Skip to main content

Drug Loading into and In Vitro Release from Nanosized Drug Delivery Systems

  • Chapter

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume X))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aliabadi, H.M., & Lavasanifar, A. (2006). Polymeric micelles for drug delivery. Expert Opin. Drug Deliv., 3, 139–162.

    CAS  PubMed  Google Scholar 

  • Aliabadi, H.M., Elhasi, S., Mahmud, A., Gulamhusein, R., Mahdipoor, P., & Lavasanifar, A. (2007). Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int. J. Pharm., 329, 158–165.

    CAS  PubMed  Google Scholar 

  • Allemann, E., Gurny, R., & Doelker, E. (1993). Drug-loaded nanoparticles. Preparation methods and drug targeting issues. Eur. J. Pharm. Biopharm., 39, 173–191.

    CAS  Google Scholar 

  • Amir, R.J., & Shabat, D. (2006). Domino dendrimers. Adv. Polym. Sci., 192, 59–94.

    CAS  Google Scholar 

  • Anderberg, E.K., Bisrat, M., & Nyström, C. (1988). Physicochemical aspects of drug release. VII. The effect of surfactant concentration and drug particle size on solubility and dissolution rate of felodipine, a sparingly soluble drug. Int. J. Pharm., 47, 67–77.

    CAS  Google Scholar 

  • Asthana, A., Chauhan, A.S., Diwan, P.V., & Jain, N.K. (2005). Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech, 6, Article 67, E536–542.

    PubMed  Google Scholar 

  • Bala, I., Hariharan, S., & Kumar, M.N.V.R. (2004). PLGA nanoparticles in drug delivery: the state of the art. Crit. Rev. Ther. Drug Carr. Syst., 21, 387–422.

    CAS  Google Scholar 

  • Bapat, N., & Boroujerdi, M. (1992). Uptake capacity and adsorption isotherms of doxorubicin on polymeric nanoparticles: effect of methods of preparation. Drug Dev. Ind. Pharm., 18, 65–77.

    CAS  Google Scholar 

  • Beckstein, O., & Sansom, M.S.P. (2004a). The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores. Phys. Biol., 1, 42–52.

    CAS  Google Scholar 

  • Beckstein, O., Tai, K., & Sansom, M.S.P. (2004b). Not ions alone: barriers to ion permeation in nanopores and channels. J. Am. Chem. Soc., 126, 14694–14695.

    CAS  Google Scholar 

  • Bhadra, D., Bhadra, S., & Jain, N.K. (2006). PEGylated peptide dendrimeric carriers for the delivery of antimalarial drug chloroquine phosphate. Pharm. Res., 23, 623–633.

    CAS  PubMed  Google Scholar 

  • Bhattarai, N., Ramay, H.R., Chou, S.H., & Zhang, M. (2006). Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery. Int. J. Nanomed., 1, 181–187.

    CAS  Google Scholar 

  • Bilati, U., Allémann, E., & Doelker, E. (2005). Protein drugs entrapped within micro- & nanoparticles: an overview of therapeutic challenges & scientific issues. Drug Deliver. Technol., 5, 40–47.

    CAS  Google Scholar 

  • Bisrat, M., & Nyström, C. (1988). Physicochemical aspects of drug release. VIII. The relation between particle size and surface specific dissolution rate in agitated suspensions. Int. J. Pharm., 47, 223–231.

    CAS  Google Scholar 

  • Bisrat, M., Anderberg, E.K., Barnett, M.I., & Nyström, C. (1992). Physicochemical aspects of drug release. XV. Investigation of diffusional transport in dissolution of suspended, sparingly soluble drugs. Int. J. Pharm., 80, 191–201.

    CAS  Google Scholar 

  • Boonsongrit, Y., Mitrevej, A., & Müller, B.W. (2006). Chitosan drug binding by ionic interaction. Eur. J. Pharm. Biopharm., 62, 267–274.

    CAS  PubMed  Google Scholar 

  • Borm, P., Klaessig, F.C., Landry, T.D., Moudgil, B., Pauluhn, J., Thomas, K., Trottier, R., & Wood, S. (2006). Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci., 90, 23–32.

