Skip to main content

Proposed Uses of Transposons in Insect and Medical Biotechnology

  • Chapter
Transgenesis and the Management of Vector-Borne Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 627))

  • 1587 Accesses

Abstract

Transposons are small pieces of DNA that can transpose through either RNA or DNA intermediates. They have been found in almost all organisms and are important components of the evolutionary process at the chromosomal level. They have provided the raw genetic material that has produced domesticated genes that now provide important cellular functions and are now being explored as genetic tools in both humans and insects that vector human pathogens. Here I compare the requirements for both insect and human gene therapy and discuss the similarities between them in terms of transposon performance. Recent progress in understanding transposon function in terms of transposase structure is described as is the rapidly emerging role of RNAi in generic transposon regulation. These developments reinforce the view that, autonomous, transposon behavior in host organisms is, in part, determined by the nuclear and cellular environment of the cell and these factors need to be considered when developing transposons as therapeutic agents either in humans or in insects that vector human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Volff JN. Turning junk into gold: Domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 2006; 28:913–22.

    Article  PubMed  CAS  Google Scholar 

  2. Britten R. Transposable elements have contributed to thousands of human proteins. Proc Natl Acad Sci USA 2005; 103:1798–803.

    Article  Google Scholar 

  3. Zhou L, Mitra R, Atkinson PW et al. Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 2004; 432:995–1001.

    Article  PubMed  CAS  Google Scholar 

  4. Kapitonov VV, Jurka J. RAG1 core and V(D)J recombination signal sequnces were derived from Transib transposons. PLoS Biol 2005; 3:e181.

    Article  PubMed  Google Scholar 

  5. Lorenzen MD, Berghammer AJ, Brown SJ et al. piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol Biol 2003; 12:433–40.

    Article  PubMed  CAS  Google Scholar 

  6. Ding S, Wu X, Li G et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 2005; 122(473–483).

    Article  PubMed  CAS  Google Scholar 

  7. Collier LS, Carlson CM, Ravimohan S et al. Cancer gene discovery in solid tumors using transposon-based somatic mutagenesis in the mouse. Nature 2005; 436:272–6.

    Article  PubMed  CAS  Google Scholar 

  8. Koga A, Iida A, Kamiya M et al. The medaka fish Tol2 transposable element can undergo excision in human and mouse cells. J Hum Genet 2003; 48:231–5.

    Article  PubMed  CAS  Google Scholar 

  9. Wilson MH, Coates CJ, George ALJ. PiggyBac transposon-mediated gene transfer in human cells. Molecular Therapy 2007; 15:139–45.

    Article  PubMed  CAS  Google Scholar 

  10. Bainton RJ, Kubo KM, Feng JN et al. Tn7 transposition: Target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 1993; 72:931–43.

    Article  PubMed  CAS  Google Scholar 

  11. Craig NL. Tn7: A target site-specific transposon. Mol Microbiol 1991; 5:2569–73.

    Article  PubMed  CAS  Google Scholar 

  12. Hackett PB, Ekker SC, Largaespada DA et al. Sleeping Beauty transposon-mediated gene therapy for prolonged expression. Adv Genet 2005; 55:189–232.

    Article  Google Scholar 

  13. Geurts AM, Yang Y, Clark KJ et al. Gene transfer into genomes of human cells by the Sleeping Beauty transposon system. Mol Ther 2003; 8:108–17.

    Article  PubMed  CAS  Google Scholar 

  14. Maragathavally KJ, Kaminski JM, Coates CJ. Chimeric Mosl and piggyBac transposases result in site-specific integration. FASEB J 2006; 20:fj.05–05485fje.

    Article  Google Scholar 

  15. Huang X, Wilber AC, Bao L et al. Stable gene transfer and expression in human primary T cells by the Sleeping Beauty transposon system. Blood 2006; 107:483–91.

    Article  PubMed  CAS  Google Scholar 

  16. Belur LR, Frandsen JL, Dupuy AJ et al. Gene insertion and long-term expression in lung mediated by the Sleeping Beauty transposon system. Mol Ther 2003; 8:501–7.

    Article  PubMed  CAS  Google Scholar 

  17. Bushman FD, Miller MD. Tethering human immunodeficiency virus type I preintegration complexes to target DNA promotes integration at nearby sites. J Virol 1997; 71:458–64.

    PubMed  CAS  Google Scholar 

  18. Houwing S, Kamminga LM, Berezikov E et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 2007; 129:69–82.

    Article  PubMed  CAS  Google Scholar 

  19. Brennecke JB, Aravin AA, Stark A et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007; 128:1089–103.

    Article  PubMed  CAS  Google Scholar 

  20. Robertson HM, Preston CR, Phillis RW et al. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 1988; 118:461–70.

    PubMed  CAS  Google Scholar 

  21. Kapetanaki MG, Loukeris TG, Livadaris I et al. High frequencies of Minos transposon mobilization are obtained in insects by using in vitro synthesized mRNA as a source of transposase. Nucleic Acids Res 2002; 30:3333–40.

