Skip to main content

Continuous Infusion of Beta-lactam Antibiotics

  • Chapter
  • First Online:
Book cover Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics

Abstract

For beta-lactam antibiotics continuous infusion can be used to optimise antibiotic therapy. Pre-clinical studies in rodents and in vitro studies have shown the benefits of continuous infusion when compared to intermittent dosing. Pharmacokinetic studies in humans have shown an improved probability of target attainment for continuous infusion. However, the relationship between continuous infusion and improved clinical outcome is ambiguous. The superiority of continuous infusion over intermittent dosing in clinical outcome studies is most often documented in special subgroups, such as critically ill patients or patients infected with less-susceptible micro-organisms. Methods to calculate doses during continuous infusion and practical issues, such as stability of antimicrobial solutions, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CF:

Cystic fibrosis

CL:

Clearance

C max :

Maximum concentration

FDA:

Food and Drug Administration

FEV1:

Volume exhaled during the first second of a forced expiratory manoeuver started from the level of total lung capacity

FVC:

Forced vital capacity; total amount of air that can forcibly be blown out after full inspiration

ICU:

Intensive care unit

Iv:

Intravenous

IVPM:

In vitro pharmacokinetic–pharmacodynamic (PK/PD) models

MCS:

Monte Carlo simulation

MIC:

Minimum inhibitory concentration

MSW:

Mutation selection window

PD:

Pharmacodynamics

PD50:

Daily dose required to protect 50 % of the animals from mortality

PK:

Pharmacokinetics

PTA:

Probability of target attainment

TBC:

Total body clearance

Vd:

Volume of distribution

%f  T > MIC:

Percentage of time that the unbound concentrations is above the MIC

References

  • Adembri C, Ristori R, Chelazzi C, Arrigucci S, Cassetta MI, De Gaudio AR et al (2010) Cefazolin bolus and continuous administration for elective cardiac surgery: improved pharmacokinetic and pharmacodynamic parameters. J Thorac Cardiovasc Surg 140(2):471–475

    Article  CAS  PubMed  Google Scholar 

  • Alou L, Aguilar L, Sevillano D, Gimenez MJ, Echeverria O, Gomez-Lus ML et al (2005) Is there a pharmacodynamic need for the use of continuous versus intermittent infusion with ceftazidime against Pseudomonas aeruginosa? An in vitro pharmacodynamic model. J Antimicrob Chemother 55(2):209–213

    Article  CAS  PubMed  Google Scholar 

  • Ashwin J, Lynn B, Taskin CB (1987) Stability and administration of intravenous Augmentin. Pharm J 238:116–119

    CAS  Google Scholar 

  • Baririan N, Chanteux H, Viaene E, Servais H, Tulkens PM (2003) Stability and compatibility study of cefepime in comparison with ceftazidime for potential administration by continuous infusion under conditions pertinent to ambulatory treatment of cystic fibrosis patients and to administration in intensive care units. J Antimicrob Chemother 51(3):651–658

    Article  CAS  PubMed  Google Scholar 

  • Bayard DS, Jelliffe RW (2004) A Bayesian approach to tracking patients having changing pharmacokinetic parameters. J Pharmacokinet Pharmacodyn 31(1):75–107

    Article  PubMed  Google Scholar 

  • Benko AS, Cappelletty DM, Kruse JA, Rybak MJ (1996) Continuous infusion versus intermittent administration of ceftazidime in critically ill patients with suspected gram-negative infections. Antimicrob Agents Chemother 40(3):691–695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berkhout J, Visser LG, van den Broek PJ, van de Klundert JA, Mattie H (2003) Clinical pharmacokinetics of cefamandole and ceftazidime administered by continuous intravenous infusion. Antimicrob Agents Chemother 47(6):1862–1866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bernard L, El H, Pron B, Lotthe A, Gleizes V, Signoret F et al (2001) Outpatient parenteral antimicrobial therapy (OPAT) for the treatment of osteomyelitis: evaluation of efficacy, tolerance and cost. J Clin Pharm Ther 26(6):445–451

    Article  CAS  PubMed  Google Scholar 

  • Bertels RA, Semmekrot BA, Gerrits GP, Mouton JW (2008) Serum concentrations of cefotaxime and its metabolite desacetyl-cefotaxime in infants and children during continuous infusion. Infection 36(5):415–420

    Article  CAS  PubMed  Google Scholar 

  • Berthoin K, Le Duff CS, Marchand-Brynaert J, Carryn S, Tulkens PM (2010) Stability of meropenem and doripenem solutions for administration by continuous infusion. J Antimicrob Chemother 65(5):1073–1075

