Sprague-Dawley rats. Nutr Cancer 35:153–159

    CAS  Google Scholar 

  • de Moreno de LeBlanc A, Perdigón G (2005) Reduction of beta-glucuronidase and nitroreductase activity by yoghurt in a murine colon cancer model. Biocell 1:15–24

    Google Scholar 

  • Morotomi M, Mutai M (1986) In vitro binding of potent mutagenic pyrolyzates to intestinal bacteria. J Natl Cancer Inst 77:195–201

    CAS  Google Scholar 

  • Mutanen M, Pajari AM, Oikarinen SI (2000) Beef induces and rye bran prevents the formation of intestinal polyps in Apc(Min) mice: relation to beta-catenin and PKC isozymes. Carcinogenesis 21:1167–1173

    CAS  Google Scholar 

  • Nagao F, Nakayama M, Muto T, Okomura K (2000) Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the immune system in healthy human subjects. Biosci Biotechnol Biochem 64:2706–2708

    CAS  Google Scholar 

  • Nakanishi S, Kataoka K, Kuwahara T, Ohnishi Y (2003) Effects of high amylose maize starch and Clostridium butyricum on metabolism in colonic microbiota and formation of azoxymethane-induced aberrant crypt foci in the rat colon. Microbiol Immunol 47(12):951–958

    CAS  Google Scholar 

  • Nersesyan A (2001) Antigenotoxic action of “Narine” Lactobacilli in rat colon cells in vitro. Exp Oncol 23:297–298

    Google Scholar 

  • Oberreuther-Moschner DL, Jahreis G, Rechkemmer G, Pool-Zobel BL (2004) Dietary intervention with the probiotics Lactobacillus acidophilus 145 and Bifidobacterium longum 913 modulates the potential of human fecal water to induce damage in HT29clone19A cells. Br J Nutr 91(6):925–932

    CAS  Google Scholar 

  • Ohkawara S, Furuya H, Nagashima K, Asanuma N, Hino T (2005) Oral administration of butyrivibrio fibrisolvens, a butyrate-producing bacterium, decreases the formation of aberrant crypt foci in the colon and rectum of mice. J Nutr 135(12):2878–2883

    CAS  Google Scholar 

  • Orrhage K, Sillerstrom E, Gustafsson J-Å, Nord CE, Rafter J (1994) Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat Res 311:239–248

    CAS  Google Scholar 

  • Ouwehand AC, Lagström H, Suomalainen T, Salminen S (2002) Effect of probiotics on constipation, fecal azoreductase activity and fecal mucin content in the elderly. Ann Nutr Metab 46(3–4):159–162

    CAS  Google Scholar 

  • Pajari AM, Rajakangas J, Päivärinta E, Kosma VM, Rafter J, Mutanen M (2003) Promotion of intestinal tumor formation by inulin is associated with an accumulation of cytosolic beta-catenin in Min mice. Int J Cancer 106:653–660

    CAS  Google Scholar 

  • Park E, Jeon GI, Park JS, Paik HD (2007) A probiotic strain of Bacillus polyfermenticus reduces DMH induced precancerous lesions in F344 male rat. Biol Pharm Bull 30(3):569–574

    CAS  Google Scholar 

  • Pawłowska J, Klewicka E, Czubkowski P, Motyl I, Jankowska I, Libudzisz Z, Teisseyre M, Gliwicz D, Cukrowska B (2007) Effect of Lactobacillus casei DN-114001 application on the activity of fecal enzymes in children after liver transplantation. Transplant Proc 39(10):3219–3221

    Google Scholar 

  • Perdigon G, Valdez JC, Rachid M (1998) Antitumour activity of yoghurt: study of possible immune mechanisms. J Dairy Res 65:129–138

    CAS  Google Scholar 

  • Perrin P, Pierre F, Patry Y, Champ M, Berreur M, Pradal G, Bornet F, Meflah K, Menanteau J (2001) Only fibres promoting a stable butyrate producing colonic ecosystem decrease the rate of aberrant crypt foci in rats. Gut 48:53–61

