Skip to main content

Biomaterials for Tissue Engineering of Hard Tissues

  • Chapter
  • First Online:
Strategies in Regenerative Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrosio AM, Sahota JS, Khan Y, Laurencin CT (2001) A novel amorphous calcium phosphate polymer ceramic for bone repair: I. synthesis and characterization. J Biomed Mater Res 58:295–301

    Article  CAS  Google Scholar 

  • Anagnostoua F, Debeta A, Pavon-Djavidb G, Goudabyb Z, Hélaryb G and Migonneyb V (2006) Biomaterials 27:3912–3919

    Article  CAS  Google Scholar 

  • Anderson OH and Kangansniemi L (1991) Calcium phosphate formation at the surface of bioactive glass in vivo. J Biomed Mater Res 25:1019–1030

    Article  Google Scholar 

  • Annual Book of ASTM Standards 2000, Section 13 Medical Devices.

    Google Scholar 

  • Arnaud, E, De Pollak C, Meunier A, Sedel L, Damien C, Petite H (1999) Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty. Biomaterials 20:1909–1918

    Article  CAS  Google Scholar 

  • Badylak SF (2002) Modification of natural polymers: Collagen. In: Atala A, Lanza RP (eds) Methods of tissue engineering. San Diego, CA: Academic Presspp. pp 505–514

    Google Scholar 

  • Behravesh E, Zygourakis K, Mikos AG (2003) Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)- based hydrogels with a covalently linked RGDS peptide. J Biomed Mater Res Part A 65:260–270

    Article  CAS  Google Scholar 

  • Berlot, S, Aissaoui Z, Pavon-Djavid G, Belleney J, Jozefowicz M, Helary G, Migonney V (2002) Biomimetic poly(methyl methacrylate)-based terpolymers: modulation of bacterial adhesion effect. Biomacromolecules 3:63–68

    Article  CAS  Google Scholar 

  • Berlot-Moirez S, Pavon-Djavid G, Montdargent B, Jozefowicz M, Migonney V (2002), Modulation of Staphylococcus aureus adhesion by biofunctional copolymers derived from polystyrene. ITBM 23:102–108

    Article  Google Scholar 

  • Black J., Hastings G. (1998) Handbook of biomaterials properties, Chapman & Hall, London.

    Book  Google Scholar 

  • Blades MC. Moore DP. Revelli PA, Hill RG (1998) J Mat Sci Mat Med 9:701

    Article  CAS  Google Scholar 

  • Boccaccini AR, Blakera JJ, Maquet V, Day RM, Jérôme R (2005), Preparation and characterisation of poly(lactide-co-glycolide) (PLGA) and PLGA/Bioglass(R) composite tubular foam scaffolds for tissue engineering applications. Mater Sci Eng C 25:23–31

    Article  CAS  Google Scholar 

  • Boccaccini AR, Stamboulis AG, Rashid A, Roether JA (2003) Composite surgical sutures with bioactive glass coating. J Biomed Mater Res B: Appl Biomater 67B:618–626

    Article  CAS  Google Scholar 

  • Boccaccini AR, Maquet V (2003) Bioresorbable and bioactive polymer/Bioglass(R) composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 63:2417–2429

    Article  CAS  Google Scholar 

  • Boden SD (1999) Bioactive factors for bone tissue engineering. Clin Orthop Relat Res 367:S84–94

    Article  Google Scholar 

  • Bradt J, Mertig M, Teresiak A, Pompe, W (1999) Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem Mater 11: 2694–2701

    Article  CAS  Google Scholar 

  • Burg KJL, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–2359

    Article  CAS  Google Scholar 

  • Cao Y, Mitchell G, Messina A, Price L, Thompson E, Penington A, Morrison W, O’Connor A, Stevens G, Cooper-White JJ (2006) The influence of architecture on degradation and tissue ingrowth into three-dimensional poly(lactic-co-glycolic acid) scaffolds in vitro and in vivo Biomaterials 27:2854–2864

    CAS  Google Scholar 

  • Chang C, Huang J, Xia J, Ding C (1999) Study on crystallization kinetics of plasma sprayed hydroxyapatite coating. Ceramics Int 25:479–483