    CAS  PubMed  Google Scholar 

  • Calvo, P., Vila-Jato, J.L., & Alonso, M.J. (1996). Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J. Pharm. Sci., 85, 530–536.

    CAS  PubMed  Google Scholar 

  • Chandrasekar, D., Sistla, R., Ahmad, F.J., Khar, R.K., & Diwan, P.V. (2007). The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials, 28, 504–512.

    CAS  PubMed  Google Scholar 

  • Charalampopoulos, N., Avgoustakis, K., & Kontoyannis, C.G. (2003). Differential pulse polarography: a suitable technique for monitoring drug release from polymeric nanoparticle dispersions. Anal. Chim. Acta, 491, 57–62.

    CAS  Google Scholar 

  • Chen, V.J., & Ma, P.X. (2006). The effect of surface area on the degradation rate of nano-fibrous poly(L-lactic acid) foams. Biomaterials, 27, 3708–3715.

    CAS  PubMed  Google Scholar 

  • Chorny, M., Fishbein, I., Danenberg, H.D., & Golomb, G. (2002). Study of the drug release mechanism from tyrphostin AG-1295-loaded nanospheres by in situ and external sink methods. J. Control. Release, 83, 401–414.

    CAS  PubMed  Google Scholar 

  • Couvreur, P., Barratt, G., Fattal, E., Legrand, P., & Vauthier, C. (2002). Nanocapsule technology: a review. Crit. Rev. Ther. Drug Carr. Syst., 19, 99–134.

    CAS  Google Scholar 

  • Crisp, M.T., Tucker, C.J., Rogers, T.L., Williams, R.O., & Johnston, K.P. (2007). Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals. J. Control. Release, 117, 351–359.

    CAS  PubMed  Google Scholar 

  • Cruz, L., Soares, L.U., Costa, T.D., Mezzalira, G., da Silveira, N.P., Guterres, S.S., & Pohlmann, A.R. (2006). Diffusion and mathematical modeling of release profiles from nanocarriers. Int. J. Pharm., 313, 198–205.

    CAS  PubMed  Google Scholar 

  • De Geest, B.G., Sanders, N.N., Sukhorukov, G.B., Demeester, J., & De Smedt, S.C. (2007). Release mechanisms for polyelectrolyte capsules. Chem. Soc. Rev., 36, 636–649.

    PubMed  Google Scholar 

  • D’Emanuele, A., & Attwood, D. (2005). Dendrimer-drug interactions. Adv. Drug Deliver. Rev., 57, 2147–2162.

    Google Scholar 

  • Dhanikula, R.S., & Hildgen, P. (2006). Synthesis and evaluation of novel dendrimers with a hydrophilic interior as nanocarriers for drug delivery. Bioconjugate Chem., 17, 29–41.

    CAS  Google Scholar 

  • D’Souza, S.S., & DeLuca, P.P. (2006). Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm. Res., 23, 460–474.

    PubMed  Google Scholar 

  • Dutta, T., Agashe, H.B., Garg, M., Balasubramanium, P., Kabra, M., & Jain, N.K. (2007). Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J. Drug Target., 15, 89–98.

    CAS  PubMed  Google Scholar 

  • Fontana, G., Pitarresi, G., Tomarchio, V., Carlisi, B., & San Biagio, P.L. (1998). Preparation, characterization and in vitro antimicrobial activity of ampicillin-loaded polyethylcyanoacrylate nanoparticles. Biomaterials, 19, 1009–1017.

    CAS  PubMed  Google Scholar 

  • Gaber, N.N., Darwis, Y., Peh, K.-K., & Tan, Y.T.-F. (2006). Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate. J. Nanosci. Nanotechnol., 6, 3095–3101.

    CAS  PubMed  Google Scholar 

  • Galli, C. (2006). Experimental determination of the diffusion boundary layer width of micron and submicron particles. Int. J. Pharm., 313, 114–122.

    CAS  PubMed  Google Scholar 

  • Gaspar, M.M., Blanco, D., Cruz, M.E.M., & Alonso, M.J. (1998). Formulation of L-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release. J. Control. Release, 52, 53–62.

