Skip to main content

Nanocrystal-Based Polymer Composites as Novel Functional Materials

  • Chapter
  • First Online:
Toward Functional Nanomaterials

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 5))

Abstract

This chapter provides an overall picture of nanocrystal-polymer based composites and describes the key properties of these original functional materials, particularly suited for advanced applications in photonic, optoelectronic as well as in sensing. Here, we aim at pointing out the relevance of the incorporation of inorganic colloidal nanocrystals with size-dependent properties in highly processable polymers. Due to the countless different combination of material types and, accordingly, the large extent of the topic, this contribution will focalize mainly on luminescent semiconductor nanocrystals embedded in plastic structurable matrices.

First, an overview on the complex and various scenarios of the nanocomposite preparation strategies will be provided. Next, the original properties of the prepared nanocomposites will be illustrated, paying particular attention to their fabrication by means of conventional and emerging micro- and nanoscale processing techniques. Finally, recent examples of applications of nanocomposite materials in photonic, optoelectronic and sensing devices will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Ghamdi GH, Sudol ED, Dimonie VL, El-Aasser MS (2006) Encapsulation of titanium dioxide in styrene/n-butyl acrylate copolymer by miniemulsion polymerization. J. Appl. Polym. Sci 101:3479–3486

    Article  CAS  Google Scholar 

  2. Bockstaller MR, Mickiewicz RA, Thomas EL (2005) Block copolymer nanocomposites: perspectives for tailored functional materials. Advanced Mater. 17:1331–1349

    Article  CAS  Google Scholar 

  3. Boontongkong Y, Cohen RE, (2002) Cavitated block copolymer micellar thin films: lateral arrays of open nanoreactors. Macromolecules 35:3647–3652

    Article  CAS  Google Scholar 

  4. Brushez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  Google Scholar 

  5. Bullen C, Mulvaney P, (2006) The effects of chemisorption on the luminescence of cdse quantum dots. Langmuir 22:3007–3013

    Article  CAS  Google Scholar 

  6. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105:1025–1102

    Article  CAS  Google Scholar 

  7. Caseri W (2000) Nanocomposites of polymers and metals or semiconductors: historical background and optical properties. Macromol. Rapid Commun. 21:705–722

    Article  CAS  Google Scholar 

  8. Chen G, Rapaport R, Fuchs DT, Lucas L, Lovinger A, Vilan S, Aharoni A, Banin U, (2005) Optical gain from InAs nanocrystal quantum dots in a polymer matrix. Appl. Phys. Lett. 87:251108

    Article  Google Scholar 

  9. Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370:354–357

    Article  CAS  Google Scholar 

  10. Comparelli R, Curri ML, Cozzoli PD, Striccoli M (2007) Optical biosensing based on metal and semiconductor colloidal nanocrystals. In: Kumar C (ed) Nanomaterials for Biosensors. Wiley-VCH, Weinheim, pp. 123–151

    Google Scholar 

  11. Comparelli R, Zezza F, Striccoli M, Curri ML, Tommasi R, Agostiano A (2003) Improved optical properties of CdS quantum dots by ligand exchange. Mat. Sci. Eng. C 23:1083–1086

    Article  Google Scholar 

  12. Corbierre MK, Cameron NS, Sutton M, Laaziri K, Lennox RB (2005) Gold nanoparticle/polymer nanocomposites: dispersion of nanoparticles as a function of capping agent molecular weight and grafting density. Langmuir 21:6063–6072

    Article  CAS  Google Scholar 

  13. Cozzoli PD, Fanizza E, Curri ML, Laub D, Agostiano A (2005) Low-dimensional chain like assemblies of TiO2 nanorod-stabilized Au nanoparticles. Chem. Commun. 942–944

    Google Scholar 

  14. Cozzoli PD, Kornowski A, Weller H (2003) Low-temperature synthesis of soluble and processable organic-capped anatase. TiO2 nanorods J. Am. Chem. Soc. 125:14539–14548

    Article  CAS  Google Scholar 

  15. Csetneki I, Filipcsei G, Zrinyi M (2006) Smart nanocomposite polymer membranes with on/off switching control. Macromolecules 39:1939–1942

    Article  CAS  Google Scholar 

  16. Curri ML, Agostiano A, Manna L, Della Monica M, Catalano M, Chiavarone L, Spagnolo V, Lugara M (2000) Synthesis and characterization of CdS nanoclusters in a quaternary microemulsion: The role of the cosurfactant. J. Phys. Chem. B 104:8391–8397