    Article  CAS  Google Scholar 

  • Charnley J (1960) Anchorage of the femoral head prosthesis to the shaft of the femur. J Bone Joint Surg Br 42-B:28–30

    CAS  Google Scholar 

  • Chen F, Yoo JJ, Atala A (1999) Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology 54:407–410

    Article  CAS  Google Scholar 

  • Choi SH, Park TGJ (2002) Biomater Sci Polym 13:1163–1174

    Article  CAS  Google Scholar 

  • Cook WD. Forrest M, Goodwin AA. (1999) A simple method for the measurement of polymerization shrinkage in dental composites. Dent Mater 15:447–449

    Article  CAS  Google Scholar 

  • Cremieux AC, Pavon-Djavid G, Saleh Mghir A, Helary G, Migonney V (2003) Bioactive polymers grafted on silicone to prevent Staphylococcus aureus prosthesis adherence: in vitro and in vivo studies. JABBS 1:178–185

    CAS  Google Scholar 

  • Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe SM (2004) Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds, Biomaterials 25:5857–5866

    Article  CAS  Google Scholar 

  • Delmi M, Vaudaux P, Lew DP, Vasey H (1994) Role of fibronectin in staphylococcal adhesion to metallic surfaces used as models of orthopaedic devices. J Orthop Res 12:432–438

    Article  CAS  Google Scholar 

  • Deng X, Hao J, Wang C (2001) Preparation and mechanical properties of nanocomposites of poly(d,l-lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials 22:2867–2873

    Article  CAS  Google Scholar 

  • Devin JE, Attawia MA, Laurencin CT (1996) Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair. J Biomater Sci Polym Ed 7:661–669

    Article  CAS  Google Scholar 

  • Duerig, TW. Melton KN. Stöckel D, Wayman CM (1990) “Engineering aspects of shape memory alloys”. ISBN 0-750-61009-3. London: Butterworth Heinemann.

    Google Scholar 

  • El Gannham A (2005) Bone reconstruction: from biocermamics to tissue engineering. Exper Rev Med Devices 2:87–101

    Article  Google Scholar 

  • El Khadali F, Hélary G, Pavon-Djavid G, Migonney V (2002) Modulating fibroblast cell proliferation with functionalized poly(methyl methacrylate) based copolymers: chemical composition and monomer distribution effect. Biomacromolecules 3:51–56

    Article  CAS  Google Scholar 

  • Firkowska I. Giannona S, Rojas-Chapana R. and Giersig M (2006) Qualitative evaluation of the response of human osteoblast cells to nanotopography surfaces based on carbon nanotubes. Technical Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show, Volume 2, Nanotech 2006 Vol. 2

    Google Scholar 

  • Fujishiro Y, Oonishi H, Hench LL (1997) Quantitative comparison of in vivo bone generation with particulate Bioglass®. In: Sedel L, Rwy C (Eds) Bioceramics 10. Elsevier, NY, USA, pp 283–286

    Google Scholar 

  • Giesen EB, Ding M, Dalstra M, van Eijden TM (2001) Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J Biomech 34:799–803

    Article  CAS  Google Scholar 

  • Ginebra MP, Traykova T, Planell JA (2006) Calcium phosphate cements as bone drug delivery systems: A review. J Controlled Release 113:102–110

    Article  CAS  Google Scholar 

  • Girton TS, Barocas VH, Tranquillo RT (2002) Confined compression of a tissue-equivalent: collagen fibril and cell alignment in response to anisotropic strain. J Biomech Eng 124:568–575

    Article  CAS  Google Scholar 

  • Gledhill HC, Turner IG, Doyle C (2001) In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings. Biomaterials 22:1233–1240

    Article  CAS  Google Scholar 

  • Guan L, Davies JE (2004) Preparation and characterisation of a highly macroporous biodegradable composite tissue engineering scaffold. J Biomed Mater Res 71A:480–487