    Google Scholar 

  • Govender, T., Stolnik, S., Garnett, M.C., Illum, L., & Davis, S.S. (1999). PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release, 57, 171–185.

    CAS  PubMed  Google Scholar 

  • Govender, T., Riley, T., Ehtezazi, T., Garnett, M.C., Stolnik, S., Illum, L., & Davis, S.S. (2000). Defining the drug incorporation properties of PLA-PEG nanoparticles. Int. J. Pharm., 199, 95–110.

    CAS  PubMed  Google Scholar 

  • Gref, R., Quellec, P., Sanchez, A., Calvo, P., Dellacherie, E., & Alonso, M.J. (2001). Development and characterization of CyA-loaded poly(lactic acid)-poly(ethylene glycol) PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. Eur. J. Pharm. Biopharm., 51, 111–118.

    CAS  PubMed  Google Scholar 

  • Gupta, U., Agashe, H.B., Asthana, A., & Jain, N.K. (2006). Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules, 7, 649–658.

    CAS  PubMed  Google Scholar 

  • Guy, R.H., Hadgraft, J., Kellaway, I.W., & Taylor, M.J. (1982). Calculations of drug release rates from spherical particles. Int. J. Pharm., 11, 199–207.

    CAS  Google Scholar 

  • Heiati, H., Tawashi, R., Shivers, R.R., & Phillips, N.C. (1997). Solid lipid nanoparticles as drug carriers I. Incorporation and retention of the lipophilic prodrug 3’-azido-3’-deoxythymidine palmitate. Int. J. Pharm., 146, 123–131.

    CAS  Google Scholar 

  • Heywood, H. (1954). Particle shape coefficients. J. Imp. Coll. Chem. Eng. Soc., 8, 25–33.

    Google Scholar 

  • Higuchi, T. (1963). Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci., 52, 1145–1149.

    CAS  PubMed  Google Scholar 

  • Hixson, A.W., & Crowell, J.H. (1931). Dependence of reaction velocity upon surface and agitation. I. Theoretical considerations. J. Ind. Eng. Chem., 23, 923–931.

    CAS  Google Scholar 

  • Hu, F.-Q., Jiang, S.-P., Du, Y.-Z., Yuan, H., Ye, Y.-Q., & Zeng, S. (2006). Preparation and characteristics of monostearin nanostructured lipid carriers. Int. J. Pharm., 314, 83–89.

    CAS  PubMed  Google Scholar 

  • Huo, Q., Liu, J., Wang, L.-Q., Jiang, Y., Lambert, T.N., & Fang, E. (2006). A new class of silica cross-linked micellar core-shell nanoparticles. J. Am. Chem. Soc., 128, 6447–6453.

    CAS  PubMed  Google Scholar 

  • Illum, L., Khan, M.A., Mak, E., & Davis, S.S. (1986). Evaluation of carrier capacity and release characteristics for poly(butyl 2-cyanoacrylate) nanoparticles. Int. J. Pharm., 30, 17–28.

    CAS  Google Scholar 

  • Jenning, V., Thünemann, A.F., & Gohla, S.H. (2000). Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm., 199, 167–177.

    CAS  PubMed  Google Scholar 

  • Jette, K.K., Law, D., Schmitt, E.A., & Kwon, G.S. (2004). Preparation and drug loading of poly(ethylene glycol)-block-poly(ε-caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharm. Res., 21, 1184–1191.

    CAS  PubMed  Google Scholar 

  • Jiang, B., Hu, L., Gao, C., & Shen, J. (2005). Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties. Int. J. Pharm., 304, 220–230.

    CAS  PubMed  Google Scholar 

  • Jo, Y.S., Kim, M.-C., Kim, D.K, Kim, C.-J., Jeong, Y.-K., Kim, K.-J., & Muhammed, M. (2004). Mathematical modelling on the controlled-release of indomethacin-encapsulated poly(lactic acid-co-ethylene oxide) nanospheres. Nanotechnology, 15, 1186–1194.

