Skip to main content

Neuroimaging of Attention

  • Chapter
  • First Online:
The Neuropsychology of Attention

Abstract

A little over 20 years ago, the first studies of blood oxygen level-dependent (BOLD) were conducted by several pioneers in burgeoning field of neuroimaging conducted demonstrating that functional magnetic resonance imaging (FMRI) of the brain was possible [1–4]. Soon after this, BOLD was shown to correspond with brain activation during simple sensory, motor, and cognitive operations, with regional patterns of cortical response that corresponded with established functional neuroanatomy [5–16]. These findings complemented parallel research that had been emerging a few years before using radiological methods like positron emission tomography (PET) [17]. Interest in functional neuroimaging surged as the significance of these findings became evident to neuroscientists. Neuroimaging has become a primary method for cognitive neuroscience research over the past 2 decades, providing a powerful tool for studying brain structure and function. Neuroimaging has evolved to the point that many universities now have research-dedicated MR scanners, in many cases located in psychology or neuroscience departments. This reflects the perception that neuroimaging is likely to continue to have a significant influence on the cognitive and behavioral neurosciences in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87(24), 9868–9872.

    PubMed  Google Scholar 

  2. Ogawa, S., & Lee, T. M. (1990). Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image simulation. Magnetic Resonance in Medicine, 16(1), 9–18.

    PubMed  Google Scholar 

  3. Kwong, K. K., Belliveau, J. W., Chesler, D. A., et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America, 89(12), 5675–5679.

    PubMed  Google Scholar 

  4. Ogawa, S., Tank, D. W., Menon, R., et al. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 89(13), 5951–5955.

    PubMed  Google Scholar 

  5. Malach, R., Reppas, J. B., Benson, R. R., et al. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences of the United States of America, 92(18), 8135–8139.

    PubMed  Google Scholar 

  6. Tootell, R. B., Reppas, J. B., Kwong, K. K., et al. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. The Journal of Neuroscience, 15(4), 3215–3230.

    PubMed  Google Scholar 

  7. Cohen, M. S., Kosslyn, S. M., Breiter, H. C., et al. (1996). Changes in cortical activity during mental rotation. A mapping study using functional MRI. Brain, 119(Pt 1), 89–100.

    PubMed  Google Scholar 

  8. Bandettini, P. A., Kwong, K. K., Davis, T. L., et al. (1997). Characterization of cerebral blood oxygenation and flow changes during prolonged brain activation. Human Brain Mapping, 5(2), 93–109.

    PubMed  Google Scholar 

  9. Belliveau, J. W., Kwong, K. K., Kennedy, D. N., et al. (1992). Magnetic resonance imaging mapping of brain ­function. Human visual cortex. Investigative Radiology, 27(Suppl 2), S59–S65.

    PubMed  Google Scholar 

  10. Buckner, R. L., Raichle, M. E., Miezin, F. M., & Petersen, S. E. (1996). Functional anatomic studies of memory retrieval for auditory words and visual pictures. The Journal of Neuroscience, 16(19), 6219–6235.

    PubMed  Google Scholar 

  11. Hammeke, T. A., Yetkin, F. Z., Mueller, W. M., et al. (1994). Functional magnetic resonance imaging of somatosensory stimulation. Neurosurgery, 35(4), 677–681.

    PubMed  Google Scholar 

  12. Menon, V., Kwon, H., Eliez, S., Taylor, A. K., & Reiss, A. L. (2000). Functional brain activation during cognition is related to FMR1 gene expression. Brain Research, 877(2), 367–370.

    PubMed  Google Scholar 

  13. Rao, S. M., Bandettini, P. A., Binder, J. R., et al. (1996). Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. Journal of Cerebral Blood Flow and Metabolism, 16(6), 1250–1254.

    PubMed  Google Scholar 

  14. Woodruff, P. W., Benson, R. R., Bandettini, P. A., et al. (1996). Modulation of auditory and visual cortex by selective attention is modality-dependent. Neuroreport, 7(12), 1909–1913.

    PubMed  Google Scholar 

  15. Cramer, S. C., Nelles, G., Schaechter, J. D., Kaplan, J. D., Finklestein, S. P., & Rosen, B. R. (2001). A functional MRI study of three motor tasks in the evaluation of stroke recovery. Neurorehabilitation and Neural Repair, 15(1), 1–8.

    PubMed  Google Scholar 

  16. Cramer, S. C., Weisskoff, R. M., Schaechter, J. D., et al. (2002). Motor cortex activation is related to force of squeezing. Human Brain Mapping, 16(4), 197–205.

    PubMed  Google Scholar 

  17. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(6157), 585–589.

    PubMed  Google Scholar 

  18. Rao, S. M., Binder, J. R., Bandettini, P. A., et al. (1993). Functional magnetic resonance imaging of complex human movements. Neurology, 43(11), 2311–2318.

    PubMed  Google Scholar 

  19. Cohen, R. A., & Sweet, L. H. (Eds.). (2011). Brain imaging in behavioral medicine and clinical neuroscience. New York, NY: Springer.

    Google Scholar 

  20. Reivich, M., Gur, R., & Alavi, A. (1983). Positron emission tomographic studies of sensory stimuli, cognitive processes and anxiety. Human Neurobiology, 2(1), 25–33.

    PubMed  Google Scholar 

  21. Buchsbaum, M. S., & Haier, R. J. (1987). Functional and anatomical brain imaging: Impact on schizophrenia research. Schizophrenia Bulletin, 13(1), 115–132.

    PubMed  Google Scholar 

  22. Jernigan, T. L., Sargent, T., 3rd, Pfefferbaum, A., Kusubov, N., & Stahl, S. M. (1985). 18Fluorodeoxyglucose PET in schizophrenia. Psychiatry Research, 16(4), 317–329.

    PubMed  Google Scholar 

  23. Guich, S. M., Buchsbaum, M. S., Burgwald, L., et al. (1989). Effect of attention on frontal distribution of delta activity and cerebral metabolic rate in schizophrenia. Schizophrenia Research, 2(6), 439–448.

    PubMed  Google Scholar 

  24. Andreasen, N. C., Swayze, V., O’Leary, D. S., et al. (1995). Abnormalities in midline attentional circuitry in schizophrenia: Evidence from magnetic resonance and positron emission tomography. European Neuropsychopharmacology, 5(Suppl), 37–41.

    PubMed  Google Scholar 

  25. Andreasen, N. C., O’Leary, D. S., Cizadlo, T., et al. (1995). II. PET studies of memory: Novel versus practiced free recall of word lists. NeuroImage, 2(4), 296–305.

    PubMed  Google Scholar 

  26. Pfefferbaum, A., & Zipursky, R. B. (1991). Neuroimaging studies of schizophrenia. Schizophrenia Research, 4(2), 193–208.

    PubMed  Google Scholar 

  27. Cleghorn, J. M., Garnett, E. S., Nahmias, C., et al. (1990). Regional brain metabolism during auditory hallucinations in chronic schizophrenia. The British Journal of Psychiatry, 157, 562–570.

    PubMed  Google Scholar 

  28. Siegel, B. V., Jr., Nuechterlein, K. H., Abel, L., Wu, J. C., & Buchsbaum, M. S. (1995). Glucose metabolic correlates of continuous performance test performance in adults with a history of infantile autism, schizophrenics, and controls. Schizophrenia Research, 17(1), 85–94.

    PubMed  Google Scholar 

  29. Fiorelli, M., Blin, J., Bakchine, S., Laplane, D., & Baron, J. C. (1991). PET studies of cortical diaschisis in patients with motor hemi-neglect. Journal of the Neurological Sciences, 104(2), 135–142.

    PubMed  Google Scholar 

  30. Nestor, P. G., Parasuraman, R., Haxby, J. V., & Grady, C. L. (1991). Divided attention and metabolic brain dysfunction in mild dementia of the Alzheimer’s type. Neuropsychologia, 29(5), 379–387.

    PubMed  Google Scholar 

  31. Matochik, J. A., Liebenauer, L. L., King, A. C., Szymanski, H. V., Cohen, R. M., & Zametkin, A. J. (1994). Cerebral glucose metabolism in adults with attention deficit hyperactivity disorder after chronic stimulant treatment. The American Journal of Psychiatry, 151(5), 658–664.

    PubMed  Google Scholar 

  32. Mayberg, H. S. (1994). Clinical correlates of PET- and SPECT-identified defects in dementia. The Journal of Clinical Psychiatry, 55(Suppl), 12–21.

    PubMed  Google Scholar 

  33. Simon, E. S., Hegarty, A. M., & Mehler, M. F. (1995). Hemispatial and directional performance biases in motor neglect. Neurology, 45(3 Pt 1), 525–531.

    PubMed  Google Scholar 

  34. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1990). Attentional modulation of neural processing of shape, color, and velocity in humans. Science, 248(4962), 1556–1559.

    PubMed  Google Scholar 

  35. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. The Journal of Neuroscience, 11(8), 2383–2402.

    PubMed  Google Scholar 

  36. Corbetta, M., Miezin, F. M., Shulman, G. L., & Petersen, S. E. (1991). Selective attention modulates extrastriate visual regions in humans during visual feature discrimination and recognition. Ciba Foundation Symposium, 163, 165–175; discussion 175–180.

    PubMed  Google Scholar 

  37. Petersen, S. E., Corbetta, M., Miezin, F. M., & Shulman, G. L. (1994). PET studies of parietal involvement in spatial attention: Comparison of different task types. Canadian Journal of Experimental Psychology, 48(2), 319–338.

    PubMed  Google Scholar 

  38. Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 256–259.

    PubMed  Google Scholar 

  39. Pardo, J. V., Fox, P. T., & Raichle, M. E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349(6304), 61–64.

    PubMed  Google Scholar 

  40. Drevets, W. C., Burton, H., Videen, T. O., Snyder, A. Z., Simpson, J. R., Jr., & Raichle, M. E. (1995). Blood flow changes in human somatosensory cortex during anticipated stimulation. Nature, 373(6511), 249–252.

    PubMed  Google Scholar 

  41. Hopfinger, J. B., Woldorff, M. G., Fletcher, E. M., & Mangun, G. R. (2001). Dissociating top-down attentional control from selective perception and action. Neuropsychologia, 39(12), 1277–1291.

    PubMed  Google Scholar 

  42. Shafritz, K. M., Gore, J. C., & Marois, R. (2002). The role of the parietal cortex in visual feature binding. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10917–10922.

    PubMed  Google Scholar 

  43. Yantis, S., Schwarzbach, J., Serences, J. T., et al. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5(10), 995–1002.

    PubMed  Google Scholar 

  44. Postle, B. R., Awh, E., Jonides, J., Smith, E. E., & D’Esposito, M. (2004). The where and how of attention-based rehearsal in spatial working memory. Brain Research. Cognitive Brain Research, 20(2), 194–205.

    PubMed  Google Scholar 

  45. Vink, M., Kahn, R. S., Raemaekers, M., & Ramsey, N. F. (2005). Perceptual bias following visual target selection. NeuroImage, 25(4), 1168–1174.

    PubMed  Google Scholar 

  46. Hahn, B., Ross, T. J., & Stein, E. A. (2006). Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention. NeuroImage, 32(2), 842–853.

    PubMed  Google Scholar 

  47. Musso, F., Konrad, A., Vucurevic, G., et al. (2006). Distributed BOLD-response in association cortex vector state space predicts reaction time during selective attention. NeuroImage, 29(4), 1311–1318.

    PubMed  Google Scholar 

  48. Pourtois, G., Schwartz, S., Seghier, M. L., Lazeyras, F., & Vuilleumier, P. (2006). Neural systems for orienting attention to the location of threat signals: An event-related fMRI study. NeuroImage, 31(2), 920–933.

    PubMed  Google Scholar 

  49. Ruff, C. C., Bestmann, S., Blankenburg, F., et al. (2008). Distinct causal influences of parietal versus frontal areas on human visual cortex: Evidence from concurrent TMS-fMRI. Cerebral Cortex, 18(4), 817–827.

    PubMed  Google Scholar 

  50. Fagioli, S., & Macaluso, E. (2009). Attending to multiple visual streams: Interactions between location-based and category-based attentional selection. Journal of Cognitive Neuroscience, 21(8), 1628–1641.

    PubMed  Google Scholar 

  51. Howe, P. D., Horowitz, T. S., Morocz, I. A., Wolfe, J., & Livingstone, M. S. (2009). Using fMRI to distinguish components of the multiple object tracking task. Journal of Vision, 9(4), 10.1–10.11.

    Google Scholar 

  52. Vandenberghe, R., & Gillebert, C. R. (2009). Parcellation of parietal cortex: Convergence between lesion-symptom mapping and mapping of the intact functioning brain. Behavioural Brain Research, 199(2), 171–182.

    PubMed  Google Scholar 

  53. Le, T. H., Pardo, J. V., & Hu, X. (1998). 4 T-fMRI study of nonspatial shifting of selective attention: Cerebellar and parietal contributions. Journal of Neurophysiology, 79(3), 1535–1548.

    PubMed  Google Scholar 

  54. Chong, T. T., Williams, M. A., Cunnington, R., & Mattingley, J. B. (2008). Selective attention modulates inferior frontal gyrus activity during action observation. NeuroImage, 40(1), 298–307.

    PubMed  Google Scholar 

  55. Corbetta, M., & Shulman, G. L. (1998). Human cortical mechanisms of visual attention during orienting and search. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1353–1362.

    PubMed  Google Scholar 

  56. Vandenberghe, R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2001). Location- or feature-based targeting of peripheral attention. NeuroImage, 14(1 Pt 1), 37–47.

    PubMed  Google Scholar 

  57. Arrington, C. M., Carr, T. H., Mayer, A. R., & Rao, S. M. (2000). Neural mechanisms of visual attention: Object-based selection of a region in space. Journal of Cognitive Neuroscience, 12(Suppl 2), 106–117.

    PubMed  Google Scholar 

  58. Liu, T., Larsson, J., & Carrasco, M. (2007). Feature-based attention modulates orientation-selective responses in human visual cortex. Neuron, 55(2), 313–323.

    PubMed  Google Scholar 

  59. Saenz, M., Buracas, G. T., & Boynton, G. M. (2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5(7), 631–632.

    PubMed  Google Scholar 

  60. Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3(3), 292–297.

    PubMed  Google Scholar 

  61. Culham, J. C., Brandt, S. A., Cavanagh, P., Kanwisher, N. G., Dale, A. M., & Tootell, R. B. (1998). Cortical fMRI activation produced by attentive tracking of moving targets. Journal of Neurophysiology, 80(5), 2657–2670.