    Article  CAS  Google Scholar 

  17. Dabbousi BO, Bawendi MG, Onitsuka O, Rubner MF (1995) Electroluminescence from CdSe quantum-dot/polymer composites. Appl. Phys. Lett. 66:1316–1318

    Article  CAS  Google Scholar 

  18. Dabbousi BO, Rodriguez-Viejo J, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101:9463–9475

    Article  CAS  Google Scholar 

  19. Ding L, Li Y, Chu H, Li X, Liu J (2005) Creation of cadmium sulfide nanostructures using afm dip-pen nanolithography. J. Phys. Chem. B 109:22337–22340

    Article  CAS  Google Scholar 

  20. Du H, Xu GQ, and Chin WS, Huang L, and Ji W (2002) Synthesis, characterization, and nonlinear optical properties of hybridized cds-polystyrene nanocomposites. Chem. Mater., 14:4473–4479

    Article  CAS  Google Scholar 

  21. Esumi K, Houdatsu H, Yoshimura T (2004) Antioxidant action by gold-pamam dendrimer nanocomposites. Langmuir 20:2536–2538

    Article  CAS  Google Scholar 

  22. Fan X, Xia C, Advincula RC (2005) On the formation of narrowly polydispersed pmma by surface initiated polymerization (sip) from aibn-coated/intercalated clay nanoparticle platelets. Langmuir, 21:2537–2544

    Article  Google Scholar 

  23. Fang X, Reneker DH (1997) DNA fibers by electrospinning. J. Macromol. Sci-Phys. B36:169–173

    Article  Google Scholar 

  24. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem. Mater. 12:608–622

    Article  CAS  Google Scholar 

  25. Gass J, Poddar P, Almand J, Srinath S, Srikanth H, (2006) Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Adv. Funct. Mater. 16:71–75

    Article  CAS  Google Scholar 

  26. Godovsky DY (2000) Device applications of polymer-nanocomposites. Adv. Polym. Sci. 153:163–205

    Article  CAS  Google Scholar 

  27. Gomez-Romero P (2001) Hybrid organic-inorganic materials – in search of synergic activity. Adv. Mater.13:163–174

    Article  CAS  Google Scholar 

  28. Gu H, Zheng R, Zhang X, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 126:5664–5665

    Article  CAS  Google Scholar 

  29. Guo W, Li J, Wang YA, Peng X (2003) Luminescent CdSe/CdS Core/Shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. J. Am. Chem. Soc. 125:3901–3909

    Article  CAS  Google Scholar 

  30. Guo LJ (2004) Recent progress in nanoimprint technology and its applications. J. Phys. D: Appl. Phys. 37:R123–R141

    Article  CAS  Google Scholar 

  31. Hung ND, Meyer YH (1991) Simple generation of 400–700 nm picosecond dye laser pulses with nanosecond laser pumping. Appl. Phys. B-Lasers Opt. 53:226–230

    Article  Google Scholar 

  32. Ingrosso C, Fakhfouri V, Striccoli M, Agostiano A, Voigt A, Gruetzner G, Curri ML, Brugger J (2007) Luminescent nanocrystal modified epoxy photoresist for the fabrication of 3-D high aspect-ratio microstructures. Adv. Funct. Mater in press

    Google Scholar 

  33. Jeong S, Achermann M, Nanda J, Ivanov S, Klimov VI, Hollingsworth JA (2005) Effect of the thiol-thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots. J. Am. Chem. Soc. 127:10126–10127

    Article  CAS  Google Scholar 

  34. Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 28:83–114

    Article  CAS  Google Scholar 

  35. Kim JS, Reneker DH (1999) Polybenzimidazole nanofiber produced by electrospinning. Polymer Eng. Sci. 39:849

    Article  CAS  Google Scholar 

  36. Kim S, Bawendi MG (2003) Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc. 125:14652–14653

    Article  CAS  Google Scholar 

  37. Kudera S, Carbone L, Casula MF, Cingolani R, Falqui A, Snoeck E, Parak WJ, Manna L (2005) Selective growth of PbSe on one tips of colloidal semiconductor nanorods. Nano Lett. 5:445–449