    Article  CAS  PubMed  Google Scholar 

  • Bodey GP, Ketchel SJ, Rodriguez V (1979) A randomized study of carbenicillin plus cefamandole or tobramycin in the treatment of febrile episodes in cancer patients. Am J Med 67(4):608–616

    Article  CAS  PubMed  Google Scholar 

  • Boselli E, Breilh D, Saux MC, Gordien JB, Allaouchiche B (2006) Pharmacokinetics and lung concentrations of ertapenem in patients with ventilator-associated pneumonia. Intensive Care Med 32(12):2059–2062

    Article  CAS  PubMed  Google Scholar 

  • Bowker KE, Holt HA, Reeves DS, MacGowan AP (1996) Bactericidal activity, post antibiotic effect and modified controlled effective regrowth time of meropenem at high concentrations. J Antimicrob Chemother 38(6):1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Brink AJ, Richards GA, Schillack V, Kiem S, Schentag J (2009) Pharmacokinetics of once-daily dosing of ertapenem in critically ill patients with severe sepsis. Int J Antimicrob Agents 33(5):432–436

    Article  CAS  PubMed  Google Scholar 

  • Buijk SL, Gyssens IC, Mouton JW, Van Vliet A, Verbrugh HA, Bruining HA (2002) Pharmacokinetics of ceftazidime in serum and peritoneal exudate during continuous versus intermittent administration to patients with severe intra-abdominal infections. J Antimicrob Chemother 49(1):121–128

    Article  CAS  PubMed  Google Scholar 

  • Buijk SE, Gyssens IC, Mouton JW, Metselaar HJ, Groenland TH, Verbrugh HA et al (2004a) Perioperative pharmacokinetics of cefotaxime in serum and bile during continuous and intermittent infusion in liver transplant patients. J Antimicrob Chemother 54(1):199–205

    Article  CAS  PubMed  Google Scholar 

  • Buijk SE, Gyssens IC, Mouton JW, Metselaar HJ, Groenland TH, Verbrugh HA et al (2004b) Perioperative pharmacokinetics of cefotaxime in serum and bile during continuous and intermittent infusion in liver transplant patients. J Antimicrob Chemother 54:194–205

    Article  CAS  Google Scholar 

  • Buijs J, Dofferhoff AS, Mouton JW, van der Meer JW (2007) Continuous administration of PBP-2- and PBP-3-specific beta-lactams causes higher cytokine responses in murine Pseudomonas aeruginosa and Escherichia coli sepsis. J Antimicrob Chemother 59(5):926–933

    Article  CAS  PubMed  Google Scholar 

  • Burgess DS, Waldrep T (2002) Pharmacokinetics and pharmacodynamics of piperacillin/tazobactam when administered by continuous infusion and intermittent dosing. Clin Ther 24(7):1090–1104

    Article  CAS  PubMed  Google Scholar 

  • Burgess DS, Summers KK, Hardin TC (1999) Pharmacokinetics and pharmacodynamics of aztreonam administered by continuous intravenous infusion. Clin Ther 21(11):1882–1889

    Article  CAS  PubMed  Google Scholar 

  • Burgess DS, Hastings RW, Hardin TC (2000) Pharmacokinetics and pharmacodynamics of cefepime administered by intermittent and continuous infusion. Clin Ther 22(1):66–75

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt O, Kumar V, Katterwe D, Majcher-Peszynska J, Drewelow B, Derendorf H et al (2007) Ertapenem in critically ill patients with early-onset ventilator-associated pneumonia: pharmacokinetics with special consideration of free-drug concentration. J Antimicrob Chemother 59(2):277–284

    Article  CAS  PubMed  Google Scholar 

  • Cappelletty DM, Kang SL, Palmer SM, Rybak MJ (1995) Pharmacodynamics of ceftazidime administered as continuous infusion or intermittent bolus alone and in combination with single daily-dose amikacin against Pseudomonas aeruginosa in an in vitro infection model. Antimicrob Agents Chemother 39(8):1797–1801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Claus B, Buyle F, Robays H, Vogelaers D (2010) Importance of infusion volume and pump characteristics in extended administration of ss-lactam antibiotics. Antimicrob Agents Chemother 54(11):4950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Craig WA, Ebert SC (1992) Continuous infusion of beta-lactam antibiotics. Antimicrob Agents Chemother 36(12):2577–2583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Croisier D, Martha B, Piroth L, Chavanet P (2008) In vivo efficacy of humanised intermittent versus continuous ceftazidime in combination with tobramycin in an experimental model of pseudomonal pneumonia. Int J Antimicrob Agents 32(6):494–498