    Article  CAS  Google Scholar 

  • Hamdi M, Hakamata S, Ektessabi AM (2000) Thin Solid Films 377/378:484–489

    Article  Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684

    Article  CAS  Google Scholar 

  • Haynesworth SE, Goshima J, Goldberg VM, Caplan AI (1992) Characterization of cells with osteogenic potential from human bone marrow. Bone 13:81–88

    Article  CAS  Google Scholar 

  • Heimann RB, Wirth R (2006) Biomaterials 27:823–831

    Article  CAS  Google Scholar 

  • Helm GA, Gazit Z (2005) Future uses of mesenchymal stem cells in spine surgery. Neurosurg Focus 19:E13

    Article  Google Scholar 

  • Hollinger JO, Battistone GC (1986) Biodegradable bone repair materials—Synthetic-polymers and ceramics. Clin Orthop Rel Res. 290–305

    Google Scholar 

  • Horwitz EM, Gordon PL, Koo WKK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogenic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone PNAS 25:8932–8937 http://www.mindat.org – the mineral and locality database

  • IARC Monographs (1999) on the Evaluation of Carcinogenic Risks to Humans: Surgical Implants and Other Foreign Bodies, Lyon 74:65

    Google Scholar 

  • Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1997) Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36:17–28

    Article  CAS  Google Scholar 

  • Jaakkola T, Rich J, Tirri T, Narhi T, Jokinen M, Seppala J, Yli-Urpo A (2004) In vitro Ca-P precipitation on biodegradable thermoplastic composite of poly([epsilon]-caprolactone-co-lactide) and bioactive glass (S53P4). Biomaterials 25:575–581

    Article  CAS  Google Scholar 

  • Jansen B (1990) Bacterial adhesion to medical polymers—use of radiation techniques for the prevention of materials-associated infections. Clin Mater 6:65–74

    Article  CAS  Google Scholar 

  • Jones JR, Ehrenfried LM, Hencha LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27:964–973

    Article  CAS  Google Scholar 

  • Juhasz JA, Best SM, Brooks R, Kawashita M, Miyata N, Kokubo T, Nakamura T, Bonfield W (2004) Mechanical properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size. Biomaterials 25:949–955

    Article  CAS  Google Scholar 

  • Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316:1–11

    CAS  Google Scholar 

  • Karageorgiou V, David K (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  CAS  Google Scholar 

  • Karp JM, Rzeszutek K, Shoichet MS, Davies JE (2003) Fabrication of precise cylindrical three-dimensional tissue engineering scaffolds for in vitro and in vivo bone engineering applications. J Craniofac Surg 14:317–323

    Article  Google Scholar 

  • Kasuga T, Ota Y, Nogami M, Abe Y (2001) Preparation and mechanical properties of polylactide acid composites containing hydroxyapatite fibres. Biomaterials 22:9–23

    Article  Google Scholar 

  • Kenny SM, Buggy M (2003) Bone cements and fillers: a review. J Mater Sci Mater Med 14:923–938

    Article  CAS  Google Scholar 

  • Kikuchi M, Tanaka J, Koyama Y, Takakuda K (1999) Cell culture tests of TCP/CPLA composite, J Biomed Mater Res 48:108–110

    Article  CAS  Google Scholar 

  • King KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Phil Trans R Soc Lond A 362:2821–2850

    Article  Google Scholar 

  • Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–37

    Article  CAS  Google Scholar 

  • Kulkarni RK, Moore EG, Hegyeli AF, Leonard F (1971) Biodegradable poly(lactic acid) polymers, J Biomed Mater Res 5:169–181

    Article  CAS  Google Scholar 

  • Latz C, Pavon-Djavid G, Helary G, Evans MD, Migonney V (2003) Alternative intracellular signaling mechanism involved in the inhibitory biological response of functionalized PMMA-based polymers. Biomacromolecules 4:766–771

    Article  CAS  Google Scholar 

  • Lazarus HM, Haneysworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex vivo expansion and subsequent infusion of human bone marrow derived stromal progenitor cells (mesenchymal progenitors cells): Implications for therapeutic use. Bone Marrow Transplant 15:935–942