    PubMed  Google Scholar 

  62. Huk, A. C., & Heeger, D. J. (2000). Task-related modulation of visual cortex. Journal of Neurophysiology, 83(6), 3525–3536.

    PubMed  Google Scholar 

  63. Culham, J. C., Cavanagh, P., & Kanwisher, N. G. (2001). Attention response functions: Characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron, 32(4), 737–745.

    PubMed  Google Scholar 

  64. Martinez, A., Di Russo, F., Anllo-Vento, L., Sereno, M. I., Buxton, R. B., & Hillyard, S. A. (2001). Putting spatial attention on the map: Timing and localization of stimulus selection processes in striate and extrastriate visual areas. Vision Research, 41(10–11), 1437–1457.

    PubMed  Google Scholar 

  65. Corbetta, M., Kincade, J. M., & Shulman, G. L. (2002). Neural systems for visual orienting and their relationships to spatial working memory. Journal of Cognitive Neuroscience, 14(3), 508–523.

    PubMed  Google Scholar 

  66. Hillyard, S. A., Hinrichs, H., Tempelmann, C., et al. (1997). Combining steady-state visual evoked potentials and f MRI to localize brain activity during selective attention. Human Brain Mapping, 5(4), 287–292.

    PubMed  Google Scholar 

  67. Mangun, G. R., Buonocore, M. H., Girelli, M., & Jha, A. P. (1998). ERP and fMRI measures of visual spatial selective attention. Human Brain Mapping, 6(5–6), 383–389.

    PubMed  Google Scholar 

  68. Mantini, D., Corbetta, M., Perrucci, M. G., Romani, G. L., & Del Gratta, C. (2009). Large-scale brain networks account for sustained and transient activity during target detection. NeuroImage, 44(1), 265–274.

    PubMed  Google Scholar 

  69. Gazzaley, A. (2011). Influence of early attentional modulation on working memory. Neuropsychologia, 49(6), 1410–1424.

    PubMed  Google Scholar 

  70. Mangun, G. R., Hinrichs, H., Scholz, M., et al. (2001). Integrating electrophysiology and neuroimaging of spatial selective attention to simple isolated visual stimuli. Vision Research, 41(10–11), 1423–1435.

    PubMed  Google Scholar 

  71. Corbetta, M., Akbudak, E., Conturo, T. E., et al. (1998). A common network of functional areas for attention and eye movements. Neuron, 21(4), 761–773.

    PubMed  Google Scholar 

  72. Kim, Y. H., Gitelman, D. R., Nobre, A. C., Parrish, T. B., LaBar, K. S., & Mesulam, M. M. (1999). The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. NeuroImage, 9(3), 269–277.

    PubMed  Google Scholar 

  73. LaBar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. (1999). Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. NeuroImage, 10(6), 695–704.

    PubMed  Google Scholar 

  74. Nobre, A. C., Gitelman, D. R., Dias, E. C., & Mesulam, M. M. (2000). Covert visual spatial orienting and saccades: Overlapping neural systems. NeuroImage, 11(3), 210–216.

    PubMed  Google Scholar 

  75. Perry, R. J., & Zeki, S. (2000). The neurology of saccades and covert shifts in spatial attention: An event-related fMRI study. Brain, 123(Pt 11), 2273–2288.

    PubMed  Google Scholar 

  76. Beauchamp, M. S., Petit, L., Ellmore, T. M., Ingeholm, J., & Haxby, J. V. (2001). A parametric fMRI study of overt and covert shifts of visuospatial attention. NeuroImage, 14(2), 310–321.

    PubMed  Google Scholar 

  77. Mort, D. J., Perry, R. J., Mannan, S. K., et al. (2003). Differential cortical activation during voluntary and reflexive saccades in man. NeuroImage, 18(2), 231–246.

    PubMed  Google Scholar 

  78. Bagurdes, L. A., Mesulam, M. M., Gitelman, D. R., Weintraub, S., & Small, D. M. (2008). Modulation of the spatial attention network by incentives in healthy aging and mild cognitive impairment. Neuropsychologia, 46(12), 2943–2948.

    PubMed  Google Scholar 

  79. de Haan, B., Morgan, P. S., & Rorden, C. (2008). Covert orienting of attention and overt eye movements activate identical brain regions. Brain Research, 1204, 102–111.

    PubMed  Google Scholar 

  80. Hulme, O. J., Whiteley, L., & Shipp, S. (2010). Spatially distributed encoding of covert attentional shifts in human thalamus. Journal of Neurophysiology, 104(6), 3644–3656.

    PubMed  Google Scholar 

  81. Brefczynski, J. A., & DeYoe, E. A. (1999). A physiological correlate of the ‘spotlight’ of visual attention. Nature Neuroscience, 2(4), 370–374.

    PubMed  Google Scholar 

  82. LaBar, K. S., Gitelman, D. R., Parrish, T. B., Kim, Y. H., Nobre, A. C., & Mesulam, M. M. (2001). Hunger selectively modulates corticolimbic activation to food stimuli in humans. Behavioral Neuroscience, 115(2), 493–500.

    PubMed  Google Scholar 

  83. Rosen, A. C., Rao, S. M., Caffarra, P., et al. (1999). Neural basis of endogenous and exogenous spatial orienting. A functional MRI study. Journal of Cognitive Neuroscience, 11(2), 135–152.

    PubMed  Google Scholar 

  84. Nobre, A. C., Coull, J. T., Maquet, P., Frith, C. D., Vandenberghe, R., & Mesulam, M. M. (2004). Orienting attention to locations in perceptual versus mental representations. Journal of Cognitive Neuroscience, 16(3), 363–373.

    PubMed  Google Scholar 

  85. Hung, J., Driver, J., & Walsh, V. (2011). Visual selection and the human frontal eye fields: Effects of frontal transcranial magnetic stimulation on partial report analyzed by Bundesen’s theory of visual attention. The Journal of Neuroscience, 31(44), 15904–15913.

    PubMed  Google Scholar 

  86. Zanto, T. P., Rubens, M. T., Thangavel, A., & Gazzaley, A. (2011). Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nature Neuroscience, 14(5), 656–661.

    PubMed  Google Scholar 

  87. Liao, W., Chen, H., Feng, Y., et al. (2010). Selective aberrant functional connectivity of resting state networks in social anxiety disorder. NeuroImage, 52(4), 1549–1558.

    PubMed  Google Scholar 

  88. Rossi, A. F., Pessoa, L., Desimone, R., & Ungerleider, L. G. (2009). The prefrontal cortex and the executive control of attention. Experimental Brain Research. Experimentelle Hirnforschung., 192(3), 489–497.

    Google Scholar 

  89. Stephan, K. E., Kasper, L., Harrison, L. M., et al. (2008). Nonlinear dynamic causal models for fMRI. NeuroImage, 42(2), 649–662.

    PubMed  Google Scholar 

  90. Raz, A., Lamar, M., Buhle, J. T., Kane, M. J., & Peterson, B. S. (2007). Selective biasing of a specific bistable-figure percept involves fMRI signal changes in frontostriatal circuits: A step toward unlocking the neural correlates of top-down control and self-regulation. The American Journal of Clinical Hypnosis, 50(2), 137–156.

    PubMed  Google Scholar 

  91. Gazzaley, A., Rissman, J., Cooney, J., et al. (2007). Functional interactions between prefrontal and visual association cortex contribute to top-down modulation of visual processing. Cerebral Cortex, 17(Suppl 1), i125–i135.

    PubMed  Google Scholar 

  92. Ahveninen, J., Jaaskelainen, I. P., Raij, T., et al. (2006). Task-modulated “what” and “where” pathways in human auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 103(39), 14608–14613.

    PubMed  Google Scholar 

  93. Caplan, J. B., Luks, T. L., Simpson, G. V., Glaholt, M., & McIntosh, A. R. (2006). Parallel networks operating across attentional deployment and motion processing: A multi-seed partial least squares fMRI study. NeuroImage, 29(4), 1192–1202.

    PubMed  Google Scholar 

  94. Kastner, S., & Pinsk, M. A. (2004). Visual attention as a multilevel selection process. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 483–500.

    Google Scholar 

  95. Peers, P. V., Ludwig, C. J., Rorden, C., et al. (2005). Attentional functions of parietal and frontal cortex. Cerebral Cortex, 15(10), 1469–1484.

    PubMed  Google Scholar 

  96. Giesbrecht, B., Woldorff, M. G., Song, A. W., & Mangun, G. R. (2003). Neural mechanisms of top-down control during spatial and feature attention. NeuroImage, 19(3), 496–512.

    PubMed  Google Scholar 

  97. Pessoa, L., Kastner, S., & Ungerleider, L. G. (2002). Attentional control of the processing of neural and emotional stimuli. Brain Research, 15(1), 31–45.

    PubMed  Google Scholar 

  98. Weissman, D. H., Mangun, G. R., & Woldorff, M. G. (2002). A role for top-down attentional orienting during interference between global and local aspects of hierarchical stimuli. NeuroImage, 17(3), 1266–1276.

    PubMed  Google Scholar 

  99. Kastner, S., & Ungerleider, L. G. (2001). The neural basis of biased competition in human visual cortex. Neuropsychologia, 39(12), 1263–1276.

    PubMed  Google Scholar 

  100. Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284–291.

    PubMed  Google Scholar 

  101. Altmann, C. F., Henning, M., Doring, M. K., & Kaiser, J. (2008). Effects of feature-selective attention on auditory pattern and location processing. NeuroImage, 41(1), 69–79.

    PubMed  Google Scholar 

  102. Anderson, E. J., Mannan, S. K., Husain, M., et al. (2007). Involvement of prefrontal cortex in visual search. Experimental brain research. Experimentelle Hirnforschung., 180(2), 289–302.

    Google Scholar 

  103. Carter, J. D., Bizzell, J., Kim, C., et al. (2010). Attention deficits in schizophrenia—Preliminary evidence of dissociable transient and sustained deficits. Schizophrenia Research, 122(1–3), 104–112.

    PubMed  Google Scholar 

  104. Choi, J. W., Jeong, B. S., & Kim, J. W. (2008). Dysfunction of the left dorsolateral prefrontal cortex is primarily responsible for impaired attentional processing in schizophrenia. Psychiatry Investigation, 5(1), 52–59.

    PubMed  Google Scholar 

  105. Degerman, A., Rinne, T., Salmi, J., Salonen, O., & Alho, K. (2006). Selective attention to sound location or pitch studied with fMRI. Brain Research, 1077(1), 123–134.

    PubMed  Google Scholar 

  106. Grossman, M., Smith, E. E., Koenig, P., et al. (2002). The neural basis for categorization in semantic memory. NeuroImage, 17(3), 1549–1561.

    PubMed  Google Scholar 

  107. Hoekzema, E., Carmona, S., Tremols, V., et al. (2010). Enhanced neural activity in frontal and cerebellar circuits after cognitive training in children with attention-deficit/hyperactivity disorder. Human Brain Mapping, 31(12), 1942–1950.

    PubMed  Google Scholar 

  108. Johnson, J. A., Strafella, A. P., & Zatorre, R. J. (2007). The role of the dorsolateral prefrontal cortex in bimodal divided attention: Two transcranial magnetic stimulation studies. Journal of Cognitive Neuroscience, 19(6), 907–920.

    PubMed  Google Scholar 

  109. Johnson, J. A., & Zatorre, R. J. (2006). Neural substrates for dividing and focusing attention between simultaneous auditory and visual events. NeuroImage, 31(4), 1673–1681.

    PubMed  Google Scholar 

  110. Peelen, M. V., Fei-Fei, L., & Kastner, S. (2009). Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature, 460(7251), 94–97.

    PubMed  Google Scholar 

  111. Peelen, M. V., Heslenfeld, D. J., & Theeuwes, J. (2004). Endogenous and exogenous attention shifts are mediated by the same large-scale neural network. NeuroImage, 22(2), 822–830.

    PubMed  Google Scholar 

  112. Mayer, A. R., Seidenberg, M., Dorflinger, J. M., & Rao, S. M. (2004). An event-related fMRI study of exogenous orienting: Supporting evidence for the cortical basis of inhibition of return? Journal of Cognitive Neuroscience, 16(7), 1262–1271.

    PubMed  Google Scholar 

  113. Pugh, K. R., Offywitz, B. A., Shaywitz, S. E., et al. (1996). Auditory selective attention: An fMRI investigation. NeuroImage, 4(3 Pt 1), 159–173.

    PubMed  Google Scholar 

  114. Jancke, L., Mirzazade, S., & Shah, N. J. (1999). Attention modulates activity in the primary and the secondary auditory cortex: A functional magnetic resonance imaging study in human subjects. Neuroscience Letters, 266(2), 125–128.

    PubMed  Google Scholar 

  115. Kawashima, R., Imaizumi, S., Mori, K., et al. (1999). Selective visual and auditory attention toward utterances-a PET study. NeuroImage, 10(2), 209–215.

    PubMed  Google Scholar 

  116. Sevostianov, A., Fromm, S., Nechaev, V., Horwitz, B., & Braun, A. (2002). Effect of attention on central auditory processing: An fMRI study. The International Journal of Neuroscience, 112(5), 587–606.

    PubMed  Google Scholar 

  117. Petkov, C. I., Kang, X., Alho, K., Bertrand, O., Yund, E. W., & Woods, D. L. (2004). Attentional modulation of human auditory cortex. Nature Neuroscience, 7(6), 658–663.

    PubMed  Google Scholar 

  118. Gandour, J., Wong, D., Lowe, M., et al. (2002). Neural circuitry underlying perception of duration depends on language experience. Brain and Language, 83(2), 268–290.

    PubMed  Google Scholar 

  119. Shomstein, S., & Yantis, S. (2004). Control of attention shifts between vision and audition in human cortex. The Journal of Neuroscience, 24(47), 10702–10706.

    PubMed  Google Scholar 

  120. Nakai, T., Kato, C., & Matsuo, K. (2005). An FMRI study to investigate auditory attention: A model of the cocktail party phenomenon. Magnetic Resonance in Medical Sciences, 4(2), 75–82.

    PubMed  Google Scholar 

  121. Senkowski, D., Talsma, D., Herrmann, C. S., & Woldorff, M. G. (2005). Multisensory processing and oscillatory gamma responses: Effects of spatial selective attention. Experimental brain research. Experimentelle Hirnforschung., 166(3–4), 411–426.