    Article  CAS  PubMed  Google Scholar 

  • Daenen S, Erjavec Z, Uges DR, De Vries-Hospers HG, De Jonge P, Halie MR (1995) Continuous infusion of ceftazidime in febrile neutropenic patients with acute myeloid leukemia. Eur J Clin Microbiol Infect Dis 14(3):188–192

    Article  CAS  PubMed  Google Scholar 

  • Dailly E, Kergueris MF, Pannier M, Jolliet P, Bourin M (2003) Population pharmacokinetics of imipenem in burn patients. Fundam Clin Pharmacol 17(6):645–650

    Article  CAS  PubMed  Google Scholar 

  • Dalle JH, Gnansounou M, Husson MO, Lambilliotte A, Mazingue F, Nelken B (2002) Continuous infusion of ceftazidime in the empiric treatment of febrile neutropenic children with cancer. J Pediatr Hematol Oncol 24(9):714–716

    Article  PubMed  Google Scholar 

  • De Jongh R, Hens R, Basma V, Mouton JW, Tulkens PM, Carryn S (2008) Continuous versus intermittent infusion of temocillin, a directed spectrum penicillin for intensive care patients with nosocomial pneumonia: stability, compatibility, population pharmacokinetic studies and breakpoint selection. J Antimicrob Chemother 61(2):382–388

    Article  PubMed  CAS  Google Scholar 

  • Donskey CJ (2004) The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin Infect Dis 39(2):219–226

    Article  PubMed  Google Scholar 

  • Drusano GL (1990) Human pharmacodynamics of beta-lactams, aminoglycosides and their combination. Scand J Infect Dis Suppl 74:235–248

    CAS  PubMed  Google Scholar 

  • Dulhunty JM, Roberts JA, Davis JS, Webb SA, Bellomo R, Gomersall C, Shirwadkar C, Eastwood GM, Myburgh J, Paterson DL, Lipman J (2013) Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial. Clin Infect Dis 56(2):236–244

    Google Scholar 

  • Eagle H, Fleischman R, Musselman AD (1950) Effect of schedule of administration on the therapeutic efficacy of penicillin; importance of the aggregate time penicillin remains at effectively bactericidal levels. Am J Med 9(3):280–299

    Article  CAS  PubMed  Google Scholar 

  • Eagle H, Fleischman R, Levy M (1953a) On the duration of penicillin action in relation to its concentration in the serum. J Lab Clin Med 41(1):122–132

    CAS  PubMed  Google Scholar 

  • Eagle H, Fleischman R, Levy M (1953b) “Continuous” vs. “discontinuous” therapy with penicillin; the effect of the interval between injections on therapeutic efficacy. N Engl J Med 248(12):481–488

    Article  CAS  PubMed  Google Scholar 

  • Felton TW, Hope WW, Lomaestro BM, Butterfield JM, Kwa AL, Drusano GL et al (2012) Population pharmacokinetics of extended-infusion piperacillin-tazobactam in hospitalized patients with nosocomial infections. Antimicrob Agents Chemother 56(8):4087–4094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Florey K (1988) Aztreonam. In: Florey K (ed) Analytical profiles of drug substances. Academic, San Diego, pp 3–39

    Google Scholar 

  • Friedrich LV, White RL, Kays MB, Brundage DM, Yarbrough D III (1991) Aztreonam pharmacokinetics in burn patients. Antimicrob Agents Chemother 35(1):57–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C (2003) Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 31(12):2742–2751

    Article  PubMed  Google Scholar 

  • Garnacho-Montero J, Aldabo-Pallas T, Garnacho-Montero C, Cayuela A, Jimenez R, Barroso S et al (2006) Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis. Crit Care 10(4):R111

    Article  PubMed  Google Scholar 

  • Gault MH, Cockcroft DW (1975) Letter: creatinine clearance and age. Lancet 2(7935):612–613

    Article  CAS  PubMed  Google Scholar 

  • Georges B, Conil JM, Cougot P, Decun JF, Archambaud M, Seguin T et al (2005) Cefepime in critically ill patients: continuous infusion vs. an intermittent dosing regimen. Int J Clin Pharmacol Ther 43(8):360–369

    Article  CAS  PubMed  Google Scholar 

  • Gilbert DN, Dworkin RJ, Raber SR, Leggett JE (1997) Outpatient parenteral antimicrobial-drug therapy. N Engl J Med 337(12):829–838