    Article  CAS  Google Scholar 

  38. Lade M, Mays H, Schmidt J, Willumeit R, Schomaker R (2000) On the nanoparticle synthesis in microemulsions: Detailed characterization of an applied reaction mixture. Colloids Surf. A 163:3–15

    Article  CAS  Google Scholar 

  39. Lee J, Sundar V, Heine JR, Bawendi MG, Jensen KF (2000) Full color emission from II-VI semiconductor quantum dot-polymer composites. Adv. Mater. 12:1102–1105

    Article  CAS  Google Scholar 

  40. Lee SM, Cho SN, Cheon J (2003) Anisotropic shape control of colloidal inorganic nanocrystals. Adv. Mater. 15:441–444

    Article  CAS  Google Scholar 

  41. Li J, Jia B, Zhou G, Gu M (2006) Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material. Opt. Express 14:10740–10745

    Article  CAS  Google Scholar 

  42. Li W, Gao C, Qian H, Ren J, Yan D (2006) Multiamino-functionalized carbon nano-tubes and their applications in loading quantum dots and magnetic nanoparticles. J. Mater. Chem.16:1852–1859

    Article  CAS  Google Scholar 

  43. Lisiecki I (2005) Size, shape and structural controls of metallic nanocrystals. J. Phys. Chem. B 109:12231–12244

    Article  CAS  Google Scholar 

  44. Liu H, Edel JB, Bellan LM, Craighead HG (2006) Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots. Small 2:495–499

    Article  CAS  Google Scholar 

  45. Lu C, Guan C, Liu Y, Cheng Y, Yang B (2005) PbS/Polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17:2448–2454

    Article  Google Scholar 

  46. Lu X, Zhao Y, Wang C (2005) Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning. Adv. Mater. 17:2485–2488

    Article  CAS  Google Scholar 

  47. Lu X, Zhao Y, Wang C, Wei Y, (2005) Fabrication of CdS nanorods in pvp fiber matrices by electrospinning Macromol. Rapid Commun. 26:1325–1329

    Article  CAS  Google Scholar 

  48. Manna L, Scher EC, Alivisatos AP (2002) Shape control of colloidal semiconductor nanocrystals. J. Clusters Sci. 13:521–532

    Article  CAS  Google Scholar 

  49. Milliron DJ, Hughes SM, Cui Y, Manna L, Li J, Wang LW, Alivisatos, AP (2004) Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430:190–195

    Article  CAS  Google Scholar 

  50. Milton GW (2002) The Theory of Composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  51. Mokari T, Rothenberg E, Popov I, Costi R, Banin U (2004) Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304:1787–1790

    Article  CAS  Google Scholar 

  52. Murray CB, Norris DJ, and Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706–8715

    Article  CAS  Google Scholar 

  53. Nagasaki Y, Ishii T, Sunaga Y, Watanabe Y, Otsuka H, Kataoka K, (2004) Novel molecular recognition via fluorescent resonance energy transfer using a biotin-PEG/Polyamine stabilized CdS quantum dot. Langmuir 20:6396–6400

    Article  CAS  Google Scholar 

  54. Nazzal AY, Qu L, Peng X, Xiao M (2003) Photoactivated CdSe nanocrystals as nanosensors for gases. Nano Lett. 3:819–822

    Article  CAS  Google Scholar 

  55. Olsson YK, Chen G, Rapaport R, Fuchs DT, Sundar VC, Steckel JS, Bawendi MG, Aharoni A, Banin U (2004) Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots. Appl. Phys. Lett. 85:4469–4471

    Article  CAS  Google Scholar 

  56. Pang L, Shen Y, Tetz K, Fainman Y (2005) PMMA quantum dots composites fabricated via use of pre-polymerization. Optic Express, 13:44–49

    Article  CAS  Google Scholar 

  57. Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Radler J, Natile G, Parak WJ, (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 4:703–707

    Article  CAS  Google Scholar 

  58. Peng XG, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial-Growth of highly luminescent CdSe/CdS Core/Shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119:7019–7029

    Article  CAS  Google Scholar 

  59. Peng X, Wickham J, and Alivisatos AP (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120: 5343–5344

    Article  CAS  Google Scholar 

  60. Peng X (2002) Green chemical approaches toward high-quality semiconductor nanocrystals. Chem. Eur. J. 8:334–339

    Article  CAS  Google Scholar 

  61. Petruska MA, Bartko AP, Klimov VI, (2004) An amphiphilic approach to nanocrystal quantum dot-titania nanocomposites. J. Am. Chem. Soc. 126:714–715