    Google Scholar 

  122. Bidet-Caulet, A., Fischer, C., Besle, J., Aguera, P. E., Giard, M. H., & Bertrand, O. (2007). Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex. The Journal of Neuroscience, 27(35), 9252–9261.

    PubMed  Google Scholar 

  123. Rinne, T., Stecker, G. C., Kang, X., Yund, E. W., Herron, T. J., & Woods, D. L. (2007). Attention modulates sound processing in human auditory cortex but not the inferior colliculus. 18(13), 1311–1314.

    Google Scholar 

  124. Thiel, C. M., & Fink, G. R. (2007). Visual and auditory alertness: Modality-specific and supramodal neural mechanisms and their modulation by nicotine. Journal of Neurophysiology, 97(4), 2758–2768.

    PubMed  Google Scholar 

  125. Rinne, T., Balk, M. H., Koistinen, S., Autti, T., Alho, K., & Sams, M. (2008). Auditory selective attention modulates activation of human inferior colliculus. Journal of Neurophysiology, 100(6), 3323–3327.

    PubMed  Google Scholar 

  126. Sabri, M., Binder, J. R., Desai, R., Medler, D. A., Leitl, M. D., & Liebenthal, E. (2008). Attentional and linguistic interactions in speech perception. NeuroImage, 39(3), 1444–1456.

    PubMed  Google Scholar 

  127. Cate, A. D., Herron, T. J., Yund, E. W., et al. (2009). Auditory attention activates peripheral visual cortex. PloS One, 4(2), e4645.

    PubMed  Google Scholar 

  128. Fairhall, S. L., & Macaluso, E. (2009). Spatial attention can modulate audiovisual integration at multiple cortical and subcortical sites. The European Journal of Neuroscience, 29(6), 1247–1257.

    PubMed  Google Scholar 

  129. Mayer, A. R., Franco, A. R., Canive, J., & Harrington, D. L. (2009). The effects of stimulus modality and frequency of stimulus presentation on cross-modal distraction. Cerebral Cortex, 19(5), 993–1007.

    PubMed  Google Scholar 

  130. Weissman, D. H., Warner, L. M., & Woldorff, M. G. (2009). Momentary reductions of attention permit greater processing of irrelevant stimuli. NeuroImage, 48(3), 609–615.

    PubMed  Google Scholar 

  131. Hill, K. T., & Miller, L. M. (2010). Auditory attentional control and selection during cocktail party listening. Cerebral Cortex, 20(3), 583–590.

    PubMed  Google Scholar 

  132. Rinne, T. (2010). Activations of human auditory cortex during visual and auditory selective attention tasks with varying difficulty. The Open Neuroimaging Journal, 4, 187–193.

    PubMed  Google Scholar 

  133. Daumann, J., Wagner, D., Heekeren, K., Neukirch, A., Thiel, C. M., & Gouzoulis-Mayfrank, E. (2010). Neuronal correlates of visual and auditory alertness in the DMT and ketamine model of psychosis. Journal of Psychopharmacology, 24(10), 1515–1524.

    PubMed  Google Scholar 

  134. Kerlin, J. R., Shahin, A. J., & Miller, L. M. (2010). Attentional gain control of ongoing cortical speech representations in a “cocktail party”. The Journal of Neuroscience, 30(2), 620–628.

    PubMed  Google Scholar 

  135. Roye, A., Schroger, E., Jacobsen, T., & Gruber, T. (2010). Is my mobile ringing? Evidence for rapid processing of a personally significant sound in humans. The Journal of Neuroscience, 30(21), 7310–7313.

    PubMed  Google Scholar 

  136. Yoncheva, Y. N., Zevin, J. D., Maurer, U., & McCandliss, B. D. (2010). Auditory selective attention to speech modulates activity in the visual word form area. Cerebral Cortex, 20(3), 622–632.

    PubMed  Google Scholar 

  137. Ahveninen, J., Hamalainen, M., Jaaskelainen, I. P., et al. (2011). Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4182–4187.

    PubMed  Google Scholar 

  138. Christensen, T. A., Lockwood, J. L., Almryde, K. R., & Plante, E. (2011). Neural substrates of attentive listening assessed with a novel auditory Stroop task. Frontiers in Human Neuroscience, 4, 236.

    PubMed  Google Scholar 

  139. Paltoglou, A. E., Sumner, C. J., & Hall, D. A. (2011). Mapping feature-sensitivity and attentional modulation in human auditory cortex with functional magnetic resonance imaging. The European Journal of Neuroscience, 33(9), 1733–1741.

    PubMed  Google Scholar 

  140. Sturm, W., Schnitker, R., Grande, M., Huber, W., & Willmes, K. (2011). Common networks for selective auditory attention for sounds and words? An fMRI study with implications for attention rehabilitation. Restorative Neurology and Neuroscience, 29(2), 73–83.

    PubMed  Google Scholar 

  141. Cusack, R. (2012). Differentiating the roles of parietal cortex, auditory cortex and the thalamus in auditory stream segregation. The Journal of the Acoustical Society of America, 131(4), 3229.

    Google Scholar 

  142. Power, A. J., Foxe, J. J., Forde, E. J., Reilly, R. B., & Lalor, E. C. (2012). At what time is the cocktail party? A late locus of selective attention to natural speech. The European Journal of Neuroscience, 35(9), 1497–1503.

    PubMed  Google Scholar 

  143. Gandour, J., Tong, Y., Wong, D., et al. (2004). Hemispheric roles in the perception of speech prosody. NeuroImage, 23(1), 344–357.

    PubMed  Google Scholar 

  144. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject synchronization of cortical activity during natural vision. Science, 303(5664), 1634–1640.

    PubMed  Google Scholar 

  145. Kudo, K., Miyazaki, M., Kimura, T., et al. (2004). Selective activation and deactivation of the human brain structures between speeded and precisely timed tapping responses to identical visual stimulus: An fMRI study. NeuroImage, 22(3), 1291–1301.

    PubMed  Google Scholar 

  146. Weissman, D. H., Warner, L. M., & Woldorff, M. G. (2004). The neural mechanisms for minimizing cross-modal distraction. The Journal of Neuroscience, 24(48), 10941–10949.

    PubMed  Google Scholar 

  147. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84, 127–190.

    Google Scholar 

  148. Shiffrin, R. M., & Schneider, W. (1984). Automatic and controlled processing revisited. Psychological Review, 91(2), 269–276.

    PubMed  Google Scholar 

  149. Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology. General, 108, 356–388.

    Google Scholar 

  150. Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information: The case of frequency of occurrence. The American Psychologist, 39, 1372–1388.

    PubMed  Google Scholar 

  151. Jancke, L., Buchanan, T. W., Lutz, K., & Shah, N. J. (2001). Focused and nonfocused attention in verbal and emotional dichotic listening: An FMRI study. Brain and Language, 78(3), 349–363.

    PubMed  Google Scholar 

  152. Hugdahl, K., Thomsen, T., Ersland, L., Rimol, L. M., & Niemi, J. (2003). The effects of attention on speech perception: An fMRI study. Brain and Language, 85(1), 37–48.

    PubMed  Google Scholar 

  153. Townsend, J., Adamo, M., & Haist, F. (2006). Changing channels: An fMRI study of aging and cross-modal attention shifts. NeuroImage, 31(4), 1682–1692.

    PubMed  Google Scholar 

  154. Rinne, T., Kirjavainen, S., Salonen, O., et al. (2007). Distributed cortical networks for focused auditory attention and distraction. Neuroscience Letters, 416(3), 247–251.

    PubMed  Google Scholar 

  155. Stevens, W. D., Hasher, L., Chiew, K. S., & Grady, C. L. (2008). A neural mechanism underlying memory failure in older adults. The Journal of Neuroscience, 28(48), 12820–12824.

    PubMed  Google Scholar 

  156. Haupt, S., Axmacher, N., Cohen, M. X., Elger, C. E., & Fell, J. (2009). Activation of the caudal anterior cingulate cortex due to task-related interference in an auditory Stroop paradigm. Human Brain Mapping, 30(9), 3043–3056.

    PubMed  Google Scholar 

  157. Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 1201–1209.

    PubMed  Google Scholar 

  158. Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362(6418), 342–345.

    PubMed  Google Scholar 

  159. Paulesu, E., Connelly, A., Frith, C. D., et al. (1995). Functional MR imaging correlations with positron emission tomography. Initial experience using a cognitive activation paradigm on verbal working memory. Neuroimaging Clinics of North America, 5(2), 207–225.

    PubMed  Google Scholar 

  160. Baddeley, A., & Hitch, G. (1974). Working memory. In G. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (pp. 47–87). London: Academic.

    Google Scholar 

  161. Pascual-Leone, J. (2000). Reflections on working memory: Are the two models complementary? Journal of Experimental Child Psychology, 77(2), 138–154.

    PubMed  Google Scholar 

  162. Baddeley, A. D., & Hitch, G. J. (2000). Development of working memory: Should the Pascual-Leone and the Baddeley and Hitch models be merged? Journal of Experimental Child Psychology, 77(2), 128–137.

    PubMed  Google Scholar 

  163. de Ribaupierre, A., & Bailleux, C. (2000). The development of working memory: Further note on the comparability of two models of working memory. Journal of Experimental Child Psychology, 77(2), 110–127.

    PubMed  Google Scholar 

  164. Kemps, E., De Rammelaere, S., & Desmet, T. (2000). The development of working memory: Exploring the complementarity of two models. Journal of Experimental Child Psychology, 77(2), 89–109.

    PubMed  Google Scholar 

  165. Nelson, J. K., Reuter-Lorenz, P. A., Sylvester, C. Y., Jonides, J., & Smith, E. E. (2003). Dissociable neural mechanisms underlying response-based and familiarity-based conflict in working memory. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 11171–11175.

    PubMed  Google Scholar 

  166. Hartley, A. A., Speer, N. K., Jonides, J., Reuter-Lorenz, P. A., & Smith, E. E. (2001). Is the dissociability of working memory systems for name identity, visual-object identity, and spatial location maintained in old age? Neuropsychology, 15(1), 3–17.

    PubMed  Google Scholar 

  167. Smith, E. E., Geva, A., Jonides, J., Miller, A., Reuter-Lorenz, P., & Koeppe, R. A. (2001). The neural basis of task-switching in working memory: Effects of performance and aging. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 2095–2100.

    PubMed  Google Scholar 

  168. D’Esposito, M., Postle, B. R., Jonides, J., & Smith, E. E. (1999). The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 96(13), 7514–7519.

    PubMed  Google Scholar 

  169. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science (New York, N.Y.), 283(5408), 1657–1661.

    Google Scholar 

  170. Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of human working memory. Proceedings of the National Academy of Sciences of the United States of America, 95(20), 12061–12068.

    PubMed  Google Scholar 

  171. Jonides, J., Schumacher, E. H., Smith, E. E., et al. (1998). The role of parietal cortex in verbal working memory. The Journal of Neuroscience, 18(13), 5026–5034.

    PubMed  Google Scholar 

  172. Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology. Human Perception and Performance, 24(3), 780–790.

    PubMed  Google Scholar 

  173. Smith, E. E., Jonides, J., Marshuetz, C., & Koeppe, R. A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 876–882.

    PubMed  Google Scholar 

  174. Smith, E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33(1), 5–42.

    PubMed  Google Scholar 

  175. Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6(1), 11–20.

    PubMed  Google Scholar 

  176. D’Esposito, M., Ballard, D., Aguirre, G. K., & Zarahn, E. (1998). Human prefrontal cortex is not specific for working memory: A functional MRI study. NeuroImage, 8(3), 274–282.

    PubMed  Google Scholar 

  177. D’Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature, 378(6554), 279–281.

    PubMed  Google Scholar 

  178. D’Esposito, M., Postle, B. R., Ballard, D., & Lease, J. (1999). Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain and Cognition, 41(1), 66–86.

    PubMed  Google Scholar 

  179. D’Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: Evidence from event-related fMRI studies. Experimental Brain Research. Experimentelle Hirnforschung., 133(1), 3–11.

    Google Scholar 

  180. Holdnack, J. A., Xiaobin, Z., Larrabee, G. J., Millis, S. R., & Salthouse, T. A. (2011). Confirmatory factor analysis of the WAIS-IV/WMS-IV. Assessment, 18(2), 178–191.

    PubMed  Google Scholar 

  181. Deiber, M. P., Missonnier, P., Bertrand, O., et al. (2007). Distinction between perceptual and attentional processing in working memory tasks: A study of phase-locked and induced oscillatory brain dynamics. Journal of Cognitive Neuroscience, 19(1), 158–172.

    PubMed  Google Scholar 

  182. Haley, A. P., Sweet, L. H., Gunstad, J., et al. (2007). Verbal working memory and atherosclerosis in patients with cardiovascular disease: An fMRI study. Journal of Neuroimaging, 17(3), 227–233.

    PubMed  Google Scholar 

  183. Paskavitz, J. F., Sweet, L. H., Wellen, J., Helmer, K. G., Rao, S. M., & Cohen, R. A. (2010). Recruitment and stabilization of brain activation within a working memory task; an FMRI study. Brain Imaging and Behavior, 4(1), 5–21.

    PubMed  Google Scholar 

  184. Sweet, L. H., Paskavitz, J. F., Haley, A. P., et al. (2008). Imaging phonological similarity effects on verbal working memory. Neuropsychologia, 46(4), 1114–1123.

    PubMed  Google Scholar 

  185. Sweet, L. H., Rao, S. M., Primeau, M., Durgerian, S., & Cohen, R. A. (2006). Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Human Brain Mapping, 27(1), 28–36.

    PubMed  Google Scholar 

  186. Sweet, L. H., Rao, S. M., Primeau, M., Mayer, A. R., & Cohen, R. A. (2004). Functional magnetic resonance imaging of working memory among multiple sclerosis patients. Journal of Neuroimaging, 14(2), 150–157.

    PubMed  Google Scholar 

  187. D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Brain Research, 7(1), 1–13.

    PubMed  Google Scholar 

  188. McCarthy, G., Blamire, A. M., Puce, A., et al. (1994). Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task. Proceedings of the National Academy of Sciences of the United States of America, 91(18), 8690–8694.

    PubMed  Google Scholar 

  189. Hartley, A. A., & Speer, N. K. (2000). Locating and fractionating working memory using functional neuroimaging: Storage, maintenance, and executive functions. Microscopy Research and Technique, 51(1), 45–53.