    Article  CAS  PubMed  Google Scholar 

  • Goessens WH, Mouton JW, Ten Kate MT, Bijl AJ, Ott A, Bakker-Woudenberg IA (2007) Role of ceftazidime dose regimen on the selection of resistant Enterobacter cloacae in the intestinal flora of rats treated for an experimental pulmonary infection. J Antimicrob Chemother 59(3):507–516

    Article  CAS  PubMed  Google Scholar 

  • Grant EM, Kuti JL, Nicolau DP, Nightingale C, Quintiliani R (2002) Clinical efficacy and pharmacoeconomics of a continuous-infusion piperacillin-tazobactam program in a large community teaching hospital. Pharmacotherapy 22(4):471–483

    Article  CAS  PubMed  Google Scholar 

  • Hanes SD, Wood GC, Herring V, Croce MA, Fabian TC, Pritchard E et al (2000) Intermittent and continuous ceftazidime infusion for critically ill trauma patients. Am J Surg 179(6):436–440

    Article  CAS  PubMed  Google Scholar 

  • Harbarth S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D (2003) Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 115(7):529–535

    Article  PubMed  Google Scholar 

  • Howden BP, Richards MJ (2001) The efficacy of continuous infusion flucloxacillin in home therapy for serious staphylococcal infections and cellulitis. J Antimicrob Chemother 48(2):311–314

    Article  CAS  PubMed  Google Scholar 

  • Hubert D, Le Roux E, Lavrut T, Wallaert B, Scheid P, Manach D et al (2009) Continuous versus intermittent infusions of ceftazidime for treating exacerbation of cystic fibrosis. Antimicrob Agents Chemother 53(9):3650–3656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hyatt JM, Nix DE, Stratton CW, Schentag JJ (1995) In vitro pharmacodynamics of piperacillin, piperacillin-tazobactam, and ciprofloxacin alone and in combination against Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomonas aeruginosa. Antimicrob Agents Chemother 39(8):1711–1716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jawetz E (1946) Dynamics of the action of penicillin in experimental animals: observations in mice. Arch Intern Med 7:1–15

    Article  Google Scholar 

  • Keel RA, Sutherland CA, Crandon JL, Nicolau DP (2011) Stability of doripenem, imipenem and meropenem at elevated room temperatures. Int J Antimicrob Agents 37(2):184–185

    Article  CAS  PubMed  Google Scholar 

  • Kollef MH, Sherman G, Ward S, Fraser VJ (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115(2):462–474

    Article  CAS  PubMed  Google Scholar 

  • Kuti JL, Nightingale CH, Knauft RF, Nicolau DP (2004) Pharmacokinetic properties and stability of continuous-infusion meropenem in adults with cystic fibrosis. Clin Ther 26(4):493–501

    Article  CAS  PubMed  Google Scholar 

  • Lau WK, Mercer D, Itani KM, Nicolau DP, Kuti JL, Mansfield D et al (2006) Randomized, open-label, comparative study of piperacillin-tazobactam administered by continuous infusion versus intermittent infusion for treatment of hospitalized patients with complicated intra-abdominal infection. Antimicrob Agents Chemother 50(11):3556–3561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leder K, Turnidge JD, Korman TM, Grayson ML (1999) The clinical efficacy of continuous-infusion flucloxacillin in serious staphylococcal sepsis. J Antimicrob Chemother 43(1):113–118

    Article  CAS  PubMed  Google Scholar 

  • Leggett JE (2000) Ambulatory use of parenteral antibacterials: contemporary perspectives. Drugs 59(Suppl 3):1–8, discussion 47–9

    Article  PubMed  Google Scholar 

  • Leggett JE, Fantin B, Ebert S, Totsuka K, Vogelman B, Calame W et al (1989) Comparative antibiotic dose-effect relations at several dosing intervals in murine pneumonitis and thigh-infection models. J Infect Dis 159(2):281–292

    Article  CAS  PubMed  Google Scholar 

  • Leggett JE, Ebert S, Fantin B, Craig WA (1990) Comparative dose-effect relations at several dosing intervals for beta-lactam, aminoglycoside and quinolone antibiotics against gram-negative bacilli in murine thigh-infection and pneumonitis models. Scand J Infect Dis Suppl 74:179–184

    CAS  PubMed  Google Scholar 

  • Lipman J, Gomersall CD, Gin T, Joynt GM, Young RJ (1999) Continuous infusion ceftazidime in intensive care: a randomized controlled trial. J Antimicrob Chemother 43:309–311

    Article  CAS  PubMed  Google Scholar 

  • Livingston DH, Wang MT (1993) Continuous infusion of cefazolin is superior to intermittent dosing in decreasing infection after hemorrhagic shock. Am J Surg 165(2):203–207