    CAS  Google Scholar 

  • Johnston, A.P.R., Cortez, C., Angelatos, A.S., & Caruso, F. (2006). Layer-by-layer engineered capsules and their applications. Curr. Opin. Colloid Interface Sci., 11, 203–209.

    CAS  Google Scholar 

  • Knapp, L.F. (1922). The solubility of small particles and the stability of colloids. Trans. Faraday Soc., 17, 457–465.

    CAS  Google Scholar 

  • Kojima, C., Kono, K., Maruyama, K., & Takagishi, T. (2000). Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjugate Chem., 11, 910–917.

    CAS  Google Scholar 

  • Kolhe, P., Misra, E., Kannan, R.M., Kannan, S., & Lieh-Lai, M. (2003). Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int. J. Pharm., 259, 143–160.

    CAS  PubMed  Google Scholar 

  • Kolhe, P., Khandare, J., Pillai, O., Kannan, S., Lieh-Lai, M., Kannan, R.M. (2006). Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials, 27, 660–669.

    CAS  PubMed  Google Scholar 

  • Kostanski, J.W., & DeLuca, P.P. (2000). A novel in vitro release technique for peptide-containing biodegradable microspheres. AAPS PharmSciTech, 1, http://www.pharmscitech.com.

  • Kumar, P.V., Asthana, A., Dutta, T., & Jain, N.K. (2006). Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J. Drug Target., 14, 546–556.

    CAS  PubMed  Google Scholar 

  • Landry, F.B., Bazile, D.V., Spenlehauer, G., Veillard, M., & Kreuter, J. (1997). Release of the fluorescent marker Prodan from poly(D,L-lactic acid) nanoparticles coated with albumin or polyvinyl alcohol in model digestive fluids (USP XXII). J. Control. Release, 44, 227–236.

    CAS  Google Scholar 

  • Lecaroz, C., Gamazo, C., Renedo, M.J., & Blanco-Prieto, M.J. (2006). Biodegradable micro- and nanoparticles as long-term delivery vehicles for gentamicin. J. Microencapsul., 23, 782–792.

    CAS  PubMed  Google Scholar 

  • Lee, E.S., Na, K., & Bae, Y.H. (2003). Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release, 91, 103–113.

    CAS  PubMed  Google Scholar 

  • Lee, J., Cho, E.C., & Cho, K. (2004). Incorporation and release behavior of hydrophobic drug in funtionalized poly(D,L-lactide)-block-poly(ethylene oxide) micelles. J. Control. Release, 94, 323–335.

    CAS  PubMed  Google Scholar 

  • Lee, M.-K., Lim, S.-J., & Kim, C.-K. (2007). Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials, 28, 2137–2146.

    CAS  PubMed  Google Scholar 

  • Leo, E., Scatturin, A., Vighi, E., & Dalpiaz, A. (2006). Polymeric nanoparticles as drug controlled release systems: a new formulation strategy for drugs with small or large molecular weight. J. Nanosci. Nanotechnol., 6, 3070–3079.

    CAS  PubMed  Google Scholar 

  • Lin, W.-J., Juang, L.-W., & Lin, C.-C. (2003). Stability and release performance of a series of pegylated copolymeric micelles. Pharm. Res., 20, 668–673.

    CAS  PubMed  Google Scholar 

  • Liu, J., Lee, H., & Allen, C. (2006a). Formulation of drugs in block copolymer micelles: drug loading and release. Curr. Pharm. Design, 12, 4685–4701.

    CAS  Google Scholar 

  • Liu, H., Zhai, J., & Jiang, L. (2006b). Wetting and anti-wetting on aligned carbon nanotube films. Soft Matter, 2, 811–821.

    CAS  Google Scholar 

  • Liu, J., Hu, W., Chen, H., Ni, Q., Xu, H., & Yang, X. (2007). Isotretinoin-loaded solid lipid nanparticles with skin targeting for topical delivery. Int. J. Pharm., 328, 191–195.

    CAS  PubMed  Google Scholar 

  • Lo, C.-L., Lin, K.-M., & Hsiue, G.-H. (2005). Preparation and characterization of intelligent core-shell nanoparticles based on poly(D,L-lactide)-g-poly (N-isopropylacrylamide-co-methacrylic acid). J. Control. Release, 104, 477–488.