    PubMed  Google Scholar 

  190. Habeck, C., Rakitin, B., Steffener, J., & Stern, Y. (2012). Contrasting visual working memory for verbal and non-verbal material with multivariate analysis of fMRI. Brain Res., 1467, 27–41.

    PubMed  Google Scholar 

  191. Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255–274.

    Google Scholar 

  192. Postle, B. R., Berger, J. S., Taich, A. M., & D’Esposito, M. (2000). Activity in human frontal cortex associated with spatial working memory and saccadic behavior. Journal of Cognitive Neuroscience, 12(Suppl 2), 2–14.

    PubMed  Google Scholar 

  193. Postle, B. R., Zarahn, E., & D’Esposito, M. (2000). Using event-related fMRI to assess delay-period activity during performance of spatial and nonspatial working memory tasks. Brain Research. Brain Research Protocols, 5(1), 57–66.

    PubMed  Google Scholar 

  194. Thomason, M. E., Race, E., Burrows, B., Whitfield-Gabrieli, S., Glover, G. H., & Gabrieli, J. D. (2009). Development of spatial and verbal working memory capacity in the human brain. Journal of Cognitive Neuroscience, 21(2), 316–332.

    PubMed  Google Scholar 

  195. Spadoni, A. D., Bazinet, A. D., Fryer, S. L., Tapert, S. F., Mattson, S. N., & Riley, E. P. (2009). BOLD response during spatial working memory in youth with heavy prenatal alcohol exposure. Alcoholism, Clinical and Experimental Research, 33(12), 2067–2076.

    PubMed  Google Scholar 

  196. Nystrom, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D. C., & Cohen, J. D. (2000). Working memory for letters, shapes, and locations: FMRI evidence against stimulus-based regional organization in human prefrontal cortex. NeuroImage, 11(5 Pt 1), 424–446.

    PubMed  Google Scholar 

  197. McNab, F., Leroux, G., Strand, F., Thorell, L., Bergman, S., & Klingberg, T. (2008). Common and unique components of inhibition and working memory: An fMRI, within-subjects investigation. Neuropsychologia, 46(11), 2668–2682.

    PubMed  Google Scholar 

  198. Lycke, C., Specht, K., Ersland, L., & Hugdahl, K. (2008). An fMRI study of phonological and spatial working memory using identical stimuli. Scandinavian Journal of Psychology, 49(5), 393–401.

    PubMed  Google Scholar 

  199. Leung, H. C., & Zhang, J. X. (2004). Interference resolution in spatial working memory. NeuroImage, 23(3), 1013–1019.

    PubMed  Google Scholar 

  200. Reeck, C., LaBar, K. S., & Egner, T. (2012). Neural mechanisms mediating contingent capture of attention by affective stimuli. Journal of Cognitive Neuroscience, 24(5), 1113–1126.

    PubMed  Google Scholar 

  201. Henseler, I., Falkai, P., & Gruber, O. (2010). Disturbed functional connectivity within brain networks subserving domain-specific subcomponents of working memory in schizophrenia: Relation to performance and clinical symptoms. Journal of Psychiatric Research, 44(6), 364–372.

    PubMed  Google Scholar 

  202. Tan, H. Y., Choo, W. C., Fones, C. S., & Chee, M. W. (2005). fMRI study of maintenance and manipulation processes within working memory in first-episode schizophrenia. The American Journal of Psychiatry, 162(10), 1849–1858.

    PubMed  Google Scholar 

  203. Tan, H. Y., Sust, S., Buckholtz, J. W., et al. (2006). Dysfunctional prefrontal regional specialization and compensation in schizophrenia. The American Journal of Psychiatry, 163(11), 1969–1977.

    PubMed  Google Scholar 

  204. Tanabe, J., Thompson, L., Claus, E., Dalwani, M., Hutchison, K., & Banich, M. T. (2007). Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Human Brain Mapping, 28(12), 1276–1286.

    PubMed  Google Scholar 

  205. Thermenos, H. W., Makris, N., Whitfield-Gabrieli, S., et al. (2011). A functional MRI study of working memory in adolescents and young adults at genetic risk for bipolar disorder: Preliminary findings. Bipolar Disorders, 13(3), 272–286.

    PubMed  Google Scholar 

  206. Takeuchi, H., Taki, Y., Sassa, Y., et al. (2011). Verbal working memory performance correlates with regional white matter structures in the frontoparietal regions. Neuropsychologia, 49(12), 3466–3473.

    PubMed  Google Scholar 

  207. Charlton, R. A., Barrick, T. R., Lawes, I. N., Markus, H. S., & Morris, R. G. (2010). White matter pathways associated with working memory in normal aging. Cortex, 46(4), 474–489.

    PubMed  Google Scholar 

  208. Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196.

    PubMed  Google Scholar 

  209. Kanayama, G., Rogowska, J., Pope, H. G., Gruber, S. A., & Yurgelun-Todd, D. A. (2004). Spatial working memory in heavy cannabis users: A functional magnetic resonance imaging study. Psychopharmacology, 176(3–4), 239–247.

    PubMed  Google Scholar 

  210. Chang, L., Speck, O., Miller, E. N., et al. (2001). Neural correlates of attention and working memory deficits in HIV patients. Neurology, 57(6), 1001–1007.

    PubMed  Google Scholar 

  211. Chang, Y., Lee, J. J., Seo, J. H., et al. (2010). Altered working memory process in the manganese-exposed brain. NeuroImage, 53(4), 1279–1285.

    PubMed  Google Scholar 

  212. Holtzer, R., Rakitin, B. C., Steffener, J., Flynn, J., Kumar, A., & Stern, Y. (2009). Age effects on load-dependent brain activations in working memory for novel material. Brain Research, 1249, 148–161.

    PubMed  Google Scholar 

  213. Klingberg, T., & Roland, P. E. (1997). Interference between two concurrent tasks is associated with activation of overlapping fields in the cortex. Brain Research, 6(1), 1–8.

    PubMed  Google Scholar 

  214. Hartley, A. A., Jonides, J., & Sylvester, C. Y. (2011). Dual-task processing in younger and older adults: Similarities and differences revealed by fMRI. Brain and Cognition, 75(3), 281–291.

    PubMed  Google Scholar 

  215. Bonato, M., Priftis, K., Marenzi, R., Umilta, C., & Zorzi, M. (2010). Increased attentional demands impair contralesional space awareness following stroke. Neuropsychologia, 48(13), 3934–3940.

    PubMed  Google Scholar 

  216. Remy, F., Wenderoth, N., Lipkens, K., & Swinnen, S. P. (2010). Dual-task interference during initial learning of a new motor task results from competition for the same brain areas. Neuropsychologia, 48(9), 2517–2527.

    PubMed  Google Scholar 

  217. Chanraud, S., Pitel, A. L., Rohlfing, T., Pfefferbaum, A., & Sullivan, E. V. (2010). Dual tasking and working memory in alcoholism: Relation to frontocerebellar circuitry. Neuropsychopharmacology, 35(9), 1868–1878.

    PubMed  Google Scholar 

  218. Vetter, P., Butterworth, B., & Bahrami, B. (2011). A candidate for the attentional bottleneck: Set-size specific modulation of the right TPJ during attentive enumeration. Journal of Cognitive Neuroscience, 23(3), 728–736.

    PubMed  Google Scholar 

  219. Rasmussen, I. A., Xu, J., Antonsen, I. K., et al. (2008). Simple dual tasking recruits prefrontal cortices in chronic severe traumatic brain injury patients, but not in controls. Journal of Neurotrauma, 25(9), 1057–1070.

    PubMed  Google Scholar 

  220. Marois, R., Larson, J. M., Chun, M. M., & Shima, D. (2006). Response-specific sources of dual-task interference in human pre-motor cortex. Psychological Research, 70(6), 436–447.

    PubMed  Google Scholar 

  221. Erickson, K. I., Colcombe, S. J., Wadhwa, R., et al. (2005). Neural correlates of dual-task performance after minimizing task-preparation. NeuroImage, 28(4), 967–979.

    PubMed  Google Scholar 

  222. Jiang, Y. (2004). Resolving dual-task interference: An fMRI study. NeuroImage, 22(2), 748–754.

    PubMed  Google Scholar 

  223. Kondo, H., Morishita, M., Osaka, N., Osaka, M., Fukuyama, H., & Shibasaki, H. (2004). Functional roles of the cingulo-frontal network in performance on working memory. NeuroImage, 21(1), 2–14.

    PubMed  Google Scholar 

  224. Szameitat, A. J., Schubert, T., Muller, K., & Von Cramon, D. Y. (2002). Localization of executive functions in dual-task performance with fMRI. Journal of Cognitive Neuroscience, 14(8), 1184–1199.

    PubMed  Google Scholar 

  225. Johansen-Berg, H., & Matthews, P. M. (2002). Attention to movement modulates activity in sensori-motor areas, including primary motor cortex. Experimental Brain Research. Experimentelle Hirnforschung., 142(1), 13–24.

    Google Scholar 

  226. Just, M. A., Carpenter, P. A., Keller, T. A., Emery, L., Zajac, H., & Thulborn, K. R. (2001). Interdependence of nonoverlapping cortical systems in dual cognitive tasks. NeuroImage, 14(2), 417–426.

    PubMed  Google Scholar 

  227. Herath, P., Klingberg, T., Young, J., Amunts, K., & Roland, P. (2001). Neural correlates of dual task interference can be dissociated from those of divided attention: An fMRI study. Cerebral Cortex, 11(9), 796–805.

    PubMed  Google Scholar 

  228. Tracy, J. I., Faro, S. H., Mohamed, F. B., Pinsk, M., & Pinus, A. (2000). Functional localization of a “Time Keeper” function separate from attentional resources and task strategy. NeuroImage, 11(3), 228–242.

    PubMed  Google Scholar 

  229. Adcock, R. A., Constable, R. T., Gore, J. C., & Goldman-Rakic, P. S. (2000). Functional neuroanatomy of executive processes involved in dual-task performance. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3567–3572.

    PubMed  Google Scholar 

  230. Buchweitz, A., Keller, T. A., Meyler, A., & Just, M. A. (2012). Brain activation for language dual-tasking: Listening to two people speak at the same time and a change in network timing. Hum Brain Mapp, 33(8), 1868–1882.

    PubMed  Google Scholar 

  231. Silk, T. J., Bellgrove, M. A., Wrafter, P., Mattingley, J. B., & Cunnington, R. (2010). Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus. NeuroImage, 53(2), 718–724.

    PubMed  Google Scholar 

  232. Zentgraf, K., Lorey, B., Bischoff, M., Zimmermann, K., Stark, R., & Munzert, J. (2009). Neural correlates of attentional focusing during finger movements: A fMRI study. Journal of Motor Behavior, 41(6), 535–541.

    PubMed  Google Scholar 

  233. Wu, T., & Hallett, M. (2008). Neural correlates of dual task performance in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 79(7), 760–766.

    Google Scholar 

  234. Newman, S. D., Keller, T. A., & Just, M. A. (2007). Volitional control of attention and brain activation in dual task performance. Human Brain Mapping, 28(2), 109–117.

    PubMed  Google Scholar 

  235. Erickson, K. I., Colcombe, S. J., Wadhwa, R., et al. (2007). Training-induced functional activation changes in dual-task processing: An FMRI study. Cerebral Cortex, 17(1), 192–204.

    PubMed  Google Scholar 

  236. Stelzel, C., Schumacher, E. H., Schubert, T., & D’Esposito, M. (2006). The neural effect of stimulus–response modality compatibility on dual-task performance: An fMRI study. Psychological Research, 70(6), 514–525.

    PubMed  Google Scholar 

  237. Peers, P. V., Cusack, R., & Duncan, J. (2006). Modulation of spatial bias in the dual task paradigm: Evidence from patients with unilateral parietal lesions and controls. Neuropsychologia, 44(8), 1325–1335.

    PubMed  Google Scholar 

  238. Collette, F., Olivier, L., Van der Linden, M., et al. (2005). Involvement of both prefrontal and inferior parietal cortex in dual-task performance. Brain Research, 24(2), 237–251.

    PubMed  Google Scholar 

  239. Marcantoni, W. S., Lepage, M., Beaudoin, G., Bourgouin, P., & Richer, F. (2003). Neural correlates of dual task interference in rapid visual streams: An fMRI study. Brain and Cognition, 53(2), 318–321.

    PubMed  Google Scholar 

  240. Jaeggi, S. M., Seewer, R., Nirkko, A. C., et al. (2003). Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual tasks: Functional magnetic resonance imaging study. NeuroImage, 19(2 Pt 1), 210–225.

    PubMed  Google Scholar 

  241. Kensinger, E. A., Clarke, R. J., & Corkin, S. (2003). What neural correlates underlie successful encoding and retrieval? A functional magnetic resonance imaging study using a divided attention paradigm. The Journal of Neuroscience, 23(6), 2407–2415.

    PubMed  Google Scholar 

  242. Rodriguez, M., Muniz, R., Gonzalez, B., & Sabate, M. (2004). Hand movement distribution in the motor cortex: The influence of a concurrent task and motor imagery. NeuroImage, 22(4), 1480–1491.

    PubMed  Google Scholar 

  243. Milham, M. P., Banich, M. T., Webb, A., et al. (2001). The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Brain Research. Cognitive Brain Research, 12(3), 467–473.

    PubMed  Google Scholar 

  244. Ursu, S., Clark, K. A., Aizenstein, H. J., Stenger, V. A., & Carter, C. S. (2009). Conflict-related activity in the caudal anterior cingulate cortex in the absence of awareness. Biological Psychology, 80(3), 279–286.

    PubMed  Google Scholar 

  245. Jaeggi, S. M., Buschkuehl, M., Etienne, A., Ozdoba, C., Perrig, W. J., & Nirkko, A. C. (2007). On how high performers keep cool brains in situations of cognitive overload. Cognitive, Affective, & Behavioral Neuroscience, 7(2), 75–89.

    Google Scholar 

  246. Szameitat, A. J., Lepsien, J., von Cramon, D. Y., Sterr, A., & Schubert, T. (2006). Task-order coordination in dual-task performance and the lateral prefrontal cortex: An event-related fMRI study. Psychological Research, 70(6), 541–552.

    PubMed  Google Scholar 

  247. Nebel, K., Wiese, H., Stude, P., de Greiff, A., Diener, H. C., & Keidel, M. (2005). On the neural basis of focused and divided attention. Brain Research, 25(3), 760–776.

    PubMed  Google Scholar 

  248. Santangelo, V., & Macaluso, E. (2013). The contribution of working memory to divided attention. Human Brain Mapping, 34(1), 158–175.