    Article  CAS  PubMed  Google Scholar 

  • Lodise TP, Butterfield J (2011) Use of pharmacodynamic principles to inform beta-lactam dosing: “S” does not always mean success. J Hosp Med 6(Suppl 1):S16–S23

    Article  PubMed  Google Scholar 

  • Lodise TP Jr, Lomaestro B, Drusano GL (2007) Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 44(3):357–363

    Article  CAS  PubMed  Google Scholar 

  • Lorente L, Lorenzo L, Martin MM, Jimenez A, Mora ML (2006) Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to gram-negative bacilli. Ann Pharmacother 40(2):219–223

    Article  CAS  PubMed  Google Scholar 

  • Lorente L, Jimenez A, Martin MM, Iribarren JL, Jimenez JJ, Mora ML (2009) Clinical cure of ventilator-associated pneumonia treated with piperacillin/tazobactam administered by continuous or intermittent infusion. Int J Antimicrob Agents 33(5):464–468

    Article  CAS  PubMed  Google Scholar 

  • MacGowan A (2011) Revisiting Beta-lactams – PK/PD improves dosing of old antibiotics. Curr Opin Pharmacol 11(5):470–476

    Article  CAS  PubMed  Google Scholar 

  • Mathot RAA, de Graaf AI, Vinks AA (1997) Stability of meropenem in a portable pump reservoir. Clin Microbiol Infect 88(Suppl 2):393

    Google Scholar 

  • Mohd Hafiz AA, Staatz CE, Kirkpatrick CM, Lipman J, Roberts JA (2011) Continuous infusion vs. bolus dosing: implications for beta-lactam antibiotics. Minerva Anestesiol 78(1):94–104

    PubMed  Google Scholar 

  • Mouton JW, den Hollander JG (1994) Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 38(5):931–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mouton JW, Michel MF (1991) Pharmacokinetics of meropenem in serum and suction blister fluid during continuous and intermittent infusion. J Antimicrob Chemother 28(6):911–918

    Article  CAS  PubMed  Google Scholar 

  • Mouton JW, Vinks AA (1996) Is continuous infusion of beta-lactam antibiotics worthwhile? Efficacy and pharmacokinetic considerations. J Antimicrob Chemother 38(1):5–15

    Article  CAS  PubMed  Google Scholar 

  • Mouton JW, Vinks AA (2005a) PK-PD modelling of antibiotics in vitro and in vivo using bacterial growth and kill kinetics: the MIC vs stationary concentrations. Clin Pharmacokinet 44:201–210

    Article  CAS  PubMed  Google Scholar 

  • Mouton JW, Vinks AA (2005b) Pharmacokinetic/pharmacodynamic modelling of antibacterials in vitro and in vivo using bacterial growth and kill kinetics: the minimum inhibitory concentration versus stationary concentration. Clin Pharmacokinet 44(2):201–210

    Article  CAS  PubMed  Google Scholar 

  • Mouton JW, Vinks AA (2007) Continuous infusion of beta-lactams. Curr Opin Crit Care 13(5):598–606

    Article  PubMed  Google Scholar 

  • Mouton JW, Horrevorts AM, Mulder PG, Prens EP, Michel MF (1990) Pharmacokinetics of ceftazidime in serum and suction blister fluid during continuous and intermittent infusions in healthy volunteers. Antimicrob Agents Chemother 34(12):2307–2311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muller AE, Punt N, Mouton JW (2013) Optimal exposures of ceftazidime predict the probability of microbiological and clinical outcome in the treatment of nosocomial pneumonia. J Antimicrob Chemother 68(4):900–906

    Google Scholar 

  • Naziri W, Cheadle WG, Trachtenberg LS, Montgomery WD, Polk HC Jr (1995) Second place winner of the Conrad Jobst Award in the gold medal paper competition. Increased antibiotic effectiveness in a model of surgical infection through continuous infusion. Am Surg 61(1):11–15

    CAS  PubMed  Google Scholar 

  • Neftel KA, Walti M, Spengler H, de Weck AL (1982) Effect of storage of penicillin-G solutions on sensitisation to penicillin-G after intravenous administration. Lancet 1(8279):986–988

    Article  CAS  PubMed  Google Scholar 

  • Neftel KA, Walti M, Schulthess HK, Gubler J (1984) Adverse reactions following intravenous penicillin-G relate to degradation of the drug in vitro. Klin Wochenschr 62(1):25–29