    CAS  Google Scholar 

  • Le Guéhennec L, Layrolle P, Daculsi G (2004) Review of bioceramics and fibrin sealant. Eur Cells Mater 8:1–11

    Google Scholar 

  • Lee B, Litt M, Buchsbaum G (1994) Rheology of the vitreous body: part 3. Concentration of electrolytes, collagen and hyaluronic acid. Biorheology 31:339–351

    CAS  Google Scholar 

  • Lee IS, Whang CN, Kim HE, Park JC, Song JH, Kim SR (2002) Mater Sci Eng: C 22:15–20

    Article  Google Scholar 

  • Lee SH, Kim HW, Lee EJ, Li LH, Kim HE (2000) Hydroxyapatite-TiO2 hybrid coating on Ti implants. Biomaterials 21:469–473

    Article  Google Scholar 

  • Legeros RZ (1991) Calcium phosphates in Oral biology and Medicine, Karger, New York

    Google Scholar 

  • Li H. and Chang J (2004) Preparation and characterisation of bioactive and biodegradable wollastonite/poly(d,l-lactic acid) composite scaffolds. J Mater Sci. Mater Med 15:1089–1095

    Article  CAS  Google Scholar 

  • Lim GK, Wang J, Ng SC, Chew CH, Gan LM (1997) Processing of hydroxyapatite via microemulsion and emulsion routes. Biomaterials 18:1433–1439

    Article  CAS  Google Scholar 

  • Liu X, Ma PX (2004) Polymeric Scaffolds for Bone Tissue Engineering. Ann Biomed Eng 32:477–486

    Article  Google Scholar 

  • Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng: R: Rep 47:49–121

    Article  CAS  Google Scholar 

  • Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H (2005) Engineering bone: challenges and obstacles. J Cell Mol Med 9:72–84

    Article  CAS  Google Scholar 

  • Lundberg F, Gouda I, Larm O, Galin MA, Ljungh A (1998) A new model to assess staphylococcal adhesion to intraocular lenses under in vitro flow conditions. Biomaterials 19:1727–1733

    Article  CAS  Google Scholar 

  • Ma PX, Zhang RY (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56:469–477

    Article  CAS  Google Scholar 

  • Magan A, Ripamonti U (1996) Geometry of porous hydroxyapatite implants influences osteogenesis in baboons (Papio ursinus). J Craniofac Surg 7:71–78

    Article  CAS  Google Scholar 

  • Mathis RL, Ferrancane JL (1989) Dent Mat 5:355

    Article  CAS  Google Scholar 

  • Meffert R, Thomas J, Hamilton K, Brownstein C (1985) Hydroxylapatite as an alloplastic graft in the treatment of periodontal osseous defect. J Periodontol 56:63–73

    Article  CAS  Google Scholar 

  • Miller RA, Brady JM, Cutright DE (1997) Degradation rates of oral resorbable implants and (polylactates and polyglycolates): Rate modification with changes in PLA/POA ratios. J Biomed Mater Res 11:711

    Article  Google Scholar 

  • Mizuno M, Shindo M, Kobayashi D, Tsuruga E, Amemiya A, Kuboki Y (1997) Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone 20:101–107

    Article  CAS  Google Scholar 

  • Nakayama Y, Yamamuro T, Kotoura Y, Oka M (1989) In vivo measurement of anodic polarization of orthopaedic implant alloys: comparative study of in vivo and in vitro experiments. Biomaterials 10:420–424

    Article  CAS  Google Scholar 

  • Navarro M, Aparicio C, Charles-Harris M, Ginebra MP, Ángel E, Planell JA (2006) Development of biodegradable composite scaffolds for bone tissue engineering: physicochemical, topographical, mechanical degradation, and biological properties. Adv Polym Sci 200:209–231

    Article  CAS  Google Scholar 

  • Nelea V, Morosanu C, Iliescu M, Mihailescu IN (2005) Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study. Appl Surf Sci 228:346–356

    Article  CAS  Google Scholar 

  • Neo M, Nakamura T, Ohtsuki C, Kokubo T, Yamamuro T (1993) Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy. J Biomed Mater Res 27:999–1006