    PubMed  Google Scholar 

  249. Fernandes, M. A., Pacurar, A., Moscovitch, M., & Grady, C. (2006). Neural correlates of auditory recognition under full and divided attention in younger and older adults. Neuropsychologia, 44(12), 2452–2464.

    PubMed  Google Scholar 

  250. Szameitat, A. J., Schubert, T., & Muller, H. J. (2011). How to test for dual-task-specific effects in brain imaging studies—An evaluation of potential analysis methods. NeuroImage, 54(3), 1765–1773.

    PubMed  Google Scholar 

  251. Brown, G. G., Kindermann, S. S., Siegle, G. J., Granholm, E., Wong, E. C., & Buxton, R. B. (1999). Brain activation and pupil response during covert performance of the Stroop Color Word task. Journal of the International Neuropsychological Society, 5(4), 308–319.

    PubMed  Google Scholar 

  252. Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of Stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45(10), 1237–1258.

    PubMed  Google Scholar 

  253. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1–47.

    PubMed  Google Scholar 

  254. Peyron, R., Laurent, B., & Garcia-Larrea, L. (2000). Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiologie Clinique = Clinical Neurophysiology, 30(5), 263–288.

    PubMed  Google Scholar 

  255. de Zubicaray, G. I., Wilson, S. J., McMahon, K. L., & Muthiah, S. (2001). The semantic interference effect in the picture-word paradigm: An event-related fMRI study employing overt responses. Human Brain Mapping, 14(4), 218–227.

    PubMed  Google Scholar 

  256. Steel, C., Haworth, E. J., Peters, E., et al. (2001). Neuroimaging correlates of negative priming. 12(16), 3619–3624.

    Google Scholar 

  257. Mead, L. A., Mayer, A. R., Bobholz, J. A., et al. (2002). Neural basis of the Stroop interference task: Response competition or selective attention? Journal of the International Neuropsychological Society, 8(6), 735–742.

    Google Scholar 

  258. Moll, J., de Oliveira-Souza, R., Moll, F. T., Bramati, I. E., & Andreiuolo, P. A. (2002). The cerebral correlates of set-shifting: An fMRI study of the trail making test. Arquivos de Neuro-Psiquiatria, 60(4), 900–905.

    PubMed  Google Scholar 

  259. Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. NeuroImage, 18(1), 42–57.

    PubMed  Google Scholar 

  260. Canli, T., Amin, Z., Haas, B., Omura, K., & Constable, R. T. (2004). A double dissociation between mood states and personality traits in the anterior cingulate. Behavioral Neuroscience, 118(5), 897–904.

    PubMed  Google Scholar 

  261. Derrfuss, J., Brass, M., Neumann, J., & von Cramon, D. Y. (2005). Involvement of the inferior frontal junction in cognitive control: Meta-analyses of switching and Stroop studies. Human Brain Mapping, 25(1), 22–34.

    PubMed  Google Scholar 

  262. Egner, T., & Hirsch, J. (2005). The neural correlates and functional integration of cognitive control in a Stroop task. NeuroImage, 24(2), 539–547.

    PubMed  Google Scholar 

  263. Harrison, B. J., Shaw, M., Yucel, M., et al. (2005). Functional connectivity during Stroop task performance. NeuroImage, 24(1), 181–191.

    PubMed  Google Scholar 

  264. Milham, M. P., & Banich, M. T. (2005). Anterior cingulate cortex: An fMRI analysis of conflict specificity and functional differentiation. Human Brain Mapping, 25(3), 328–335.

    PubMed  Google Scholar 

  265. Mitchell, R. L. (2005). The BOLD response during Stroop task-like inhibition paradigms: Effects of task difficulty and task-relevant modality. Brain and Cognition, 59(1), 23–37.

    PubMed  Google Scholar 

  266. Mohanty, A., Herrington, J. D., Koven, N. S., et al. (2005). Neural mechanisms of affective interference in schizotypy. Journal of Abnormal Psychology, 114(1), 16–27.

    PubMed  Google Scholar 

  267. van Veen, V., & Carter, C. S. (2005). Separating semantic conflict and response conflict in the Stroop task: A functional MRI study. NeuroImage, 27(3), 497–504.

    PubMed  Google Scholar 

  268. Beauregard, M., & Levesque, J. (2006). Functional magnetic resonance imaging investigation of the effects of neurofeedback training on the neural bases of selective attention and response inhibition in children with attention-deficit/hyperactivity disorder. Applied Psychophysiology and Biofeedback, 31(1), 3–20.

    PubMed  Google Scholar 

  269. Cohen Kadosh, R., Cohen Kadosh, K., Linden, D. E., Gevers, W., Berger, A., & Henik, A. (2007). The brain locus of interaction between number and size: A combined functional magnetic resonance imaging and event-related potential study. Journal of Cognitive Neuroscience, 19(6), 957–970.

    PubMed  Google Scholar 

  270. Weiss, E. M., Siedentopf, C., Golaszewski, S., et al. (2007). Brain activation patterns during a selective attention test—a functional MRI study in healthy volunteers and unmedicated patients during an acute episode of schizophrenia. Psychiatry Research, 154(1), 31–40.

    PubMed  Google Scholar 

  271. Zhang, L. J., Yang, G., Yin, J., Liu, Y., & Qi, J. (2007). Neural mechanism of cognitive control impairment in patients with hepatic cirrhosis: A functional magnetic resonance imaging study. Acta Radiologica, 48(5), 577–587.

    PubMed  Google Scholar 

  272. van’t Ent, D., van Beijsterveldt, C. E., Derks, E. M., et al. (2009). Neuroimaging of response interference in twins concordant or discordant for inattention and hyperactivity symptoms. Neuroscience, 164(1), 16–29.

    Google Scholar 

  273. Wingenfeld, K., Rullkoetter, N., Mensebach, C., et al. (2009). Neural correlates of the individual emotional Stroop in borderline personality disorder. Psychoneuroendocrinology, 34(4), 571–586.

    PubMed  Google Scholar 

  274. Azizian, A., Nestor, L. J., Payer, D., Monterosso, J. R., Brody, A. L., & London, E. D. (2010). Smoking reduces conflict-related anterior cingulate activity in abstinent cigarette smokers performing a Stroop task. Neuropsychopharmacology, 35(3), 775–782.

    PubMed  Google Scholar 

  275. Mitchell, R. L. (2010). Linear increases in BOLD response associated with increasing proportion of incongruent trials across time in a colour Stroop task. Experimental brain research. Experimentelle Hirnforschung., 203(1), 193–204.

    Google Scholar 

  276. Ungar, L., Nestor, P. G., Niznikiewicz, M. A., Wible, C. G., & Kubicki, M. (2010). Color Stroop and negative priming in schizophrenia: An fMRI study. Psychiatry Research, 181(1), 24–29.

    PubMed  Google Scholar 

  277. Frangou, S. (2011). Brain structural and functional correlates of resilience to bipolar disorder. Frontiers in Human Neuroscience, 5, 184.

    PubMed  Google Scholar 

  278. Kim, C., Kroger, J. K., & Kim, J. (2011). A functional dissociation of conflict processing within anterior cingulate cortex. Human Brain Mapping, 32(2), 304–312.

    PubMed  Google Scholar 

  279. Seminowicz, D. A., Mikulis, D. J., & Davis, K. D. (2004). Cognitive modulation of pain-related brain responses depends on behavioral strategy. Pain, 112(1–2), 48–58.

    PubMed  Google Scholar 

  280. Egner, T., Jamieson, G., & Gruzelier, J. (2005). Hypnosis decouples cognitive control from conflict monitoring processes of the frontal lobe. NeuroImage, 27(4), 969–978.

    PubMed  Google Scholar 

  281. Gruber, S. A., & Yurgelun-Todd, D. A. (2005). Neuroimaging of marijuana smokers during inhibitory processing: A pilot investigation. Brain Research. Cognitive Brain Research, 23(1), 107–118.

    PubMed  Google Scholar 

  282. Levesque, J., Beauregard, M., & Mensour, B. (2006). Effect of neurofeedback training on the neural substrates of selective attention in children with attention-deficit/hyperactivity disorder: A functional magnetic resonance imaging study. Neuroscience Letters, 394(3), 216–221.

    PubMed  Google Scholar 

  283. Wagner, G., Sinsel, E., Sobanski, T., et al. (2006). Cortical inefficiency in patients with unipolar depression: An event-related FMRI study with the Stroop task. Biological Psychiatry, 59(10), 958–965.

    PubMed  Google Scholar 

  284. Woodward, T. S., Ruff, C. C., & Ngan, E. T. (2006). Short- and long-term changes in anterior cingulate activation during resolution of task-set competition. Brain Research, 1068(1), 161–169.

    PubMed  Google Scholar 

  285. Cader, S., Palace, J., & Matthews, P. M. (2009). Cholinergic agonism alters cognitive processing and enhances brain functional connectivity in patients with multiple sclerosis. Journal of Psychopharmacology, 23(6), 686–696.

    PubMed  Google Scholar 

  286. van Veen, V., Cohen, J. D., Botvinick, M. M., Stenger, V. A., & Carter, C. S. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. NeuroImage, 14(6), 1302–1308.

    PubMed  Google Scholar 

  287. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.

    PubMed  Google Scholar 

  288. Carter, C. S., Macdonald, A. M., Botvinick, M., et al. (2000). Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1944–1948.

    PubMed  Google Scholar 

  289. Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 179–181.

    PubMed  Google Scholar 

  290. Krueger, C. E., Bird, A. C., Growdon, M. E., Jang, J. Y., Miller, B. L., & Kramer, J. H. (2009). Conflict monitoring in early frontotemporal dementia. Neurology, 73(5), 349–355.

    PubMed  Google Scholar 

  291. Capuron, L., Pagnoni, G., Demetrashvili, M., et al. (2005). Anterior cingulate activation and error processing during interferon-alpha treatment. Biological Psychiatry, 58(3), 190–196.

    PubMed  Google Scholar 

  292. Gruber, S. A., Rogowska, J., & Yurgelun-Todd, D. A. (2004). Decreased activation of the anterior cingulate in bipolar patients: An fMRI study. Journal of Affective Disorders, 82(2), 191–201.

    PubMed  Google Scholar 

  293. Badre, D., & Wagner, A. D. (2004). Selection, integration, and conflict monitoring; assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron, 41(3), 473–487.

    PubMed  Google Scholar 

  294. Mathalon, D. H., Whitfield, S. L., & Ford, J. M. (2003). Anatomy of an error: ERP and fMRI. Biological Psychology, 64(1–2), 119–141.

    PubMed  Google Scholar 

  295. Dehaene, S., Artiges, E., Naccache, L., et al. (2003). Conscious and subliminal conflicts in normal subjects and patients with schizophrenia: The role of the anterior cingulate. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13722–13727.

    PubMed  Google Scholar 

  296. Weissman, D. H., Giesbrecht, B., Song, A. W., Mangun, G. R., & Woldorff, M. G. (2003). Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. NeuroImage, 19(4), 1361–1368.

    PubMed  Google Scholar 

  297. Ursu, S., Stenger, V. A., Shear, M. K., Jones, M. R., & Carter, C. S. (2003). Overactive action monitoring in obsessive-compulsive disorder: Evidence from functional magnetic resonance imaging. Psychological Science, 14(4), 347–353.

    PubMed  Google Scholar 

  298. Swick, D., & Turken, A. U. (2002). Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 99(25), 16354–16359.

    PubMed  Google Scholar 

  299. Luks, T. L., Simpson, G. V., Feiwell, R. J., & Miller, W. L. (2002). Evidence for anterior cingulate cortex involvement in monitoring preparatory attentional set. NeuroImage, 17(2), 792–802.

    PubMed  Google Scholar 

  300. Ullsperger, M., & von Cramon, D. Y. (2001). Subprocesses of performance monitoring: A dissociation of error processing and response competition revealed by event-related fMRI and ERPs. NeuroImage, 14(6), 1387–1401.

    PubMed  Google Scholar 

  301. Fellows, L. K., & Farah, M. J. (2005). Is anterior cingulate cortex necessary for cognitive control? Brain, 128(Pt 4), 788–796.

    PubMed  Google Scholar 

  302. Cohen, R. A., Kaplan, R. F., Moser, D. J., Jenkins, M. A., & Wilkinson, H. (1999). Impairments of attention after cingulotomy. Neurology, 53(4), 819–824.

    PubMed  Google Scholar 

  303. Cohen, R. A., Kaplan, R. F., Meadows, M. E., & Wilkinson, H. (1994). Habituation and sensitization of the orienting response following bilateral anterior cingulotomy. Neuropsychologia, 32(5), 609–617.

    PubMed  Google Scholar 

  304. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539–546.

    PubMed  Google Scholar 

  305. Marsh, R., Horga, G., Wang, Z., et al. (2011). An FMRI study of self-regulatory control and conflict resolution in adolescents with bulimia nervosa. The American Journal of Psychiatry, 168(11), 1210–1220.

    PubMed  Google Scholar 

  306. Wittfoth, M., Kustermann, E., Fahle, M., & Herrmann, M. (2008). The influence of response conflict on error processing: Evidence from event-related fMRI. Brain Research, 1194, 118–129.

    PubMed  Google Scholar 

  307. di Pellegrino, G., Ciaramelli, E., & Ladavas, E. (2007). The regulation of cognitive control following rostral anterior cingulate cortex lesion in humans. Journal of Cognitive Neuroscience, 19(2), 275–286.

    PubMed  Google Scholar 

  308. Kerns, J. G. (2006). Anterior cingulate and prefrontal cortex activity in an FMRI study of trial-to-trial adjustments on the Simon task. NeuroImage, 33(1), 399–405.

    PubMed  Google Scholar 

  309. Maclin, E. L., Gratton, G., & Fabiani, M. (2001). Visual spatial localization conflict: An fMRI study. 12(16), 3633–3636.

    Google Scholar 

  310. Liu, X., Banich, M. T., Jacobson, B. L., & Tanabe, J. L. (2004). Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. NeuroImage, 22(3), 1097–1106.

    PubMed  Google Scholar 

  311. McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306(5695), 503–507.

    PubMed  Google Scholar 

  312. Hariri, A. R., Brown, S. M., Williamson, D. E., Flory, J. D., de Wit, H., & Manuck, S. B. (2006). Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. The Journal of Neuroscience, 26(51), 13213–13217.