    Article  CAS  PubMed  Google Scholar 

  • Nicolau DP, McNabb J, Lacy MK, Quintiliani R, Nightingale CH (2001) Continuous versus intermittent administration of ceftazidime in intensive care unit patients with nosocomial pneumonia. Int J Antimicrob Agents 17(6):497–504

    Article  CAS  PubMed  Google Scholar 

  • Patel GW, Patel N, Lat A, Trombley K, Enbawe S, Manor K et al (2009) Outcomes of extended infusion piperacillin/tazobactam for documented Gram-negative infections. Diagn Microbiol Infect Dis 64(2):236–240

    Article  CAS  PubMed  Google Scholar 

  • Patel N, Scheetz MH, Drusano GL, Lodise TP (2010) Identification of optimal renal dosage adjustments for traditional and extended-infusion piperacillin-tazobactam dosing regimens in hospitalized patients. Antimicrob Agents Chemother 54(1):460–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pea F, Viale P, Damiani D, Pavan F, Cristini F, Fanin R et al (2005) Ceftazidime in acute myeloid leukemia patients with febrile neutropenia: helpfulness of continuous intravenous infusion in maximizing pharmacodynamic exposure. Antimicrob Agents Chemother 49(8):3550–3553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Periti P, Nicoletti P (1999) Classification of betalactam antibiotics according to their pharmacodynamics. J Chemother 11(5):323–330

    Article  CAS  PubMed  Google Scholar 

  • Peterson LR (2005) Squeezing the antibiotic balloon: the impact of antimicrobial classes on emerging resistance. Clin Microbiol Infect 11(Suppl 5):4–16

    Article  CAS  PubMed  Google Scholar 

  • Psathas PA, Kuzmission A, Ikeda K, Yasuo S (2008) Stability of doripenem in vitro in representative infusion solutions and infusion bags. Clin Ther 30(11):2075–2087

    Article  CAS  PubMed  Google Scholar 

  • Rafati MR, Rouini MR, Mojtahedzadeh M, Najafi A, Tavakoli H, Gholami K et al (2006) Clinical efficacy of continuous infusion of piperacillin compared with intermittent dosing in septic critically ill patients. Int J Antimicrob Agents 28(2):122–127

    Article  CAS  PubMed  Google Scholar 

  • Rappaz I, Decosterd LA, Bille J, Pilet M, Belaz N, Roulet M (2000) Continuous infusion of ceftazidime with a portable pump is as effective as thrice-a-day bolus in cystic fibrosis children. Eur J Pediatr 159(12):919–925

    Article  CAS  PubMed  Google Scholar 

  • Riethmueller J, Junge S, Schroeter TW, Kuemmerer K, Franke P, Ballmann M et al (2009) Continuous vs thrice-daily ceftazidime for elective intravenous antipseudomonal therapy in cystic fibrosis. Infection 37(5):418–423

    Article  CAS  PubMed  Google Scholar 

  • Roberts JA, Boots R, Rickard CM, Thomas P, Quinn J, Roberts DM et al (2007) Is continuous infusion ceftriaxone better than once-a-day dosing in intensive care? A randomized controlled pilot study. J Antimicrob Chemother 59(2):285–291

    Article  CAS  PubMed  Google Scholar 

  • Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J (2009a) Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother 64(1):142–150

    Article  CAS  PubMed  Google Scholar 

  • Roberts JA, Webb S, Paterson D, Ho KM, Lipman J (2009b) A systematic review on clinical benefits of continuous administration of beta-lactam antibiotics. Crit Care Med 37(6):2071–2078

    Article  CAS  PubMed  Google Scholar 

  • Roos JF, Lipman J, Kirkpatrick CM (2007) Population pharmacokinetics and pharmacodynamics of cefpirome in critically ill patients against Gram-negative bacteria. Intensive Care Med 33(5):781–788

    Article  CAS  PubMed  Google Scholar 

  • Roosendaal R, Bakker-Woudenberg IA (1990) Impact of the antibiotic dosage schedule on efficacy in experimental lung infections. Scand J Infect Dis Suppl 74:155–162

    CAS  PubMed  Google Scholar 

  • Roosendaal R, Bakker-Woudenberg IA, van den Berg JC, Michel MF (1985) Therapeutic efficacy of continuous versus intermittent administration of ceftazidime in an experimental Klebsiella pneumoniae pneumonia in rats. J Infect Dis 152(2):373–378