    Article  PubMed  CAS  Google Scholar 

  22. Nimmo DD, Alphey L, Meredith JM et al. High efficiency site-specific engineering of the mosquito genome. Insect Mol Biol 2006; 15:129–36.

    Article  PubMed  CAS  Google Scholar 

  23. Coates CJ, Jasinskiene N, Morgan D et al. Purified mariner (Mosl) transposase catalyzes the integration of marked elements into the herm line of the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 2000; 30(11): 1003–8.

    Article  PubMed  CAS  Google Scholar 

  24. Perez ZN, Musingarmi P, Craig NL et al. Purification, crystallization and preliminary crystallographic analysis of the Hermes transposase. Acta Crystallograph Sect F Struct Biol Cryst Commun 2005; 61(pt 6):587–90.

    Article  Google Scholar 

  25. Davies DR, Goryshin IY, Reznikoff WS et al. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 2000; 289:77–85.

    Article  PubMed  CAS  Google Scholar 

  26. Reznikoff WS. Tn5 transpositon: A molecular tool for studying protein structure-function. Biochemical Society Transactions 2006; 34:320–3.

    Article  PubMed  CAS  Google Scholar 

  27. Richardson JM, Dawson A, O’hagan N et al. Mechanism of Mosl transposition: Insights from structural analysis. EMBO J 2006; 25:1324–34.

    Article  PubMed  CAS  Google Scholar 

  28. Sato S, Sasagawa A, Tochio N et al. Solution structures of the C2H2 type zinc finger domain of human zinc finger BED domain containing protein 2. Protein Data Bank 2005; 2DJR:DOI 10.2210/pdb2djr/pdb.

    Google Scholar 

  29. Lampe DJ, Akerley BJ, Rubin EJ et al. Hyperactive transposase mutants of the Himarl mariner transposon. Proc Natl Acad Sci USA 1999; 96(20): 11428–33.

    Article  PubMed  CAS  Google Scholar 

  30. Butler MG, Chakraborty SA, JLD. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition. Genetica 2006; 127:351–66.

    Article  PubMed  CAS  Google Scholar 

  31. Pledger DW, Coates CJ. Mutant Mosl mariner transposons are hyperactive in Aedes aegypti.. Insect Biochem Mol Biol 2005; 35:1199–207.

    Article  PubMed  CAS  Google Scholar 

  32. Matthews AG, Elkin SK, Oettinger MA. Ordered DNA release and target capture in RAG transposition. EMBO J 2004; 23:1198–206.

    Article  PubMed  CAS  Google Scholar 

  33. Liu G, Geurts AM, Yae K et al. Target-site preferences of Sleeping Beauty transposons. J Mol Biol 2005; 346:161–73.

    Article  PubMed  CAS  Google Scholar 

  34. Handler AM, Zimowska GJ, Horn C. Post-inetgration stabilization of a transposon vector by terminal sequence deleton in Drosophila melanogaster. Nat Biotechnol 2004; 22:1150–4.

    Article  PubMed  CAS  Google Scholar 

  35. Dafa’alla TH, Condon GC, Condon KC et al. Transposon-free insertions for insect genetic engineering. Nat Biotech 2006; 24:820–1.

    Article  CAS  Google Scholar 

  36. Pelisson A, Song SU, Prud’homme N et al. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J 1994; 13:4401–11.

    PubMed  CAS  Google Scholar 

  37. Kalmykova AI, Klenov MS, Gvozdev V. Argonaute protein PIWI controls the mobilization of retrotransposons in the Drosophila male germline. Nucleic Acids Res 2005; 33:2052–9.

    Article  PubMed  CAS  Google Scholar 

  38. Blumenstiel JP, Hard DL. Evidence for maternally transmitted small interfering RNA in the repression of transposition in Drosophila virilis. Proc Natl Acad Sci USA 2005; 102:15965–70.

    Article  PubMed  CAS  Google Scholar 

  39. Aravin AA, Lagos-Quintana M, Yalcin A et al. The small RNA profile during Drosophila melanogaster development. Dev Cell 2003; 5:337–50.

    Article  PubMed  CAS  Google Scholar 

  40. Sijen T, Plasterk RHA. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 2003; 426:310–4.

    Article  PubMed  CAS  Google Scholar 

  41. Vastenhouw NL, Fischer SEJ, Robert VJP et al. A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr Biol 2003;13:1311–6.

    Article  PubMed  CAS  Google Scholar 

  42. O’Brochta DA, Sethuramuran N, Wilson R et al. Gene vector and transposable element behavior in mosquitoes. J Exp Biol 2003:3823–34.

    Google Scholar 

  43. Marrelli MT, Li C, Rasgon JL et al. Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on Plasmodium-infected blood. Proc Natl Acad Sci USA 2007; 104:5580–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atkinson W. Peter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Peter, A.W. (2008). Proposed Uses of Transposons in Insect and Medical Biotechnology. In: Aksoy, S. (eds) Transgenesis and the Management of Vector-Borne Disease. Advances in Experimental Medicine and Biology, vol 627. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78225-6_5

Download citation

Publish with us

Policies and ethics