    CAS  PubMed  Google Scholar 

  • Lopes, E., Pohlmann, A.R., Bassani, V., & Guterres, S.S. (2000). Polymeric colloidal systems containing ethionamide: preparation and physico-chemical characterization. Pharmazie, 55, 527–530.

    CAS  PubMed  Google Scholar 

  • Losa, C., Marchal-Heussler, L., Orallo, F., Vila Jato, J.L., & Alonso, M.J. (1993). Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm. Res., 10, 80–87.

    CAS  PubMed  Google Scholar 

  • Maestrelli, F., Mura, P., & Alonso, M.J. (2004). Formulation and characterization of triclosan sub-micron emulsions and nanocapsules. J. Microencapsul., 21, 857–864.

    CAS  PubMed  Google Scholar 

  • Manjunath, K., & Venkateswarlu, V. (2006). Pharmacokinetics, tissue distribution, and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Drug Target., 14, 632–645.

    CAS  PubMed  Google Scholar 

  • Mayer, C. (2005). Nanocapsules as drug delivery systems. Int. J. Artif. Organs, 28, 1163–1171.

    CAS  PubMed  Google Scholar 

  • Mihranyan, A., & Strømme, M. (2007). Solubility of fractal nanoparticles. Surf. Sci., 601, 315–319.

    CAS  Google Scholar 

  • Montana, G., Bondi, M.L., Carrotta, R., Picone, P., Craparo, E.F., San Biagio, P.L., Giammona, G., & Di Carlo, M. (2007). Employment of cationic solid-lipid nanoparticles as RNA carriers. Bioconjugate Chem., 18, 302–308.

    CAS  Google Scholar 

  • Mosharraf, M., & Nyström, C. (1995). The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int. J. Pharm., 122, 35–47.

    CAS  Google Scholar 

  • Müller, R.H., Mäder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur. J. Pharm. Biopharm., 50, 161–177.

    PubMed  Google Scholar 

  • Müller, R.H., Radtke, M., & Wissing, S.A. (2002). Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 242, 121–128.

    PubMed  Google Scholar 

  • Noyes, A.A., & Whitney, W.R. (1897). The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc., 19, 930–934.

    Google Scholar 

  • Opanasopit, P., Ngawhirunpat, T., Chaidedgumjorn, A., Rojanarata, T., Apirakaramwong, A., Phongying, S., Choochottiros, C., & Chirachanchai, S. (2006). Incorporation of camptothecin into N-phthaloyl chitosan-g-mPEG self-assembly micellar system. Eur. J. Pharm. Biopharm., 64, 269–276.

    CAS  PubMed  Google Scholar 

  • Pandey, R., Ahmad, Z., Sharma, S., & Khuller, G.K. (2005). Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. Int. J. Pharm., 301, 268–276.

    CAS  PubMed  Google Scholar 

  • Panyam, J., Dali, M.M., Sahoo, S.K., Ma, W., Chakravarthi, S.S., Amidon, G.L., Levy, R.J., & Labhasetwar, V. (2003). Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano-and microparticles. J. Control. Release, 92, 173–187.

    CAS  PubMed  Google Scholar 

  • Patri, A.K., Kukowska-Latallo, J.F., & Baker, J.R., Jr. (2005). Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliver. Rev., 57, 2203–2214.

    CAS  Google Scholar 

  • Peppas, N.A., & Robinson, D.N. (2007). Nanospheres of intelligent networks for biomedical and drug delivery applications. In N.A. Peppas, J.Z. Hilt, & J.B. Thomas (Eds.), Nanotechnology in Therapeutics (pp. 361–379). Wymondham: Horizon Bioscience.

    Google Scholar 

  • Pfeifer, B.A., Burdick, J.A., Little, S.R., & Langer, R. (2005). Poly(ester-anhydride):poly(β-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection. Int. J. Pharm., 304, 210–219.

    CAS  PubMed  Google Scholar 

  • Pohlmann, A.R., Soares, L.U., Cruz, L., Da Silveira, N.P., & Guterres, S.S. (2004). Alkaline hydrolysis as a tool to determine the association form of indomethacin in nanocapsules prepared with poly(ε-caprolactone). Curr. Drug Deliv., 1, 103–110.