    Article  CAS  Google Scholar 

  • Nicholson JW, Brookman PJ, Lacy OM, Savers GS, Wilson AD (1988) J Biomed Mater Res 22:623

    Article  CAS  Google Scholar 

  • Niederwanger M, Urist MR (1996) Demineralized bone matrix supplied by bone banks for a carrier of recombinant human bone morphogenetic protein (rhBMP-2), a substitute for autogeneic bone grafts. J Oral Implantol 22:210–215

    CAS  Google Scholar 

  • Ogino M, Ohuchi F, Hench LL (1980) Compositional dependence on the formation of calcium phosphate films on bioglass. J Biomed Mater Res 14:55–64

    Article  CAS  Google Scholar 

  • Ohtsuki C, Kushitani H, Kokubo T, Kotani S, Yamamuro T (1991) Apatite formation on the surface of Ceravital-type glass-ceramic in the body. J Biomed Mater Res 25: 1363–1370

    Article  CAS  Google Scholar 

  • Onoki T, Hashida T (2006) New method for hydroxyapatite coating of titanium by the hydrothermal hot isostatic pressing technique. Surf Coat Technol 200:6801–6807

    Article  CAS  Google Scholar 

  • Parikh SN (2002) Bone graft substitutes: past, present, future. J Postgrad Med 48:142–148

    CAS  Google Scholar 

  • Park SN, Park JC, Kim HO, Song MJ, Suh H (2002) Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials 23:1205–1212

    Article  CAS  Google Scholar 

  • Peacock SJ, Day NP, Thomas MG, Berendt AR, Foster TJ (2000) Clinical isolates of Staphylococcus aureus exhibit diversity in fnb genes and adhesion to human fibronectin, J Infect 41:23–31

    Article  CAS  Google Scholar 

  • Peter SJ, Lu L, Kim DJ and Mikos AG (2000) Marrow stromal osteoblast function on a poly(propylene fumarate)/β-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials 21:1207–1213

    Article  CAS  Google Scholar 

  • Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1998) Polymer concepts in tissue engineering. J Biomed Mater Res 43:422–427

    Article  CAS  Google Scholar 

  • Peters WJ, Jackson RW, Iwano K, Smith DC (1972) The. biological responses to zinc polyacrylate cement. Clin Orthop 88:228

    Article  CAS  Google Scholar 

  • Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–63

    Article  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhaematopoietic tissues. Science 276:71–4

    Article  CAS  Google Scholar 

  • Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224

    Article  CAS  Google Scholar 

  • Rezwana K, Chena QZ, Blakera JJ, Boccaccini AR (2006) AR, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  Google Scholar 

  • Rich J, Jaakkola T, Tirri T, Narhi T, Yli-Urpo A, Seppala J (2002) In vitro evaluation of poly([var epsilon]-caprolactone-co-DL-lactide)/bioactive glass composites. Biomaterials 23:2143–2150

    Article  CAS  Google Scholar 

  • Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jerjme R (2002) Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass(R) for tissue engineering applications. Biomaterials 23:3871–3878

    Article  CAS  Google Scholar 

  • Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  CAS  Google Scholar 

  • Schepers E, de Clercq M, Ducheyne P, Kempeneers R (1991) Bioactive glass particulate material as a filler for bone lesions. J Oral Rehabil 18:439–452

    Article  CAS  Google Scholar 

  • Schepers EJ, Ducheyne P, Barbier L, Schepers S (1993) Bioactive glass particles of narrow size range: a new material for the repair of bone defects. Implant Dent 2:151–156

    Article  CAS  Google Scholar 

  • Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration , Mater Sci Eng: R: Rep 34:147–230

    Article  Google Scholar 

  • Segura T, Show, Anderson BC, Chung PH, Webber RE, Shull KR, Shea LD (2005) Crosslinked hyaluronic acid hydrogels: A strategy to functionalize and pattern. Biomaterials 26(4):359–371

    Google Scholar 

  • Serhan H, Slivka M, Albert T, Kwak SD (2004) Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?, Spine J 4:379–387

    Article  Google Scholar 

  • Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133:185–192

    Article  CAS  Google Scholar 

  • Shikinami Y, Okuno M (2001) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly -lactide (PLLA). Part II: practical properties of miniscrews and miniplates. Biomaterials 22:3197–3211

    Article  CAS  Google Scholar 

  • Shimizu K, Tadaki T (1987) Shape Memory Alloys, In: Funakubo H (ed) Gordon and Breach Science Publishers, New York.