    CAS  Google Scholar 

  • Peters RK, Pike MC, Garabrant D, Mack TM (1992) Diet and colon cancer in Los Angeles County, California. Cancer Cause Control 3:457–473

    CAS  Google Scholar 

  • Pierre F, Perrin P, Champ M, Bornet F, Meflah K, Menanteau J (1997) Short-chain fructo-oligosaccharides reduce the occurrence of colon tumours and develop gut associated lymphoid tissue in Min mice. Cancer Res 57:225–228

    CAS  Google Scholar 

  • Ponz de Leon M, Roncucci L (2000) The cause of colorectal cancer. Dig Liver Dis 32:426–439

    CAS  Google Scholar 

  • Pool-Zobel BL, Munzner R, Holzaapfel H (1993) Antigenotoxic properties of lactic acid bacteria in the S. typhimurium Mutagenicity assay. Nutr Cancer 20:261–270

    CAS  Google Scholar 

  • Pool-Zobel BL, Neudecker C, Domizlaff I, Ji S, Schillinger U, Rumney C, Moretti M, Vilarini I, Scasellati-Sforzolini R, Rowland IR (1996) Lactobacillus and Bifidobacterium mediated antigenotoxicity in the colon of rats. Nutr Cancer 26:365–380

    CAS  Google Scholar 

  • Poulsen M, Mølck AM, Jacobsen BL (2002) Different effects of short- and long-chained fructans on large intestinal physiology and carcinogen-induced aberrant crypt foci in rats. Nutr Cancer 42(2):194–205

    CAS  Google Scholar 

  • de Preter V, Vanhoutte T, Huys G, Swings J, Rutgeerts P, Verbeke K (2008) Baseline microbiota activity and initial bifidobacteria counts influence responses to prebiotic dosing in healthy subjects. Aliment Pharmacol Ther 27(6):504–513

    CAS  Google Scholar 

  • Pretlow TP, O’Riordan MA, Somitch GA, Amini SB, Pretlow TG (1992) Aberrant crypts correlate with tumour incidence in F344 rats treated with azoxymethane and phytate. Carcinogenesis 13:1509–1512

    CAS  Google Scholar 

  • Rafter J, Bennett M, Caderni G, Clune Y, Hughes R, Karlsson PC, Klinder A, O’Riordan M, O’Sullivan GC, Pool-Zobel B, Rechkemmer G, Roller M, Rowland I, Salvadori M, Thijs H, Van Loo J, Watzl B, Collins JK (2007) Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr 85(2):488–496

    CAS  Google Scholar 

  • Raipulis J, Toma MM, Semjonovs P (2005) The effect of probiotics on the genotoxicity of furazolidone. Int J Food Microbiol 102(3):343–347

    CAS  Google Scholar 

  • Rao CV, Chou D, Simi B, Ku H, Reddy BS (1998) Prevention of colonic aberrant crypt foci and modulation of large bowel microbial activity by dietary coffee fiber, inulin and pectin. Carcinogenesis 19:1815–1819

    CAS  Google Scholar 

  • Reddy BS, Narisawa T, Wright P, Vukusich D, Weisburger JH, Wynder EL (1975) Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res 35:287–290

    CAS  Google Scholar 

  • Reddy BS, Rivenson A (1993) Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo[4,5,-f]quinoline, a food mutagen. Cancer Res 53:3914–3918

    CAS  Google Scholar 

  • Reddy BS, Hamid R, Rao CV (1997) Effect of dietary oligofructose and inulin on colonic preneoplastic aberrant crypt foci inhibition. Carcinogenesis 18:1371–1374

    CAS  Google Scholar 

  • Roller M, Femia AP, Caderni G, Rechkemmer G, Watzl B (2004) Intestinal immunity of rats with colon cancer is modulated by oligofructose-enriched inulin combined with Lacobacillus rhamnosus and Bifidobacterium lactis. Br J Nutr 92:931–938