    Article  CAS  Google Scholar 

  62. Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater. 2:145–150

    Article  CAS  Google Scholar 

  63. Potapova I, Mruk R, Prehl S, Zentel R, Basché T, Mews A (2003) Semiconductor nanocrystals with multifunctional polymer ligands. J. Am. Chem. Soc. 125:320–321

    Article  CAS  Google Scholar 

  64. Potyrailo RA, Leach AM (2006) Selective gas nanosensors with multisize CdSe nanocrystal/polymer composite films and dynamic pattern recognition. Appl. Phys. Lett. 88:134110

    Article  Google Scholar 

  65. Reboud V, Kehagias N, Sotomayor Torres CM, Zelsmann M, Striccoli M, Curri ML, Agostiano A, Tamborra M, Fink M, Reuther F, Gruetzner G (2007) Spontaneous emission control of colloidal nanocrystals using nanoimprinted photonic crystals. Appl. Phys. Lett. 90:011115

    Article  Google Scholar 

  66. Reboud V, Kehagias N, Zelsmann M, Striccoli M, Tamborra M, Curri ML, Agostiano A, Mecerreyes D, Alduncın JA, Sotomayor Torres CM (2007) Nanoimprinted photonic crystals for the modification of the (CdSe)ZnS nanocrystals light emission. Microelectron. Eng. 84:1574–1577

    Article  CAS  Google Scholar 

  67. Russo GM, Simon GP, Incarnato L (2006) Correlation between rheological, mechanical, and barrier properties in new copolyamide-based nanocomposite films. Macromolecules 39: 3855–3864

    Article  CAS  Google Scholar 

  68. Sanchez C, Soler-Illia CG, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chem. Mater. 13:3061–3083

    Article  CAS  Google Scholar 

  69. Sankaran V, Cummins CC, Schrock RR, Cohen RE, Silbey RJ, (1990) Small lead sulfide (PbS) clusters prepared via ROMP block copolymer technology. J. Am. Chem. Soc., 112:6858–6859

    Article  CAS  Google Scholar 

  70. Service RF (2004) Printable electronics that stick around. Science 304:675

    Article  Google Scholar 

  71. Sheng W, Kim S, Lee J, Kim S-W, Jensen K, and Bawendi MG (2006) In-Situ encapsulation of quantum dots into polymer microspheres. Langmuir 22:3782–3790;

    Article  CAS  Google Scholar 

  72. Shenhar R, Norsten TB, Rotello VM (2005) Polymer-mediated nanoparticle assembly: structural control and applications Advanced Mater. 17:657–669

    Article  CAS  Google Scholar 

  73. Shieh F, Saunders AE, Korgel BA (2005) General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J. Phys. Chem. B 109:8538–8542

    Article  CAS  Google Scholar 

  74. Suh KY, Kim YS, Lee HH, (2001) Capillary force lithography. Adv. Materials 13:1386–1389

    Article  CAS  Google Scholar 

  75. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1:207–211

    Article  CAS  Google Scholar 

  76. Tamborra M, Comparelli R, Curri ML, Striccoli M, Petrella A, Agostiano A (2005) Hybrid nanocomposites based on cds and cdse colloidal nanocrystals in organic polymers. in Nanotechnology II Proc. SPIE vol. 5838 Paolo Lugli (ed), pp. 236–244

    Google Scholar 

  77. Tamborra M, Striccoli M, Comparelli R, Curri ML, Petrella A, Agostiano A (2004) Optical properties of hybrid composites based on highly luminescent CdS nanocrystals in polymer. Nanotechnology 15:S240–S244

    Article  CAS  Google Scholar 

  78. Tamborra M, Striccoli M, Curri ML, Alducin JA, Mecerreyes D, Pomposo JA, Kehagias N, Reboud V, Sotomayor Torres CM, Agostiano A (2007) Nanocrystal based highly luminescent composites for nano imprinting lithography. Small 5:822–828

    Article  Google Scholar 

  79. Tekin E, Smith PJ, Hoeppener S, van der Berg AMJ, Susha AS, Rogach AL, Feldmann J, Schubert US (2007) Inkjet printing of luminescent cdte nanocrystal-polymer composites. Adv. Funct. Mater 17:23–28