    Google Scholar 

  • Smith DC (1968) Br Dent J 125:381

    Google Scholar 

  • Soballe K, Hansen ES, Brockstedt-Rasmussen H, Bunger C (1993) Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J Bone Joint Surg Br 75:270–8

    CAS  Google Scholar 

  • Solchaga LA, Dennis JE, Goldberg VM, Caplan AI (1999) Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 17:205–213

    Article  CAS  Google Scholar 

  • Solheim E (1998) Growth factors in bone. Int Orthopaedics 22:410–416

    Article  CAS  Google Scholar 

  • Stamboulis AG (2002) Novel biodegradable polymer/bioactive glass composites for tissue engineering applications. Adv Eng Mater 4:105–109

    Article  CAS  Google Scholar 

  • Stanley HR, Hall MB, Clark AE, King C, Hench LL, Berte JJ (1997) Using 45S5 bioglass cones as endosseous ridge maintenance implant to prevent alveolar ridge resorption: a 5 year evolution. Int J Maxillofac Implants 12:95–105

    CAS  Google Scholar 

  • Stauffer RN (1982) Ten-year follow-up study of total hip replacement. J Bone Joint Surg Am 64:983–990

    CAS  Google Scholar 

  • Sumita M, Hanawa T, Teoh SH (2004) Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials-review. Mater Sci Eng C, 24:753–760

    Article  CAS  Google Scholar 

  • Sumita M, Ikada Y, Tateishi T (2000) Metallic Biomaterials—Fundamentals and Applications, ICP, Tokyo p. 629

    Google Scholar 

  • Takahashi Y, Yamamoto M, Tabata Y (2005) Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials 26:3587–3596

    Article  CAS  Google Scholar 

  • Teoh SH (2000) Fatigue of biomaterials: a review. Int J Fatigue 22:825–837

    Article  CAS  Google Scholar 

  • Thomson RC, Wake MC, Yaszemski MJ, Mikos AG (1995) Biodegradable polymer scaffolds to regenerate organs. Adv Polym Sci 122:245–274

    Article  CAS  Google Scholar 

  • Tisdel CL, Goldberg VM, Parr JA, Bensusan JS, Staikoff LS, Stevenson S (1994) The influence of a hydroxyapatite and tricalcium phosphatae coating on bone growth into titanium fiber-metal implants. J Bone Joint Surg Am 76:159–71

    CAS  Google Scholar 

  • Traykova T, Aparicio C, Ginebra MP, Planell JA (2006) Bioceramics as nanomaterials, Nanomedicine 1:91–106

    Article  CAS  Google Scholar 

  • United States Patent 5916498.Method of manufacturing a dental prosthesis.

    Google Scholar 

  • van Dijk K, Schaeken HG, Wolke JGC, Jansen JA (1996) Biomaterials 17:405–410

    Article  Google Scholar 

  • Vaudaux P, Yasuda H, Velazco MI, Huggler E, Ratti I, Waldvogel FA, Lew DP, Proctor RA (1990) Role of host and bacterial factors in modulating staphylococcal adhesion to implanted polymer surfaces. J Biomater Appl 5:134–153

    Article  CAS  Google Scholar 

  • Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR (2004) PDLLA/Bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials 25:3013–3021

    Article  CAS  Google Scholar 

  • Vogel M, Voigt C, Gross U, Müller-Mai C (2001) In vivo comparison of bioactive glass particles in rabbits. Biomaterials 22:357–362, 26:359–371

    Article  CAS  Google Scholar 

  • Wang C, Ma J, Cheng W, Zhang R (2002) Thick hydroxyapatite coatings by electrophoretic deposition. Mater Letters 57: 99–105