    CAS  Google Scholar 

  • Rowland IR, Tanaka R (1993) The effects of transgalactosylated oligosaccharides on gut flora metabolism in rats associated with a human fecal microflora. J Appl Bact 74:667–674

    CAS  Google Scholar 

  • Rowland IR, Bearne CA, Fischer R, Pool-Zobel BL (1996) The effect of lactulose on DNA damage induced by DMH in the colon of human flora associated rats. Nutr Cancer 26:37–47

    CAS  Google Scholar 

  • Rowland IR (1995) Toxicology of the colon – role of the intestinal microflora. In: Macfarlane GT, Gibson G (ed) Human colonic bacteria, role in nutrition, physiology and pathology. CRC Press, Boca Raton, FL, pp. 155–174

    Google Scholar 

  • Rowland IR, Rumney CJ, Coutts JT, Lievense LC (1998) Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 19:281–285

    CAS  Google Scholar 

  • Rowland IR, Gangolli SD (1999) Role of gastrointestinal flora in the metabolic and toxicological activities of xenobiotics. In: Ballantyne B, Marrs TC, Syverson T (eds) General and applied toxicology, 2nd edn. Macmillan Publishers Ltd., London, pp. 561–576

    Google Scholar 

  • Rowland IR (2008) The role of the gastrointestinal microflora in colorectal cancer. Current Pharmaceutical Design 15 (in press)

    Google Scholar 

  • Rumney CJ, Rowland IR, Coutts TM, Randerath K, Reddy R, Shah AB, Ellul A, O’Neill IK (1993) Effects of risk-associated human dietary macrocomponents on processes related to carcinogenesis in human-flora-associated (HFA) rats. Carcinogenesis 14:79–84

    CAS  Google Scholar 

  • Saito Y, Takano T, Rowland IR (1992) Effects of soybean oligosaccharides on the human gut microflora in in vitro culture. Microb Ecol Health Dis 5:105–110

    Google Scholar 

  • Schiffrin E, Rochat F, link-Amster H, Aeschlimann J, Donnet-Hughes A (1996) Immunomodulation of blood cells following ingestion of lactic acid bacteria. J Dairy Sci 78:491–497

    Google Scholar 

  • Shih IM, Wang TL, Traverso G, Romans K, Hamilton SR, Ben-sasson A, Kinzler KW, Vogelstein B (2001) Top-down morphogenesis of colorectal tumors. Proc Natl Acad Sci USA 98:2640–2645

    CAS  Google Scholar 

  • Spanhaak S, Havenaar R, Schaafsma G (1998) The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur J Clin Nutr 52:899–907

    CAS  Google Scholar 

  • Takagi A, Takeshi M, Sato M, Nomoto K, Morotomi M, Yokokura T (2001) Enhancement of natural killer cell cytotoxicity delayed murine carcinogenesis by a probiotic microorganism. Carcinogenesis 22:599–605

    CAS  Google Scholar 

  • Sung HY, Choi YS (2008) Fructooligosaccharide and soy isoflavone suppress colonic aberrant crypt foci and cyclooxygenase-2 expression in dimethylhydrazine-treated rats. J Med Food 11(1):78–85

    CAS  Google Scholar 

  • Takeuchi H, Maehara Y, Tokunaga E, Koga T, Kakeji Y, Sugimachi K (2001) Prognostic significance of natural killer cell activity in patients with gastric carcinoma: A multivariate analysis. Am J Gastroenterol 96:574–578

    CAS  Google Scholar 

  • Tanaka R, Takayama H, Morotomi M, Kuroshima T, Ueyama S, Matsumoto K, Kuroda A, Mutai M (1983) Effects of administration of TOS and Bifidobacterium breve 4006 on the human fecal flora. Bifidobacteria Microflora 2:17–24

    CAS  Google Scholar 

  • Taper HS, Roberfroid M (1999) Influence of inulin and oligofructose on breast cancer and tumor growth. J Nutr 129:1488S–1491S