    PubMed  Google Scholar 

  313. Monterosso, J. R., Ainslie, G., Xu, J., Cordova, X., Domier, C. P., & London, E. D. (2007). Frontoparietal cortical activity of methamphetamine-dependent and comparison subjects performing a delay discounting task. Human Brain Mapping, 28(5), 383–393.

    PubMed  Google Scholar 

  314. Wittmann, M., Leland, D. S., & Paulus, M. P. (2007). Time and decision making: Differential contribution of the posterior insular cortex and the striatum during a delay discounting task. Experimental Brain Research. Experimentelle Hirnforschung., 179(4), 643–653.

    Google Scholar 

  315. Hoffman, W. F., Schwartz, D. L., Huckans, M. S., et al. (2008). Cortical activation during delay discounting in abstinent methamphetamine dependent individuals. Psychopharmacology, 201(2), 183–193.

    PubMed  Google Scholar 

  316. Shamosh, N. A., Deyoung, C. G., Green, A. E., et al. (2008). Individual differences in delay discounting: Relation to intelligence, working memory, and anterior prefrontal cortex. Psychological Science, 19(9), 904–911.

    PubMed  Google Scholar 

  317. Ballard, K., & Knutson, B. (2009). Dissociable neural representations of future reward magnitude and delay during temporal discounting. NeuroImage, 45(1), 143–150.

    PubMed  Google Scholar 

  318. Bickel, W. K., Pitcock, J. A., Yi, R., & Angtuaco, E. J. (2009). Congruence of BOLD response across intertemporal choice conditions: Fictive and real money gains and losses. The Journal of Neuroscience, 29(27), 8839–8846.

    PubMed  Google Scholar 

  319. Luhmann, C. C. (2009). Temporal decision-making: Insights from cognitive neuroscience. Frontiers in Behavioral Neuroscience, 3, 39.

    PubMed  Google Scholar 

  320. Herting, M. M., Schwartz, D., Mitchell, S. H., & Nagel, B. J. (2010). Delay discounting behavior and white matter microstructure abnormalities in youth with a family history of alcoholism. Alcoholism, Clinical and Experimental Research, 34(9), 1590–1602.

    PubMed  Google Scholar 

  321. Kable, J. W., & Glimcher, P. W. (2010). An “as soon as possible” effect in human intertemporal decision making: Behavioral evidence and neural mechanisms. Journal of Neurophysiology, 103(5), 2513–2531.

    PubMed  Google Scholar 

  322. Marco-Pallares, J., Mohammadi, B., Samii, A., & Munte, T. F. (2010). Brain activations reflect individual discount rates in intertemporal choice. Brain Research, 1320, 123–129.

    PubMed  Google Scholar 

  323. Monterosso, J. R., & Luo, S. (2010). An argument against dual valuation system competition: Cognitive capacities supporting future orientation mediate rather than compete with visceral motivations. Journal of Neuroscience, Psychology, and Economics, 3(1), 1–14.

    PubMed  Google Scholar 

  324. Peters, J., & Buchel, C. (2010). Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-mediotemporal interactions. Neuron, 66(1), 138–148.

    PubMed  Google Scholar 

  325. Pine, A., Shiner, T., Seymour, B., & Dolan, R. J. (2010). Dopamine, time, and impulsivity in humans. The Journal of Neuroscience, 30(26), 8888–8896.

    PubMed  Google Scholar 

  326. Prevost, C., Pessiglione, M., Metereau, E., Clery-Melin, M. L., & Dreher, J. C. (2010). Separate valuation subsystems for delay and effort decision costs. The Journal of Neuroscience, 30(42), 14080–14090.

    PubMed  Google Scholar 

  327. Wittmann, M., Lovero, K. L., Lane, S. D., & Paulus, M. P. (2010). Now or later? Striatum and insula activation to immediate versus delayed rewards. Journal of Neuroscience, Psychology, and Economics, 3(1), 15–26.

    PubMed  Google Scholar 

  328. Benoit, R. G., Gilbert, S. J., & Burgess, P. W. (2011). A neural mechanism mediating the impact of episodic prospection on farsighted decisions. The Journal of Neuroscience, 31(18), 6771–6779.

    PubMed  Google Scholar 

  329. Camchong, J., MacDonald, A. W., 3rd, Nelson, B., et al. (2011). Frontal hyperconnectivity related to discounting and reversal learning in cocaine subjects. Biological Psychiatry, 69(11), 1117–1123.

    PubMed  Google Scholar 

  330. Christakou, A., Brammer, M., & Rubia, K. (2011). Maturation of limbic corticostriatal activation and connectivity associated with developmental changes in temporal discounting. NeuroImage, 54(2), 1344–1354.

    PubMed  Google Scholar 

  331. Claus, E. D., Kiehl, K. A., & Hutchison, K. E. (2011). Neural and behavioral mechanisms of impulsive choice in alcohol use disorder. Alcoholism, Clinical and Experimental Research, 35(7), 1209–1219.

    PubMed  Google Scholar 

  332. Meade, C. S., Lowen, S. B., MacLean, R. R., Key, M. D., & Lukas, S. E. (2011). fMRI brain activation during a delay discounting task in HIV-positive adults with and without cocaine dependence. Psychiatry Research, 192(3), 167–175.

    PubMed  Google Scholar 

  333. Onoda, K., Okamoto, Y., Kunisato, Y., et al. (2011). Inter-individual discount factor differences in reward prediction are topographically associated with caudate activation. Experimental Brain Research. Experimentelle Hirnforschung., 212(4), 593–601.

    Google Scholar 

  334. Peters, J., Bromberg, U., Schneider, S., et al. (2011). Lower ventral striatal activation during reward anticipation in adolescent smokers. The American Journal of Psychiatry, 168(5), 540–549.

    PubMed  Google Scholar 

  335. Sripada, C. S., Gonzalez, R., Phan, K. L., & Liberzon, I. (2011). The neural correlates of intertemporal decision-making: Contributions of subjective value, stimulus type, and trait impulsivity. Human Brain Mapping, 32(10), 1637–1648.

    PubMed  Google Scholar 

  336. Demoto, Y., Okada, G., Okamoto, Y., et al. (2012). Neural and personality correlates of individual differences related to the effects of acute tryptophan depletion on future reward evaluation. Neuropsychobiology, 65(2), 55–64.

    PubMed  Google Scholar 

  337. Kishinevsky, F. I., Cox, J. E., Murdaugh, D. L., Stoeckel, L. E., Cook, E. W., 3rd, & Weller, R. E. (2012). fMRI reactivity on a delay discounting task predicts weight gain in obese women. Appetite, 58(2), 582–592.

    PubMed  Google Scholar 

  338. Luo, S., Ainslie, G., Pollini, D., Giragosian, L., & Monterosso, J. R. (2012). Moderators of the association between brain activation and farsighted choice. NeuroImage, 59(2), 1469–1477.

    PubMed  Google Scholar 

  339. Miedl, S. F., Peters, J., & Buchel, C. (2012). Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Archives of General Psychiatry, 69(2), 177–186.

    PubMed  Google Scholar 

  340. Wilbertz, G., van Elst, L. T., Delgado, M. R., et al. (2012). Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder. NeuroImage, 60(1), 353–361.

    PubMed  Google Scholar 

  341. Hartstra, E., Oldenburg, J. F., Van Leijenhorst, L., Rombouts, S. A., & Crone, E. A. (2010). Brain regions involved in the learning and application of reward rules in a two-deck gambling task. Neuropsychologia, 48(5), 1438–1446.

    PubMed  Google Scholar 

  342. Li, X., Lu, Z. L., D’Argembeau, A., Ng, M., & Bechara, A. (2010). The Iowa Gambling Task in fMRI images. Human Brain Mapping, 31(3), 410–423.

    PubMed  Google Scholar 

  343. Acheson, A., Robinson, J. L., Glahn, D. C., Lovallo, W. R., & Fox, P. T. (2009). Differential activation of the anterior cingulate cortex and caudate nucleus during a gambling simulation in persons with a family history of alcoholism: Studies from the Oklahoma Family Health Patterns Project. Drug and Alcohol Dependence, 100(1–2), 17–23.

    PubMed  Google Scholar 

  344. Premkumar, P., Fannon, D., Kuipers, E., Simmons, A., Frangou, S., & Kumari, V. (2008). Emotional decision-making and its dissociable components in schizophrenia and schizoaffective disorder: A behavioural and MRI investigation. Neuropsychologia, 46(7), 2002–2012.

    PubMed  Google Scholar 

  345. Cazzell, M., Li, L., Lin, Z. J., Patel, S. J., & Liu, H. (2012). Comparison of neural correlates of risk decision making between genders: An exploratory fNIRS study of the Balloon Analogue Risk Task (BART). NeuroImage, 62(3), 1896–1911.

    PubMed  Google Scholar 

  346. Chiu, C. Y., Tlustos, S. J., Walz, N. C., et al. (2012). Neural correlates of risky decision making in adolescents with and without traumatic brain injury using the balloon analog risk task. Developmental Neuropsychology, 37(2), 176–183.

    PubMed  Google Scholar 

  347. Claus, E. D., & Hutchison, K. E. (2012). Neural mechanisms of risk taking and relationships with hazardous drinking. Alcoholism, Clinical and Experimental Research, 36(6), 408–416.

    Google Scholar 

  348. Strenziok, M., Pulaski, S., Krueger, F., Zamboni, G., Clawson, D., & Grafman, J. (2011). Regional brain atrophy and impaired decision making on the balloon analog risk task in behavioral variant frontotemporal dementia. Cognitive and Behavioral Neurology, 24(2), 59–67.

    PubMed  Google Scholar 

  349. Rao, H., Mamikonyan, E., Detre, J. A., et al. (2010). Decreased ventral striatal activity with impulse control disorders in Parkinson’s disease. Movement Disorders, 25(11), 1660–1669.

    PubMed  Google Scholar 

  350. Rao, H., Korczykowski, M., Pluta, J., Hoang, A., & Detre, J. A. (2008). Neural correlates of voluntary and involuntary risk taking in the human brain: An fMRI Study of the Balloon Analog Risk Task (BART). NeuroImage, 42(2), 902–910.

    PubMed  Google Scholar 

  351. Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23(10), 475–483.

    PubMed  Google Scholar 

  352. Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J., & von Cramon, D. Y. (2000). Prefrontal cortex activation in task switching: An event-related fMRI study. Brain Research, 9(1), 103–109.

    PubMed  Google Scholar 

  353. Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. NeuroImage, 9(2), 216–226.

    PubMed  Google Scholar 

  354. de Jong, B. M., Frackowiak, R. S., Willemsen, A. T., & Paans, A. M. (1999). The distribution of cerebral activity related to visuomotor coordination indicating perceptual and executional specialization. Brain Research. Cognitive Brain Research, 8(1), 45–59.

    PubMed  Google Scholar 

  355. Carter, C. S., Botvinick, M. M., & Cohen, J. D. (1999). The contribution of the anterior cingulate cortex to executive processes in cognition. Reviews in the Neurosciences, 10(1), 49–57.

    PubMed  Google Scholar 

  356. Ball, T., Schreiber, A., Feige, B., Wagner, M., Lucking, C. H., & Kristeva-Feige, R. (1999). The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. NeuroImage, 10(6), 682–694.

    PubMed  Google Scholar 

  357. Rao, S. M., Bobholz, J. A., Hammeke, T. A., et al. (1997). Functional MRI evidence for subcortical participation in conceptual reasoning skills. 8(8), 1987–1993.

    Google Scholar 

  358. Cohen, J. D., Perlstein, W. M., Braver, T. S., et al. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604–608.

    Google Scholar 

  359. Wagner, A. D., Maril, A., Bjork, R. A., & Schacter, D. L. (2001). Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral Prefrontal cortex. NeuroImage, 14(6), 1337–1347.

    PubMed  Google Scholar 

  360. Rypma, B., Prabhakaran, V., Desmond, J. E., & Gabrieli, J. D. (2001). Age differences in prefrontal cortical activity in working memory. Psychology and Aging, 16(3), 371–384.

    PubMed  Google Scholar 

  361. Menon, V., Adleman, N. E., White, C. D., Glover, G. H., & Reiss, A. L. (2001). Error-related brain activation during a Go/NoGo response inhibition task. Human Brain Mapping, 12(3), 131–143.

    PubMed  Google Scholar 

  362. Herrmann, M., Rotte, M., Grubich, C., et al. (2001). Control of semantic interference in episodic memory retrieval is associated with an anterior cingulate-prefrontal activation pattern. Human Brain Mapping, 13(2), 94–103.

    PubMed  Google Scholar 

  363. DiGirolamo, G. J., Kramer, A. F., Barad, V., et al. (2001). General and task-specific frontal lobe recruitment in older adults during executive processes: A fMRI investigation of task-switching. 12(9), 2065–2071.

    Google Scholar 

  364. Rubia, K., Overmeyer, S., Taylor, E., et al. (2000). Functional frontalisation with age: Mapping neurodevelopmental trajectories with fMRI. Neuroscience and Biobehavioral Reviews, 24(1), 13–19.

    Google Scholar 

  365. Hampshire, A., Chaudhry, A. M., Owen, A. M., & Roberts, A. C. (2012). Dissociable roles for lateral orbitofrontal cortex and lateral prefrontal cortex during preference driven reversal learning. NeuroImage, 59(4), 4102–4112.

    PubMed  Google Scholar 

  366. Chib, V. S., De Martino, B., Shimojo, S., & O’Doherty, J. P. (2012). Neural mechanisms underlying paradoxical performance for monetary incentives are driven by loss aversion. Neuron, 74(3), 582–594.

    PubMed  Google Scholar 

  367. Cameron, I. G., Pari, G., Alahyane, N., et al. (2012). Impaired executive function signals in motor brain regions in Parkinson’s disease. NeuroImage, 60(2), 1156–1170.

    PubMed  Google Scholar 

  368. Zhang, X., Ma, L., Li, S., Wang, Y., & Wang, L. (2011). A functional MRI evaluation of frontal dysfunction in patients with severe obstructive sleep apnea. Sleep Medicine, 12(4), 335–340.

    PubMed  Google Scholar 

  369. Nestor, L. J., Ghahremani, D. G., Monterosso, J., & London, E. D. (2011). Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent subjects. Psychiatry Research, 194(3), 287–295.

    PubMed  Google Scholar 

  370. Krivitzky, L. S., Roebuck-Spencer, T. M., Roth, R. M., Blackstone, K., Johnson, C. P., & Gioia, G. (2011). Functional magnetic resonance imaging of working memory and response inhibition in children with mild traumatic brain injury. Journal of the International Neuropsychological Society, 17(6), 1143–1152.