    Article  CAS  PubMed  Google Scholar 

  • Roosendaal R, Bakker-Woudenberg IA, van den Berghe-van Raffe M, Michel MF (1986) Continuous versus intermittent administration of ceftazidime in experimental Klebsiella pneumoniae pneumonia in normal and leukopenic rats. Antimicrob Agents Chemother 30(3):403–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roosendaal R, Bakker-Woudenberg IA, van den Berghe-van Raffe M, Vink-van den Berg JC, Michel MF (1987) Influence of dose frequency on the therapeutic efficacies of ciprofloxacin and ceftazidime in experimental Klebsiella pneumoniae pneumonia and septicemia in relation to their bactericidal activities in vitro. Pharm Weekbl [Sci] 9(Suppl):S33–S40

    Article  Google Scholar 

  • Roosendaal R, Bakker-Woudenberg IA, van den Berghe-van Raffe M, Vink-van den Berg JC, Michel BM (1989) Impact of the dosage schedule on the efficacy of ceftazidime, gentamicin and ciprofloxacin in Klebsiella pneumoniae pneumonia and septicemia in leukopenic rats. Eur J Clin Microbiol Infect Dis 8(10):878–887

    Article  CAS  PubMed  Google Scholar 

  • Safdar N, Maki DG (2002) The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med 136(11):834–844

    Article  PubMed  Google Scholar 

  • Schmidt LH, Walley A (1951) The influence of the dosage regimen on the therapeutic effectiveness of penicillin G in experimental lobar pneumonia. J Pharmacol Exp Ther 103(4):479–488

    CAS  PubMed  Google Scholar 

  • Schmidt LH, Walley A, Larson RD (1949) The influence of the dosage regimen on the therapeutic activity of penicillin G. J Pharmacol Exp Ther 96(4):258–268

    CAS  Google Scholar 

  • Servais H, Tulkens PM (2001) Stability and compatibility of ceftazidime administered by continuous infusion to intensive care patients. Antimicrob Agents Chemother 45(9):2643–2647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Service AHF (2005) Drug information. American Society of Health-System Pharmacists, Bethesda

    Google Scholar 

  • Sprauten PF, Beringer PM, Louie SG, Synold TW, Gill MA (2003) Stability and antibacterial activity of cefepime during continuous infusion. Antimicrob Agents Chemother 47(6):1991–1994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stiles ML, Mickschl D, Thompson DF (1989) Temperature of refrigerated i.v. fluids and admixtures during infusion. Am J Hosp Pharm 46(5):977–979

    CAS  PubMed  Google Scholar 

  • Stiles ML, Allen LV Jr, Fox JL (1992) Stability of ceftazidime (with arginine) and of cefuroxime sodium in infusion-pump reservoirs. Am J Hosp Pharm 49(11):2761–2764

    CAS  PubMed  Google Scholar 

  • Stiles ML, Allen LV Jr, Prince SJ (1995) Stability of various antibiotics kept in an insulated pouch during administration via portable infusion pump. Am J Health Syst Pharm 52(1):70–74

    CAS  PubMed  Google Scholar 

  • Tam VH, Louie A, Lomaestro BM, Drusano GL (2003) Integration of population pharmacokinetics, a pharmacodynamic target, and microbiologic surveillance data to generate a rational empiric dosing strategy for cefepime against Pseudomonas aeruginosa. Pharmacotherapy 23(3):291–295

    Article  CAS  PubMed  Google Scholar 

  • Thalhammer F, Traunmuller F, El Menyawi I, Frass M, Hollenstein UM, Locker GJ et al (1999) Continuous infusion versus intermittent administration of meropenem in critically ill patients. J Antimicrob Chemother 43(4):523–527

    Article  CAS  PubMed  Google Scholar 

  • Tice AD, Rehm SJ, Dalovisio JR, Bradley JS, Martinelli LP, Graham DR et al (2004) Practice guidelines for outpatient parenteral antimicrobial therapy. IDSA guidelines. Clin Infect Dis 38(12):1651–1672

    Article  PubMed  Google Scholar 

  • Trissel LA (2006) Handbook on injectable drugs, 14th edn. American Society of Health System Pharmacists, Bethesda

    Google Scholar 

  • Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J (2011) The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet 50(2):99–110

    Article  CAS  PubMed  Google Scholar 

  • van Lent-Evers NA, Mathot RA, Geus WP, van Hout BA, Vinks AA (1999) Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: a cost-effectiveness analysis. Ther Drug Monit 21(1):63–73

    Article  PubMed  Google Scholar 

  • van Zanten AR, Oudijk M, Nohlmans-Paulssen MK, van der Meer YG, Girbes AR, Polderman KH (2007) Continuous vs. intermittent cefotaxime administration in patients with chronic obstructive pulmonary disease and respiratory tract infections: pharmacokinetics/pharmacodynamics, bacterial susceptibility and clinical efficacy. Br J Clin Pharmacol 63(1):100–109