    CAS  Google Scholar 

  • Taper HS, Roberfroid MB (2005) Possible adjuvant cancer therapy by two prebiotics – inulin or oligofructose. In vivo. 19(1):201–4

    CAS  Google Scholar 

  • Toma MM, Raipulis J, Kalnina I, Rutkis R (2005) Does probiotic act as a Genotoxicin. Food Technol Biotechnol 43(3):301–305

    CAS  Google Scholar 

  • Tokunga T, Oku T, Hoysoya N (1986) Influence of chronic intake of new sweetener fructooligosaccharide (Neosugar) on growth and gastrointestinal function of the rat. J Nutr Sci Vitaminol 32:111–121

    Google Scholar 

  • Venturi M, Hambly RJ, Glinghammar B, Rafter JJ, Rowland IR (1997) Genotoxic activity in human fecal water and the role of bile acids: a study using the alkaline comet assay. Carcinogenesis 18:2353–2359

    CAS  Google Scholar 

  • Van’t Veer P, Dekker JM, Lamers JWJ, Kok FJ, Schouten EG, Brants HAM, Sturmans F, Hermus RJJ (1989) Consumption of fermented milk products and breast cancer: a case-control study in the Netherlands. Cancer Res 49:4020–4023

    Google Scholar 

  • Verghese M, Rao DR, Chawan CB, Shackelford L (2002b) Dietary inulin suppresses azoxymethane-induced preneoplastic aberrant crypt foci in mature Fisher 344 rats. J Nutr 132(9):2804–2808

    CAS  Google Scholar 

  • Verghese M, Rao DR, Chawan CB, Williams LL, Shackelford L (2002a) Dietary inulin suppresses azoxymethane-induced aberrant crypt foci and colon tumors at the promotion stage in young Fisher 344 rats. J Nutr 132(9):2809–2813

    CAS  Google Scholar 

  • Villarini M, Caldini G, Moretti M, Trotta F, Pasquini R, Cenci G (2008) Modulatory activity of a Lactobacillus casei strain on 1,2-dimethylhydrazine-induced genotoxicity in rats. Environ Mol Mutagen 49(3):192–199

    CAS  Google Scholar 

  • World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the preventionof cancer: a global perspective. AICR: Washington, DC

    Google Scholar 

  • Yamazaki K, Tsunoda A, Sibusawa M, Tsunoda Y, Kusano M, Fukuchi K, Yamanaka M, Kushima M, Nomoto K, Morotomi M (2000) The effect of an oral administration of Lactobacillus casei strain shirota on azoxymethane-induced colonic aberrant crypt foci and colon cancer in the rat. Oncol Rep 7(5):977–982

    CAS  Google Scholar 

  • Yokokura T (1994) Antitumour and immunostimulating activity of Lactobacillus casei. Jpn Dairy Food Sci 43:A141–A150

    Google Scholar 

  • Young TB, Wolf DA (1988) Case-control study of proximal and distal colon cancer and diet in Wisconsin. Int J Cancer 42:167–175

    CAS  Google Scholar 

  • Zhang XB, Ohta Y, Hosono A (1990) Antimutagenicity and binding of lactic acid bacteria from a Chinese cheese to mutagenic pyrolyzates. J Dairy Sci 73:2702–2710

    CAS  Google Scholar 

  • Zhang XB, Ohta Y (1991) In vitro binding of mutagenic pyrolyzates to lactic acid bacterial cells in human gastric juice. J Dairy Sci 74:752–757

    CAS  Google Scholar 

  • Zhang XB, Ohta Y (1993) Microorganisms in the gastrointestinal tract of the rat prevent absorption of the mutagen-carcinogen 3-amino-1,4-dimethyl-5H-pyrido(4,3-b)indole. Can J Microbiol 39:841–845

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Allsopp, P., Rowland, I. (2009). Potential Protective Effects of Probiotics and Prebiotics Against Colorectal Cancer. In: Charalampopoulos, D., Rastall, R.A. (eds) Prebiotics and Probiotics Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79058-9_26

Download citation

Publish with us

Policies and ethics