    Article  CAS  Google Scholar 

  80. Teranishi T, Inoue Y, Nakaya M, Oumi Y, Sano T (2004) Nanoacorns: anisotropically phase-segregated CoPd sulfide nanoparticles. J. Am. Chem. Soc. 126:9914–9915

    Article  CAS  Google Scholar 

  81. Ventura MJ, Bullen C, Gu M (2007) Direct laser writing of three-dimensional photonic crystal lattices within a PbS quantum-dot-doped polymer material. Opt. Express 15:1817–1820

    Article  CAS  Google Scholar 

  82. Vollath D, Szabò DV (1999) Coated Nanoparticles. A new way to improved nanocomposites. J. Nanopart. Res. 1:235–242

    Article  CAS  Google Scholar 

  83. Walker GV, Sundar VC, Rudzinski CM, Wun AV, Bawendi MG, Nocera DG (2003) Quantum-dot optical temperature probes. Appl. Phys. Lett. 83:3555–3557

    Article  CAS  Google Scholar 

  84. Wang Y, Tang Z, Correa-Duarte MA, Liz-Marzan LM, Kotov NA (2003) Multicolor luminescence patterning by photoactivation of semiconductor nanoparticle films. J. Am. Chem. Soc.125:2830–2831

    Article  CAS  Google Scholar 

  85. Wang X-S, Dykstra TE, Salvador MR, Manners I, Scholes GD, Winnik MA (2004) Surface passivation of luminescent colloidal quantum dots with Poly(Dimethylaminoethyl methacrylate) through a ligand exchange process. J. Am. Chem. Soc. 126:7784–7785

    Article  CAS  Google Scholar 

  86. Wang M, Dykstra TE, Lou X, Salvador MR, Scholes GD, Winnik MA (2006) Colloidal CdSe nanocrystals passivated by a dye-labeled multidentate polymer: quantitative analysis by size-exclusion chromatography. J. Am. Chem. Soc. 45:2221–2224

    CAS  Google Scholar 

  87. Wang M, Kwon-Oh J, Dykstra TE, Lou X, Scholes GD, Winnik MA (2006) Surface modification of CdSe and CdSe/ZnS semiconductor nanocrystals with poly(dimethylaminoethyl methacrylate). Macromolecules 39:3664–3672

    Article  CAS  Google Scholar 

  88. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21:41–46

    Article  CAS  Google Scholar 

  89. Xia Y, Kim E, Zhao XM, Rogers JA, Prentiss M, Whitesides GM (1996) Complex optical surfaces formed by replica molding against elastomeric. Masters Sci. 273:347–349

    CAS  Google Scholar 

  90. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437:664–670

    Article  CAS  Google Scholar 

  91. Yoshioka Y, Calvert PD, Jabbour GE (2005) Simple modification of sheet resistivity of conducting polymeric anodes via combinatorial ink-jet printing techniques. Macromol. Rapid Commun. 26:238–246

    Article  CAS  Google Scholar 

  92. Zezza F, Comparelli R, Striccoli M, Curri ML, Tommasi R, Agostiano A, Della Monica M (2003) High quality CdS nanocrystals: surface effects. Synthetic Met 139:597–600

    Article  CAS  Google Scholar 

  93. Zhang H, Cui Z, Wang Y, Zhang K, Ji X, Lu C, Yang B, Gao M (2003) From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants. Adv. Mater. 15:777–780

    Article  CAS  Google Scholar 

  94. Zhang H, Wang C, Li M, Zhang J, Lu G, Yang B (2005) Fluorescent nanocrystal-polymer composites from aqueous nanocrystals: methods without ligand exchange. Chem. Mater. 17:853–857

    Google Scholar 

  95. Zucolotto V, Gattás-Asfura KM, Tumolo T, Perinotto AC, Antunes PA, Constantino CJL, Baptista MS, Leblanc RM, Oliveira Jr. ON (2005) Nanoscale manipulation of CdSe quantum dots in layer-by-layer films: influence of the host polyelectrolyte on the luminescent properties. Appl. Surf. Sci. 246:397–402

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Striccoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Striccoli, M., Curri, M., Comparelli, R. (2009). Nanocrystal-Based Polymer Composites as Novel Functional Materials. In: Wang, Z. (eds) Toward Functional Nanomaterials. Lecture Notes in Nanoscale Science and Technology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77717-7_4

Download citation

Publish with us

Policies and ethics