    CAS  PubMed  Google Scholar 

  • Polakovič, M., Görner, T., Gref, R., & Dellacherie, E. (1999). Lidocaine loaded biodegradable nanospheres. II. Modelling of drug release. J. Control. Release, 60, 169–177.

    PubMed  Google Scholar 

  • Powell, C., Fenwick, N., Bresme, F., & Quirke, N. (2002). Wetting of nanoparticles and nanoparticle arrays. Colloid Surface A, 206, 241–251.

    CAS  Google Scholar 

  • Qiu, X., Leporatti, S., Donath, E., & Möhwald, H. (2001). Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir, 17, 5375–5380.

    CAS  Google Scholar 

  • Quaglia, F., Ostacolo, L., De Rosa, G., La Rotonda, M.I., Ammendola, M., Nese, G., Maglio, G., Palumbo, R., & Vauthier, C. (2006). Nanoscopic core-shell drug carriers made of amphiphilic triblock and star-diblock copolymers. Int. J. Pharm., 324, 56–66.

    CAS  PubMed  Google Scholar 

  • Redhead, H.M., Davis, S.S., & Illum, L. (2001). Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with Poloxamer 407 and Poloxamine 908: in vitro characterization and in vivo evaluation. J. Control. Release, 70, 353–363.

    CAS  PubMed  Google Scholar 

  • Reis, C.P., Neufeld, R.J., Ribeiro, A.J., & Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2, 8–21.

    CAS  Google Scholar 

  • Ritger, P.L., & Peppas, N.A. (1987a). A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release, 5, 23–36.

    CAS  Google Scholar 

  • Ritger, P.L., & Peppas, N.A. (1987b). A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J. Control. Release, 5, 37–42.

    CAS  Google Scholar 

  • Ruckmani, K., Sivakumar, M., & Ganeshkumar, P.A. (2006). Methotrexate loaded solid lipid nanoparticles (SLN) for effective treatment of carcinoma. J. Nanosci. Nanotechnol., 6, 2991–2995.

    CAS  PubMed  Google Scholar 

  • Sdobnyakov, N.Y., & Samsonov, V.M. (2005). On the size dependence of surface tension in the temperature range from melting point to critical point. Cent. Eur. J. Phys., 3, 247–257.

    CAS  Google Scholar 

  • Seijo, B., Fattal, E., Roblot-Treupel, L., & Couvreur, P. (1990). Design of nanoparticles of less than 50 nm diameter: preparation, characterization and drug loading. Int. J. Pharm., 62, 1–7.

    CAS  Google Scholar 

  • Shekunov, B.Y., Chattopadhyay, P., Seitzinger, J., & Huff, R. (2006). Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharm. Res., 23, 196–204.

    CAS  PubMed  Google Scholar 

  • Siepmann, J., & Göpferich, A. (2001). Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Del. Rev., 48, 229–247.

    CAS  Google Scholar 

  • Siepmann, J., Faisant, N., & Benoit, J.-P. (2002). A new mathematical model quantifying drug release from bioerodible micrcoparticles using monte carlo simulations. Pharm. Res., 19, 1885–1893.

    CAS  PubMed  Google Scholar 

  • Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M.J. (2005). Nano-emulsions. Curr. Opin. Colloid Interface Sci., 10, 102–110.

    CAS  Google Scholar 

  • Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., & Rudzinski, W.E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 70, 1–20.

    CAS  PubMed  Google Scholar 

  • Sukhorukov, G.B., Fery, A., Brumen, M., & Möhwald, H. (2004). Physical chemistry of encapsulation and release. Phys. Chem. Chem. Phys., 6, 4078–4089.

    CAS  Google Scholar 

  • Tang, R., Wang, L., Orme, C.A., Bonstein, T., Bush, P.J., & Nancollas, G.H. (2004). Dissolution at the nanoscale: self-preservation of biominerals. Angew. Chem. Int. Ed., 43, 2697–2701.