    Article  PubMed  CAS  Google Scholar 

  • Vella-Brincat JW, Begg EJ, Gallagher K, Kirkpatrick CM, Zhang M, Frampton C et al (2004) Stability of benzylpenicillin during continuous home intravenous therapy. J Antimicrob Chemother 53(4):675–677

    Article  CAS  PubMed  Google Scholar 

  • Viaene E, Chanteux H, Servais H, Mingeot-Leclercq MP, Tulkens PM (2002) Comparative stability studies of antipseudomonal beta-lactams for potential administration through portable elastomeric pumps (home therapy for cystic fibrosis patients) and motor-operated syringes (intensive care units). Antimicrob Agents Chemother 46(8):2327–2332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vinks AA (2002) The application of population pharmacokinetic modeling to individualized antibiotic therapy. Int J Antimicrob Agents 19(4):313–322

    Article  CAS  PubMed  Google Scholar 

  • Vinks AA, Touw DJ, Heijerman HG, Danhof M, de Leede GP, Bakker W (1994) Pharmacokinetics of ceftazidime in adult cystic fibrosis patients during continuous infusion and ambulatory treatment at home. Ther Drug Monit 16(4):341–348

    Article  CAS  PubMed  Google Scholar 

  • Vinks AA, Mouton JW, Touw DJ, Heijerman HG, Danhof M, Bakker W (1996a) Population pharmacokinetics of ceftazidime in cystic fibrosis patients analyzed by using a nonparametric algorithm and optimal sampling strategy. Antimicrob Agents Chemother 40(5):1091–1097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vinks AA, Touw DJ, van Rossen RC, Heijerman HG, Bakker W (1996b) Stability of aztreonam in a portable pump reservoir used for home intravenous antibiotic treatment (HIVAT). Pharm World Sci 18(2):74–77

    Article  CAS  PubMed  Google Scholar 

  • Vinks AA, Brimicombe RW, Heijerman HG, Bakker W (1997) Continuous infusion of ceftazidime in cystic fibrosis patients during home treatment: clinical outcome, microbiology and pharmacokinetics. J Antimicrob Chemother 40(1):125–133

    Article  CAS  PubMed  Google Scholar 

  • Vinks AA, Den Hollander JG, Overbeek SE, Jelliffe RW, Mouton JW (2003) Population pharmacokinetic analysis of nonlinear behavior of piperacillin during intermittent or continuous infusion in patients with cystic fibrosis. Antimicrob Agents Chemother 47(2):541–547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vogelman B, Craig WA (1986) Kinetics of antimicrobial activity. J Pediatr 108(5 Pt 2):835–840

    Article  CAS  PubMed  Google Scholar 

  • Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S, Craig WA (1988) Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis 158(4):831–847

    Article  CAS  PubMed  Google Scholar 

  • Walton AL, Howden BP, Grayson LM, Korman TM (2007) Continuous-infusion penicillin home-based therapy for serious infections due to penicillin-susceptible pathogens. Int J Antimicrob Agents 29(5):544–548

    Article  CAS  PubMed  Google Scholar 

  • Waltrip T, Lewis R, Young V, Farmer M, Clayton S, Myers S et al (2002) A pilot study to determine the feasibility of continuous cefazolin infusion. Surg Infect 3(1):5–9

    Article  Google Scholar 

  • Wang D (2009) Experience with extended-infusion meropenem in the management of ventilator-associated pneumonia due to multidrug-resistant Acinetobacter baumannii. Int J Antimicrob Agents 33(3):290–291

    Article  CAS  PubMed  Google Scholar 

  • Yost RJ, Cappelletty DM (2011) The retrospective cohort of extended-infusion piperacillin-tazobactam (RECEIPT) study: a multicenter study. Pharmacotherapy 31(8):767–775

    Article  PubMed  Google Scholar 

  • Zeller V, Durand F, Kitzis MD, Lhotellier L, Ziza JM, Mamoudy P et al (2009) Continuous cefazolin infusion to treat bone and joint infections: clinical efficacy, feasibility, safety, and serum and bone concentrations. Antimicrob Agents Chemother 53(3):883–887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anouk E. Muller M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muller, A.E., Mouton, J.W. (2014). Continuous Infusion of Beta-lactam Antibiotics. In: Vinks, A., Derendorf, H., Mouton, J. (eds) Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75613-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75613-4_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75612-7

  • Online ISBN: 978-0-387-75613-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics