Skip to main content

Biomedical Applications of Nanoparticles

  • Chapter
  • First Online:
Safety of Nanoparticles

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Nanomaterials hold immense promise for significantly improving existing diagnosis, therapy and designing novel approaches to treat a variety of human ailments. While some of the applications of nanotechnology have been translated into clinical settings, many more potential uses of nanomedicines have been demonstrated in experimental systems. Since a variety of materials can be nanosized, the scope of nanomedicine is also large and may even become larger. At the same time, the impact of nanomaterials on cellular and animal models will need to be carefully evaluated under both acute and chronic exposures at toxicological and pharmacological doses. It is extremely important to evaluate the basic issues such as the fate of nanomaterials in biological systems, and how the cells and tissues react to the exposure of nanomaterials in developing nanomedicines. This chapter will cover some of these promises and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bosi S, Da Ros T, Spalluto G, Prato, M (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38:913–23.

    Article  CAS  Google Scholar 

  2. Brannon-Peppas L, Blanchette, JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659.

    Article  CAS  Google Scholar 

  3. Corot C, Robert P, Idee J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504.

    Article  CAS  Google Scholar 

  4. Emerich DF, Thanos CG (2006) The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 23:171–184.

    Article  CAS  Google Scholar 

  5. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976.

    Article  CAS  Google Scholar 

  6. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353.

    Article  CAS  Google Scholar 

  7. Lacerda L, Bianco A, Prato M, Kostarelos, K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58:1460–1470.

    Article  CAS  Google Scholar 

  8. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330.

    Article  CAS  Google Scholar 

  9. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648.

    Article  CAS  Google Scholar 

  10. Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123–126:471–485.

    Article  Google Scholar 

  11. Freitas RA Jr (1999) Nanomedicine, volume I: basic capabilities, 1st edn. Landes Bioscience, Georgetown, TX.

    Google Scholar 

  12. Freitas RA Jr (2003) Nanomedicine, voulme iia: biocompatibility, 1st edn. Landes Bioscience, Georgetown, TX.

    Google Scholar 

  13. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 113:823–839.

    Article  CAS  Google Scholar 

  14. Jensen AW, Maru BS, Zhang X, Mohanty DK, Fahlman BD, Tomalia DA (2005) Preparation of fullerene-shell dendrimer-core nanoconjugates. Nano Lett 5:1171–1173.

    Article  CAS  Google Scholar 

  15. Dresselhaus MS, Dresselhaus G, Eklund, PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San Diego, CA.

    Google Scholar 

  16. Tabata Y, Murakami Y, Ikada Y (1997) Antitumor effect of poly(ethylene glycol)modified fullerene. Fullerene Sci Technol 5:989–1007.

    Article  CAS  Google Scholar 

  17. Tsao N, Kanakamma PP, Luh T-Y, Chou C-K, Lei H-Y (1999) Inhibition of escherichia coli-induced meningitis by carboxyfullerence. Antimicrob Agents Chemother 43:2273–2277.

    CAS  Google Scholar 

  18. Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K, Nakahara H, Enomoto S, Ambe F (1995) In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 2:385–389.

    Article  CAS  Google Scholar 

  19. Ali SS, Hardt JI, Quick KL, Kim-Han JS, Erlanger BF, Huang TT, Epstein CJ, Dugan LL (2004) A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Biol Med 37:1191–1202.

    Article  CAS  Google Scholar 

  20. Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, Shen CK-F, Luh T-Y, Choi DW, Lin T-S (1997) Carboxyfullerenes as neuroprotective agents. PNAS 94:9434–9439.

    Article  CAS  Google Scholar 

  21. Fumelli C, Marconi A, Salvioli S, Straface E, Malorni W, Offidani AM, Pellicciari R, Schettini G, Giannetti A, Monti D, Franceschi C, Pincelli C (2000) Carboxyfullerenes protect human keratinocytes from ultraviolet-B-induced apoptosis. J Invest Dermatol 115:835–841.

    Article  CAS  Google Scholar 

  22. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60] fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5, 2578–2585.

    Article  CAS  Google Scholar 

  23. Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O'Regan RM (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. The Lancet Oncol 7:657–667.

    Article  CAS  Google Scholar 

  24. Tagmatarchis N, Shinohara H (2001) Fullerenes in medicinal chemistry and their biological applications. Mini Rev Med Chem 1:339–348.

    Article  CAS  Google Scholar 

  25. Zakharian TY, Seryshev A, Sitharaman B, Gilbert BE, Knight V, Wilson LJ (2005) A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J Am Chem Soc 127:12508–12509.

    Article  CAS  Google Scholar 

  26. Toth E, Bolskar RD, Borel A, Gonzalez G, Helm L, Merbach AE, Sitharaman B, Wilson LJ (2005) Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 127:799–805.