    Article  CAS  Google Scholar 

  • Wang CX, Chen ZQ, Guan LM, Wang M, Liu ZY, Wang PL (2001) Beam interactions with materials and atoms, fabrication and characterization of graded calcium phosphate coatings produced by ion beam sputtering/mixing deposition. Nucl Instrum Methods Phys Res B 179:364–372

    Article  CAS  Google Scholar 

  • Williams DF (1998) Medical and dental materials, materials science and technology vol. 14, VCH, Weinheim

    Google Scholar 

  • Wilson AD, Kent BE (1971) J Appl Chem Biotechnol 21:313

    Article  CAS  Google Scholar 

  • Xu HHK, Simon JCG (2004) Self-hardening calcium phosphate composite scaffold for bone tissue engineering. J Orthop Res 22:535–543

    Article  CAS  Google Scholar 

  • Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Tissue Eng. 7:679–689

    Article  CAS  Google Scholar 

  • Yarlagadda PKDV, Chandrasekharan M, Shyan JYM (2005) Recent advances and current developments in tissue scaffolding. Bio-Med Mater Eng 15:159–177

    CAS  Google Scholar 

  • Yaszenski MJ, Payne RG, Hayes WC, Langer R, Aufdemorte TB, Mikos AG (1995) The ingrowth of new bone tissue and initial mechanical properties of a degrading polymeric composite scaffold. Tissue Eng 1:41–52

    Article  Google Scholar 

  • Yuan H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20:1799–1806

    Article  CAS  Google Scholar 

  • Zhang K, Wang Y, Hillmyer MA, Francis LF (2004) Processing and properties of porous poly(l-lactide)/bioactive glass composites. Biomaterials 25:2489–2500

    Article  CAS  Google Scholar 

  • Zhang RY, Ma PX (1999) Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 44:446–455

    Article  CAS  Google Scholar 

  • Zhang Y, Tao J, Pang Y, Wang W, Wang T (2006) Transactions of nonferrous metals society of China, vol. Elsevier, New York, pp 633–637

    Google Scholar 

  • Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D, (2004) Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 25:2695–2711

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to The Spanish Ministerio de Educación y Ciencia, to the Departament d'Innovació, Universitats i Empresa de la Generalitat de Catalunya, and to the Marie Curie Fellowship Association for the research grants.

Some of the work described in this manuscript has been supported by Commission European Union: European project SMART-CaP ,Injectable Macroporous Biomaterials Based on Calcium Phosphate Cement Bone Regeneration, contract number: NMP3-CT-500465 ; European Project STEPS, A System Approach to Tissue Engineering Processes and Products, contract number FP6-500465.

The authors also would like to thank Dr. Samuel Stupp for kindly providing figure 17, and the companies Klockner SA, Spain, Zimmer Dental Inc. USA, as well as all the personnel of the Grup de Biomaterials, Biomecànica i Enginyeria de Teixits (BIBITE) for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep A. Planell .

Editor information

Editors and Affiliations

Additional information

Questions/Exercises

  1. 1.

    Define the difference between inertness and bioactivity.

  2. 2.

    Provide a definition of polymers and give examples of biomaterial polymers for bone repair.

  3. 3.

    What are the differences between synthetic and natural polymers?

  4. 4.

    Why PMMA has been gradually substituted by alternative materials in orthopedic applications?

  5. 5.

    Why surface coating technology is important in biomaterials for bone applications?

  6. 6.

    Difference between hyaluronic acid and alginic acid in terms of structure and function.

  7. 7.

    Which are the advantages and drawbacks of using metals as biomaterials.

  8. 8.

    What does alloy mean?

  9. 9.

    Differentiate between ceramic and glass.

  10. 10.

    What is the main inorganic component of bones in teeth?

  11. 11.

    Define a bioactive 3D scaffold.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Engel, E., Castaño, O., Salvagni, E., Ginebra, M.P., Planell, J.A. (2009). Biomaterials for Tissue Engineering of Hard Tissues. In: Santin, M. (eds) Strategies in Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74660-9_3

Download citation

Publish with us

Policies and ethics