    PubMed  Google Scholar 

  371. Kaller, C. P., Rahm, B., Spreer, J., Weiller, C., & Unterrainer, J. M. (2011). Dissociable contributions of left and right dorsolateral prefrontal cortex in planning. Cerebral Cortex, 21(2), 307–317.

    PubMed  Google Scholar 

  372. Braet, W., Johnson, K. A., Tobin, C. T., et al. (2011). fMRI activation during response inhibition and error processing: The role of the DAT1 gene in typically developing adolescents and those diagnosed with ADHD. Neuropsychologia, 49(7), 1641–1650.

    PubMed  Google Scholar 

  373. Zhang, S., & Li, C. S. (2010). A neural measure of behavioral engagement: Task-residual low-frequency blood oxygenation level-dependent activity in the precuneus. NeuroImage, 49(2), 1911–1918.

    PubMed  Google Scholar 

  374. Wilmsmeier, A., Ohrmann, P., Suslow, T., et al. (2010). Neural correlates of set-shifting: Decomposing executive functions in schizophrenia. Journal of Psychiatry & Neuroscience, 35(5), 321–329.

    Google Scholar 

  375. Weissman-Fogel, I., Moayedi, M., Taylor, K. S., Pope, G., & Davis, K. D. (2010). Cognitive and default-mode resting state networks: Do male and female brains “rest” differently? Human Brain Mapping, 31(11), 1713–1726.

    PubMed  Google Scholar 

  376. Venkatraman, V. K., Aizenstein, H., Guralnik, J., et al. (2010). Executive control function, brain activation and white matter hyperintensities in older adults. NeuroImage, 49(4), 3436–3442.

    PubMed  Google Scholar 

  377. Singh, M. K., Chang, K. D., Mazaika, P., et al. (2010). Neural correlates of response inhibition in pediatric bipolar disorder. Journal of Child and Adolescent Psychopharmacology, 20(1), 15–24.

    PubMed  Google Scholar 

  378. Rocca, M. A., & Filippi, M. (2010). FMRI correlates of execution and observation of foot movements in left-handers. Journal of the Neurological Sciences, 288(1–2), 34–41.

    PubMed  Google Scholar 

  379. Roberts, G. M., & Garavan, H. (2010). Evidence of increased activation underlying cognitive control in ecstasy and cannabis users. NeuroImage, 52(2), 429–435.

    PubMed  Google Scholar 

  380. Labudda, K., Brand, M., Mertens, M., Ebner, A., Markowitsch, H. J., & Woermann, F. G. (2010). Alterations of decision making and underlying neural correlates after resection of a mediofrontal cortical dysplasia: A single case study. Neurocase, 16(1), 59–73.

    PubMed  Google Scholar 

  381. Jimura, K., & Braver, T. S. (2010). Age-related shifts in brain activity dynamics during task switching. Cerebral Cortex, 20(6), 1420–1431.

    PubMed  Google Scholar 

  382. Greimel, E., Schulte-Ruther, M., Kircher, T., et al. (2010). Neural mechanisms of empathy in adolescents with autism spectrum disorder and their fathers. NeuroImage, 49(1), 1055–1065.

    PubMed  Google Scholar 

  383. Gold, B. T., Powell, D. K., Xuan, L., Jicha, G. A., & Smith, C. D. (2010). Age-related slowing of task switching is associated with decreased integrity of frontoparietal white matter. Neurobiology of Aging, 31(3), 512–522.

    PubMed  Google Scholar 

  384. Cho, S., Moody, T. D., Fernandino, L., et al. (2010). Common and dissociable prefrontal loci associated with component mechanisms of analogical reasoning. Cerebral Cortex, 20(3), 524–533.

    PubMed  Google Scholar 

  385. Cappell, K. A., Gmeindl, L., & Reuter-Lorenz, P. A. (2010). Age differences in prefontal recruitment during verbal working memory maintenance depend on memory load. Cortex, 46(4), 462–473.

    PubMed  Google Scholar 

  386. Burgess, G. C., & Braver, T. S. (2010). Neural mechanisms of interference control in working memory: Effects of interference expectancy and fluid intelligence. PLoS One, 5(9), e12861.

    PubMed  Google Scholar 

  387. Beneventi, H., Tonnessen, F. E., Ersland, L., & Hugdahl, K. (2010). Executive working memory processes in dyslexia: Behavioral and fMRI evidence. Scandinavian Journal of Psychology, 51(3), 192–202.

    PubMed  Google Scholar 

  388. Agam, Y., Joseph, R. M., Barton, J. J., & Manoach, D. S. (2010). Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders. NeuroImage, 52(1), 336–347.

    PubMed  Google Scholar 

  389. Solanto, M. V., Schulz, K. P., Fan, J., Tang, C. Y., & Newcorn, J. H. (2009). Event-related FMRI of inhibitory control in the predominantly inattentive and combined subtypes of ADHD. Journal of Neuroimaging, 19(3), 205–212.

    PubMed  Google Scholar 

  390. Monti, M. M., Coleman, M. R., & Owen, A. M. (2009). Executive functions in the absence of behavior: Functional imaging of the minimally conscious state. Progress in Brain Research, 177, 249–260.

    PubMed  Google Scholar 

  391. Marklund, P., Larsson, A., Elgh, E., et al. (2009). Temporal dynamics of basal ganglia under-recruitment in Parkinson’s disease: Transient caudate abnormalities during updating of working memory. Brain, 132(Pt 2), 336–346.

    PubMed  Google Scholar 

  392. Kloppel, S., Draganski, B., Siebner, H. R., Tabrizi, S. J., Weiller, C., & Frackowiak, R. S. (2009). Functional compensation of motor function in pre-symptomatic Huntington’s disease. Brain, 132(Pt 6), 1624–1632.

    PubMed  Google Scholar 

  393. Cojan, Y., Waber, L., Schwartz, S., Rossier, L., Forster, A., & Vuilleumier, P. (2009). The brain under self-control: Modulation of inhibitory and monitoring cortical networks during hypnotic paralysis. Neuron, 62(6), 862–875.

    PubMed  Google Scholar 

  394. Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8719–8724.

    PubMed  Google Scholar 

  395. Broome, M. R., Matthiasson, P., Fusar-Poli, P., et al. (2009). Neural correlates of executive function and working memory in the ‘at-risk mental state’. The British Journal of Psychiatry, 194(1), 25–33.

    PubMed  Google Scholar 

  396. Weber, B. J., & Huettel, S. A. (2008). The neural substrates of probabilistic and intertemporal decision making. Brain Research, 1234, 104–115.

    PubMed  Google Scholar 

  397. Wang, L., LaBar, K. S., Smoski, M., et al. (2008). Prefrontal mechanisms for executive control over emotional distraction are altered in major depression. Psychiatry Research, 163(2), 143–155.

    PubMed  Google Scholar 

  398. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12569–12574.

    PubMed  Google Scholar 

  399. Shafritz, K. M., Dichter, G. S., Baranek, G. T., & Belger, A. (2008). The neural circuitry mediating shifts in behavioral response and cognitive set in autism. Biological Psychiatry, 63(10), 974–980.

    PubMed  Google Scholar 

  400. Schlosser, R. G., Wagner, G., Koch, K., Dahnke, R., Reichenbach, J. R., & Sauer, H. (2008). Fronto-cingulate effective connectivity in major depression: A study with fMRI and dynamic causal modeling. NeuroImage, 43(3), 645–655.

    PubMed  Google Scholar 

  401. Koch, K., Wagner, G., Nenadic, I., et al. (2008). Fronto-striatal hypoactivation during correct information retrieval in patients with schizophrenia: An fMRI study. Neuroscience, 153(1), 54–62.

    PubMed  Google Scholar 

  402. Melrose, R. J., Poulin, R. M., & Stern, C. E. (2007). An fMRI investigation of the role of the basal ganglia in reasoning. Brain Research, 1142, 146–158.

    PubMed  Google Scholar 

  403. Schmitz, N., Rubia, K., Daly, E., Smith, A., Williams, S., & Murphy, D. G. (2006). Neural correlates of executive function in autistic spectrum disorders. Biological Psychiatry, 59(1), 7–16.

    PubMed  Google Scholar 

  404. Rubia, K., Smith, A. B., Woolley, J., et al. (2006). Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Human Brain Mapping, 27(12), 973–993.

    PubMed  Google Scholar 

  405. Loose, R., Kaufmann, C., Tucha, O., Auer, D. P., & Lange, K. W. (2006). Neural networks of response shifting: Influence of task speed and stimulus material. Brain Research, 1090(1), 146–155.

    PubMed  Google Scholar 

  406. Drobyshevsky, A., Baumann, S. B., & Schneider, W. (2006). A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function. NeuroImage, 31(2), 732–744.

    PubMed  Google Scholar 

  407. Kawaguchi, S., Ukai, S., Shinosaki, K., et al. (2005). Information processing flow and neural activations in the dorsolateral prefrontal cortex in the Stroop task in schizophrenic patients. A spatially filtered MEG analysis with high temporal and spatial resolution. Neuropsychobiology, 51(4), 191–203.

    PubMed  Google Scholar 

  408. Cannon, T. D., Glahn, D. C., Kim, J., et al. (2005). Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia. Archives of General Psychiatry, 62(10), 1071–1080.

    PubMed  Google Scholar 

  409. Spinks, J. A., Zhang, J. X., Fox, P. T., Gao, J. H., & Hai Tan, L. (2004). More workload on the central executive of working memory, less attention capture by novel visual distractors: Evidence from an fMRI study. NeuroImage, 23(2), 517–524.

    PubMed  Google Scholar 

  410. Osaka, N., Osaka, M., Kondo, H., Morishita, M., Fukuyama, H., & Shibasaki, H. (2004). The neural basis of executive function in working memory: An fMRI study based on individual differences. NeuroImage, 21(2), 623–631.

    PubMed  Google Scholar 

  411. Kringelbach, M. L., de Araujo, I. E., & Rolls, E. T. (2004). Taste-related activity in the human dorsolateral prefrontal cortex. NeuroImage, 21(2), 781–788.

    PubMed  Google Scholar 

  412. Kelly, A. M., Hester, R., Murphy, K., Javitt, D. C., Foxe, J. J., & Garavan, H. (2004). Prefrontal-subcortical dissociations underlying inhibitory control revealed by event-related fMRI. The European Journal of Neuroscience, 19(11), 3105–3112.

    PubMed  Google Scholar 

  413. Huettel, S. A., Misiurek, J., Jurkowski, A. J., & McCarthy, G. (2004). Dynamic and strategic aspects of executive processing. Brain Research, 1000(1–2), 78–84.

    PubMed  Google Scholar 

  414. Goethals, I., Audenaert, K., Van de Wiele, C., & Dierckx, R. (2004). The prefrontal cortex: Insights from functional neuroimaging using cognitive activation tasks. European Journal of Nuclear Medicine and Molecular Imaging, 31(3), 408–416.

    PubMed  Google Scholar 

  415. Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T., & Meltzoff, A. N. (2004). The neural bases of cooperation and competition: An fMRI investigation. NeuroImage, 23(2), 744–751.

    PubMed  Google Scholar 

  416. Bellgrove, M. A., Hester, R., & Garavan, H. (2004). The functional neuroanatomical correlates of response variability: Evidence from a response inhibition task. Neuropsychologia, 42(14), 1910–1916.

    PubMed  Google Scholar 

  417. Tracy, J., Flanders, A., Madi, S., et al. (2003). Regional brain activation associated with different performance patterns during learning of a complex motor skill. Cerebral Cortex, 13(9), 904–910.

    PubMed  Google Scholar 

  418. Newman, S. D., Carpenter, P. A., Varma, S., & Just, M. A. (2003). Frontal and parietal participation in problem solving in the Tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia, 41(12), 1668–1682.

    PubMed  Google Scholar 

  419. Loose, R., Kaufmann, C., Auer, D. P., & Lange, K. W. (2003). Human prefrontal and sensory cortical activity during divided attention tasks. Human Brain Mapping, 18(4), 249–259.

    PubMed  Google Scholar 

  420. Fan, J., Fossella, J., Sommer, T., Wu, Y., & Posner, M. I. (2003). Mapping the genetic variation of executive attention onto brain activity. Proceedings of the National Academy of Sciences of the United States of America, 100(12), 7406–7411.

    PubMed  Google Scholar 

  421. Audoin, B., Ibarrola, D., Ranjeva, J. P., et al. (2003). Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Human Brain Mapping, 20(2), 51–58.

    PubMed  Google Scholar 

  422. Toyokura, M., Muro, I., Komiya, T., & Obara, M. (2002). Activation of pre-supplementary motor area (SMA) and SMA proper during unimanual and bimanual complex sequences: An analysis using functional magnetic resonance imaging. Journal of Neuroimaging, 12(2), 172–178.

    PubMed  Google Scholar 

  423. Luria, A. R., & Khomskaya, E. D. (Eds.). (1966). The frontal lobes and regulation of psychological processes. Moscow: Moscow University Press.

    Google Scholar 

  424. Fuster, J. M. (1991). The prefrontal cortex and its relation to behavior. Progress in Brain Research, 87, 201–211.

    PubMed  Google Scholar 

  425. Fuster, J. M. (1997). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe (3rd ed.). Philadelphia: Lippincott-Raven.

    Google Scholar 

  426. Stuss, D. T. (2006). Frontal lobes and attention: Processes and networks, fractionation and integration. Journal of the International Neuropsychological Society, 12(2), 261–271.

    PubMed  Google Scholar 

  427. Stuss, D. T., & Alexander, M. P. (2000). Executive functions and the frontal lobes: A conceptual view. Psychological Research, 63(3–4), 289–298.

    PubMed  Google Scholar 

  428. Stuss, D. T., Alexander, M. P., Shallice, T., et al. (2005). Multiple frontal systems controlling response speed. Neuropsychologia, 43(3), 396–417.

    PubMed  Google Scholar 

  429. Stuss, D. T., & Benson, D. F. (1986). The frontal lobes. New York: Raven.

    Google Scholar 

  430. Aupperle, R. L., Allard, C. B., Grimes, E. M., et al. (2012). Dorsolateral prefrontal cortex activation during emotional anticipation and neuropsychological performance in posttraumatic stress disorder. Archives of General Psychiatry, 69(4), 360–371.

    PubMed  Google Scholar 

  431. Shafritz, K. M., Kartheiser, P., & Belger, A. (2005). Dissociation of neural systems mediating shifts in behavioral response and cognitive set. NeuroImage, 25(2), 600–606.