    CAS  Google Scholar 

  • Tang, S., June, S.M., Howell, B.A., & Chai, M. (2006a). Synthesis of salicylate dendritic prodrugs. Tetrahedron Lett., 47, 7671–7675.

    CAS  Google Scholar 

  • Tang, S., Martinez, L.J., Sharma, A., & Chai, M. (2006b). Synthesis and characterization of water-soluble and photostable L-Dopa dendrimers. Org. Lett., 8, 4421–4424.

    CAS  Google Scholar 

  • Thote, A.J., & Gupta, R.B. (2005). Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomedicine, 1, 85–90.

    CAS  PubMed  Google Scholar 

  • Tinke, A.P., Vanhoutte, K., De Maesschalck, R., Verheyen, S., & De Winter, H. (2005). A new approach in the prediction of the dissolution behavior of suspended particles by means of their particle size distribution. J. Pharm. Biomed. Anal., 39, 900–907.

    CAS  PubMed  Google Scholar 

  • Tripathi, P.K., Khopade, A.J., Nagaich, S., Shrivastava, S., Jain, S., & Jain, N.K. (2002). Dendrimer grafts for delivery of 5-fluorouracil. Pharmazie, 57, 261–264.

    CAS  PubMed  Google Scholar 

  • Üner, M. (2006). Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie, 61, 375–386.

    PubMed  Google Scholar 

  • Von Burkersroda, F., Schedl, L., & Göpferich, A. (2002). Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 23, 4221–4231.

    Google Scholar 

  • Wang, J.-X., Sun, X., & Zhang, Z.-R. (2002). Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. Eur. J. Pharm. Biopharm., 54, 285–290.

    CAS  PubMed  Google Scholar 

  • Washington, C. (1990a). Drug release from microdisperse systems: a critical review. Int. J. Pharm., 58, 1–12.

    CAS  Google Scholar 

  • Washington, C., & Koosha, F. (1990b). Drug release from microparticulates; deconvolution of measurement errors. Int. J. Pharm., 59, 79–82.

    CAS  Google Scholar 

  • Wiwattanapatapee, R., Lomlim, L., & Saramunee, K. (2003). Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid. J. Control. Release, 88, 1–9.

    CAS  PubMed  Google Scholar 

  • Yang, H., & Kao, W.J. (2006) Dendrimers for pharmaceutical and biomedical applications. J. Biomater. Sci., Polym. Ed., 17, 3–19.

    CAS  Google Scholar 

  • Zhang, H., Gilbert, B., Huang, F., & Banfield, J.F. (2003). Water-driven structure transformation in nanoparticles at room temperature. Nature, 424, 1025–1029.

    CAS  PubMed  Google Scholar 

  • Zhang, J.X., Li, X.J., Qiu, L.Y., Li, X.H., Yan, M.Q., Jin, Y., & Zhu, K.J. (2006a). Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups: preparation, in vitro and in vivo evaluation. J. Control. Release, 116, 322–329.

    CAS  Google Scholar 

  • Zhang, N., Ping, Q., Huang, G., Xu, W., Cheng, Y., & Han, X. (2006b). Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm., 327, 153–159.

    CAS  Google Scholar 

  • Zhu, H., & McShane, M.J. (2005). Loading of hydrophobic materials into polymer particles: implications for fluorescent nanosensors and drug delivery. J. Am. Chem. Soc., 127, 13448–13449.

    CAS  PubMed  Google Scholar 

  • Zur Mühlen, A., & Mehnert, W. (1998a). Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie, 53, 552–555.

    Google Scholar 

  • Zur Mühlen, A., Schwarz, C., & Mehnert, W. (1998b). Solid lipid nanoparticles (SLN) for controlled drug delivery. Drug release and release mechanism. Eur. J. Pharm. Biopharm., 45, 149–155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Judefeind, A., de Villiers, M.M. (2009). Drug Loading into and In Vitro Release from Nanosized Drug Delivery Systems. In: de Villiers, M.M., Aramwit, P., Kwon, G.S. (eds) Nanotechnology in Drug Delivery. Biotechnology: Pharmaceutical Aspects, vol X. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77668-2_5

Download citation

Publish with us

Policies and ethics