    Article  CAS  Google Scholar 

  27. Katz E, Willner I (2004) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. Chem phys chem 5:1084–1104.

    Article  CAS  Google Scholar 

  28. Bianco A, Hoebeke J, Kostarelos K, Prato M, Partidos CD (2005) Carbon nanotubes: on the road to deliver. Curr Drug Deliv 2:253–259.

    Article  CAS  Google Scholar 

  29. Klumpp C, Kostarelos K, Prato M, Bianco A (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 1758:404–412.

    Article  CAS  Google Scholar 

  30. Ziegler KJ (2005) Developing implantable optical biosensors. Trends Biotechnol 23:440–444.

    Article  CAS  Google Scholar 

  31. Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes Nat Mater 4:86–92.

    CAS  Google Scholar 

  32. Shi Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. PNAS 102: 11600–11605.

    Article  Google Scholar 

  33. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76.

    Article  CAS  Google Scholar 

  34. Courty S, Bouzigues C, Luccardini C, Ehrensperger M, Bonneau S, Dahan M, James I (2006) Tracking individual proteins in living cells using single quantum dot imaging. In “Methods in Enzymology”, Academic Press.

    Google Scholar 

  35. Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga, S (2006) Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol 19:1181–1191.

    Article  CAS  Google Scholar 

  36. Pittet MJ, Swirski FK, Reynolds F, Josephson L, Weissleder R (2006) Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protocols 1:73–79.

    Article  CAS  Google Scholar 

  37. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021.

    Article  CAS  Google Scholar 

  38. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160.

    Article  CAS  Google Scholar 

  39. Hoet PH, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles – known and unknown health risks. J Nanobiotechnol 2:12.

    Article  Google Scholar 

  40. Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, Part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50.

    Article  CAS  Google Scholar 

  41. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627.

    Article  CAS  Google Scholar 

  42. Levi N, Hantgan R, Lively M, Carroll D, Prasad G (2006) C60-Fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J Nanobiotechnol 4:14.

    Article  Google Scholar 

  43. Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20:1202–1212.

    Article  CAS  Google Scholar 

  44. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172.

    Article  Google Scholar 

  45. Sun R, Dittrich J, Le-Huu M, Mueller MM, Bedke J, Kartenbeck J, Lehmann WD, Krueger R, Bock M, Huss R, Seliger C, Grone HJ, Misselwitz B, Semmler W, Kiessling F (2005) Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison. Invest Radiol 40:504–513.

    Article  Google Scholar 

  46. Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 152:167–173.

    CAS  Google Scholar 

  47. Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, Weisman, RB (2006) Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA 103: 18882–18886.

    Article  CAS  Google Scholar 

  48. Xia XR, Monteiro-Riviere NA, Riviere JE (2006) Trace analysis of fullerenes in biological samples by simplified liquid-liquid extraction and high-performance liquid chromatography. J Chromatogr A 1129:216–222.

    Article  CAS  Google Scholar 

  49. Shi Kam NW, Jessop TC, Wender PA, Dai H. (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. J Am Chem Soc 126:6850–6851.

    Article  Google Scholar 

  50. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668.

    Article  CAS  Google Scholar 

  51. Garnett MC, Kallinteri P (2006) Nanomedicines and nanotoxicology: some physiological principles. Occup Med (Lond) 56:307–311.

    Article  CAS  Google Scholar 

  52. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 103:3357–3362.

    Article  CAS  Google Scholar 

  53. O’Brien MER, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, Catane R, Kieback DG, Tomczak P, Ackland SP, Orlandi F, Mellars L, Alland L, Tendler C (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYXTM/Doxil(R)) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15:440–449.

    Article  Google Scholar 

  54. Moreno-Aspitia A, Perez EA (2005) Nanoparticle albumin-bound paclitaxel (ABI-007): a newer taxane alternative in breast cancer. Future Oncol 1:755–762.

    Article  CAS  Google Scholar 

  55. Pathak P, Prasad GL, Meziani MJ, Joudeh AA, Sun, YP (2007) Nanosized paclitaxel particles from supercritical carbon dioxide processing and their biological evaluation. Langmuir 23:2674–2679.

    Article  CAS  Google Scholar 

  56. Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3:33–40.

    CAS  Google Scholar 

  57. Raj NKK, Sharma CP (2003) Oral insulin – a perspective. J Biomater Appl 17:183–196.

    Article  CAS  Google Scholar 

  58. Higaki M, Kameyama M, Udagawa M, Ueno Y, Yamaguchi Y, Igarashi R, Ishihara T, Mizushima Y (2006) Transdermal delivery of CaCO3-nanoparticles containing insulin. Diabetes Technol Ther 8:369–374.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Dr. Linda Knight, Professor of Diagnostic Imaging at Temple University School of Medicine, for critical reading and helpful suggestions with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Prasad, G.L. (2009). Biomedical Applications of Nanoparticles. In: Webster, T. (eds) Safety of Nanoparticles. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78608-7_5

Download citation

Publish with us

Policies and ethics