    PubMed  Google Scholar 

  432. Smith, A. B., Taylor, E., Brammer, M., & Rubia, K. (2004). Neural correlates of switching set as measured in fast, event-related functional magnetic resonance imaging. Human Brain Mapping, 21(4), 247–256.

    PubMed  Google Scholar 

  433. Garavan, H., Ross, T. J., Murphy, K., Roche, R. A., & Stein, E. A. (2002). Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction. NeuroImage, 17(4), 1820–1829.

    PubMed  Google Scholar 

  434. Sylvester, C. Y., Wager, T. D., Lacey, S. C., et al. (2003). Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia, 41(3), 357–370.

    PubMed  Google Scholar 

  435. Hampshire, A., & Owen, A. M. (2006). Fractionating attentional control using event-related fMRI. Cerebral Cortex, 16(12), 1679–1689.

    PubMed  Google Scholar 

  436. Karch, S., Thalmeier, T., Lutz, J., et al. (2010). Neural correlates (ERP/fMRI) of voluntary selection in adult ADHD patients. European Archives of Psychiatry and Clinical Neuroscience, 260(5), 427–440.

    PubMed  Google Scholar 

  437. Okuda, J., Gilbert, S. J., Burgess, P. W., Frith, C. D., & Simons, J. S. (2011). Looking to the future: Automatic regulation of attention between current performance and future plans. Neuropsychologia, 49(8), 2258–2271.

    PubMed  Google Scholar 

  438. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443–447.

    PubMed  Google Scholar 

  439. Miyashita, Y. (2004). Cognitive memory: Cellular and network machineries and their top-down control. Science, 306(5695), 435–440.

    PubMed  Google Scholar 

  440. Toni, I., Thoenissen, D., & Zilles, K. (2001). Movement preparation and motor intention. NeuroImage, 14(1 Pt 2), S110–S117.

    PubMed  Google Scholar 

  441. Pierrot-Deseilligny, C., Muri, R. M., Nyffeler, T., & Milea, D. (2005). The role of the human dorsolateral prefrontal cortex in ocular motor behavior. Annals of the New York Academy of Sciences, 1039, 239–251.

    PubMed  Google Scholar 

  442. Schluppeck, D., Glimcher, P., & Heeger, D. J. (2005). Topographic organization for delayed saccades in human posterior parietal cortex. Journal of Neurophysiology, 94(2), 1372–1384.

    PubMed  Google Scholar 

  443. Cunnington, R., Windischberger, C., Robinson, S., & Moser, E. (2006). The selection of intended actions and the observation of others’ actions: A time-resolved fMRI study. NeuroImage, 29(4), 1294–1302.

    PubMed  Google Scholar 

  444. Hu, S., Bu, Y., Song, Y., Zhen, Z., & Liu, J. (2009). Dissociation of attention and intention in human posterior parietal cortex: An fMRI study. The European Journal of Neuroscience, 29(10), 2083–2091.

    PubMed  Google Scholar 

  445. Konen, C. S., Kleiser, R., Bremmer, F., & Seitz, R. J. (2007). Different cortical activations during visuospatial attention and the intention to perform a saccade. Experimental brain research. Experimentelle Hirnforschung., 182(3), 333–341.

    Google Scholar 

  446. Thoenissen, D., Zilles, K., & Toni, I. (2002). Differential involvement of parietal and precentral regions in movement preparation and motor intention. The Journal of Neuroscience, 22(20), 9024–9034.

    PubMed  Google Scholar 

  447. Luks, T. L., Sun, F. T., Dale, C. L., Miller, W. L., & Simpson, G. V. (2008). Transient and sustained brain activity during anticipatory visuospatial attention. 19(2), 155–159.

    Google Scholar 

  448. Luks, T. L., & Simpson, G. V. (2004). Preparatory deployment of attention to motion activates higher-order motion-processing brain regions. NeuroImage, 22(4), 1515–1522.

    PubMed  Google Scholar 

  449. Binkofski, F., Fink, G. R., Geyer, S., et al. (2002). Neural activity in human primary motor cortex areas 4a and 4p is modulated differentially by attention to action. Journal of Neurophysiology, 88(1), 514–519.

    PubMed  Google Scholar 

  450. Rowe, J., Stephan, K. E., Friston, K., Frackowiak, R., Lees, A., & Passingham, R. (2002). Attention to action in Parkinson’s disease: Impaired effective connectivity among frontal cortical regions. Brain, 125(Pt 2), 276–289.

    PubMed  Google Scholar 

  451. Elliott, R., Agnew, Z., & Deakin, J. F. (2010). Hedonic and informational functions of the human orbitofrontal cortex. Cerebral Cortex, 20(1), 198–204.

    PubMed  Google Scholar 

  452. Elliott, R., Agnew, Z., & Deakin, J. F. (2008). Medial orbitofrontal cortex codes relative rather than absolute value of financial rewards in humans. The European Journal of Neuroscience, 27(9), 2213–2218.

    PubMed  Google Scholar 

  453. Beer, J. S., & Hughes, B. L. (2010). Neural systems of social comparison and the “above-average” effect. NeuroImage, 49(3), 2671–2679.

    PubMed  Google Scholar 

  454. Hughes, B. L., & Beer, J. S. (2012). Orbitofrontal cortex and anterior cingulate cortex are modulated by motivated social cognition. Cerebral Cortex, 22(6), 1372–1381.

    PubMed  Google Scholar 

  455. Levy, D. J., & Glimcher, P. W. (2012). The root of all value: A neural common currency for choice. Current Opinion in Neurobiology, 22(6), 1027–1038.

    PubMed  Google Scholar 

  456. Bellebaum, C., Jokisch, D., Gizewski, E. R., Forsting, M., & Daum, I. (2012). The neural coding of expected and unexpected monetary performance outcomes: Dissociations between active and observational learning. Behavioural Brain Research, 227(1), 241–251.

    PubMed  Google Scholar 

  457. Hinvest, N. S., Elliott, R., McKie, S., & Anderson, I. M. (2011). Neural correlates of choice behavior related to impulsivity and venturesomeness. Neuropsychologia, 49(9), 2311–2320.

    PubMed  Google Scholar 

  458. Shad, M. U., Bidesi, A. S., Chen, L. A., Thomas, B. P., Ernst, M., & Rao, U. (2011). Neurobiology of decision-making in adolescents. Behavioural Brain Research, 217(1), 67–76.

    PubMed  Google Scholar 

  459. Plassmann, H., O’Doherty, J. P., & Rangel, A. (2010). Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making. The Journal of Neuroscience, 30(32), 10799–10808.

    PubMed  Google Scholar 

  460. Volz, K. G., & von Cramon, D. Y. (2009). How the orbitofrontal cortex contributes to decision making - a view from neuroscience. Progress in Brain Research, 174, 61–71.

    PubMed  Google Scholar 

  461. Peters, J. (2011). The role of the medial orbitofrontal cortex in intertemporal choice: Prospection or valuation? The Journal of Neuroscience, 31(16), 5889–5890.

    PubMed  Google Scholar 

  462. Raine, A., Sheard, C., Reynolds, G. P., & Lencz, T. (1992). Pre-frontal structural and functional deficits associated with individual differences in schizotypal personality. Schizophrenia Research, 7(3), 237–247.

    PubMed  Google Scholar 

  463. Turner, G. R., McIntosh, A. R., & Levine, B. (2011). Prefrontal compensatory engagement in TBI is due to altered functional engagement of existing networks and not functional reorganization. Frontiers in Systems Neuroscience, 5, 9.

    PubMed  Google Scholar 

  464. Scheibel, R. S., Newsome, M. R., Troyanskaya, M., et al. (2009). Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation. Journal of Neurotrauma, 26(9), 1447–1461.

    PubMed  Google Scholar 

  465. Turner, G. R., & Levine, B. (2008). Augmented neural activity during executive control processing following ­diffuse axonal injury. Neurology, 71(11), 812–818.

    PubMed  Google Scholar 

  466. Scheibel, R. S., Pearson, D. A., Faria, L. P., et al. (2003). An fMRI study of executive functioning after severe diffuse TBI. Brain Injury, 17(11), 919–930.

    PubMed  Google Scholar 

  467. Perlstein, W. M., Cole, M. A., Demery, J. A., et al. (2004). Parametric manipulation of working memory load in traumatic brain injury: Behavioral and neural correlates. Journal of the International Neuropsychological Society, 10(5), 724–741.

    PubMed  Google Scholar 

  468. Newsome, M. R., Scheibel, R. S., Steinberg, J. L., et al. (2007). Working memory brain activation following severe traumatic brain injury. Cortex, 43(1), 95–111.

    PubMed  Google Scholar 

  469. Sozda, C. N., Larson, M. J., Kaufman, D. A., Schmalfuss, I. M., & Perlstein, W. M. (2011). Error-related processing following severe traumatic brain injury: An event-related functional magnetic resonance imaging (fMRI) study. International Journal of Psychophysiology, 82(1), 97–106.

    PubMed  Google Scholar 

  470. Robbins, T. W. (2007). Shifting and stopping: Fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society of London, 362(1481), 917–932.

    PubMed  Google Scholar 

  471. Hermann, D., Sartorius, A., Welzel, H., et al. (2007). Dorsolateral prefrontal cortex N-acetylaspartate/total creatine (NAA/tCr) loss in male recreational cannabis users. Biological Psychiatry, 61(11), 1281–1289.

    PubMed  Google Scholar 

  472. Bartres-Faz, D., Marti, M. J., Junque, C., et al. (2007). Increased cerebral activity in Parkinson’s disease patients carrying the DRD2 TaqIA A1 allele during a demanding motor task: A compensatory mechanism? Genes, Brain, and Behavior, 6(6), 588–592.

    PubMed  Google Scholar 

  473. Leh, S. E., Petrides, M., & Strafella, A. P. (2010). The neural circuitry of executive functions in healthy subjects and Parkinson’s disease. Neuropsychopharmacology, 35(1), 70–85.

    PubMed  Google Scholar 

  474. van Eimeren, T., Monchi, O., Ballanger, B., & Strafella, A. P. (2009). Dysfunction of the default mode network in Parkinson disease: A functional magnetic resonance imaging study. Archives of Neurology, 66(7), 877–883.

    PubMed  Google Scholar 

  475. Baglio, F., Blasi, V., Falini, A., et al. (2011). Functional brain changes in early Parkinson’s disease during motor response and motor inhibition. Neurobiology of Aging, 32(1), 115–124.

    PubMed  Google Scholar 

  476. Sachin, S., Senthil Kumaran, S., Singh, S., et al. (2008). Functional mapping in PD and PSP for sustained phonation and phoneme tasks. Journal of the Neurological Sciences, 273(1–2), 51–56.

    PubMed  Google Scholar 

  477. Monchi, O., Petrides, M., Mejia-Constain, B., & Strafella, A. P. (2007). Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement. Brain, 130(Pt 1), 233–244.

    PubMed  Google Scholar 

  478. Monchi, O., Ko, J. H., & Strafella, A. P. (2006). Striatal dopamine release during performance of executive functions: A [(11)C] raclopride PET study. NeuroImage, 33(3), 907–912.

    PubMed  Google Scholar 

  479. Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2004). Striatal contributions to working memory: A functional magnetic resonance imaging study in humans. The European Journal of Neuroscience, 19(3), 755–760.

    PubMed  Google Scholar 

  480. Wolf, R. C., Sambataro, F., Vasic, N., et al. (2011). Longitudinal functional magnetic resonance imaging of cognition in preclinical Huntington’s disease. Experimental Neurology, 231(2), 214–222.

    PubMed  Google Scholar 

  481. Wolf, R. C., Sambataro, F., Vasic, N., Schonfeldt-Lecuona, C., Ecker, D., & Landwehrmeyer, B. (2008). Aberrant connectivity of lateral prefrontal networks in presymptomatic Huntington’s disease. Experimental Neurology, 213(1), 137–144.

    PubMed  Google Scholar 

  482. Wolf, R. C., Vasic, N., Schonfeldt-Lecuona, C., Ecker, D., & Landwehrmeyer, G. B. (2009). Cortical dysfunction in patients with Huntington’s disease during working memory performance. Human Brain Mapping, 30(1), 327–339.

    PubMed  Google Scholar 

  483. Montoya, A., Price, B. H., Menear, M., & Lepage, M. (2006). Brain imaging and cognitive dysfunctions in Huntington’s disease. Journal of Psychiatry & Neuroscience, 31(1), 21–29.

    Google Scholar 

  484. Fine, E. M., Delis, D. C., Dean, D., et al. (2009). Left frontal lobe contributions to concept formation: A quantitative MRI study of performance on the Delis-Kaplan Executive Function System Sorting Test. Journal of Clinical and Experimental Neuropsychology, 31(5), 624–631.

    PubMed  Google Scholar 

  485. Georgiou-Karistianis, N., Sritharan, A., Farrow, M., et al. (2007). Increased cortical recruitment in Huntington’s disease using a Simon task. Neuropsychologia, 45(8), 1791–1800.

    PubMed  Google Scholar 

  486. Nebel, K., Wiese, H., Seyfarth, J., et al. (2007). Activity of attention related structures in multiple sclerosis patients. Brain Research, 1151, 150–160.

    PubMed  Google Scholar 

  487. Au Duong, M. V., Boulanouar, K., Audoin, B., et al. (2005). Modulation of effective connectivity inside the working memory network in patients at the earliest stage of multiple sclerosis. NeuroImage, 24(2), 533–538.

    PubMed  Google Scholar 

  488. Audoin, B., Au Duong, M. V., Ranjeva, J. P., et al. (2005). Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Human Brain Mapping, 24(3), 216–228.

    PubMed  Google Scholar 

  489. Lazeron, R. H., Rombouts, S. A., Scheltens, P., Polman, C. H., & Barkhof, F. (2004). An fMRI study of planning-related brain activity in patients with moderately advanced multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 10(5), 549–555.

    Google Scholar 

  490. Amato, M. P., Portaccio, E., Goretti, B., et al. (2010). Cognitive impairment in early stages of multiple sclerosis. Neurological Sciences, 31(Suppl 2), S211–S214.

    PubMed  Google Scholar 

  491. Helekar, S. A., Shin, J. C., Mattson, B. J., et al. (2010). Functional brain network changes associated with maintenance of cognitive function in multiple sclerosis. Frontiers in Human Neuroscience, 4, 219.

    PubMed  Google Scholar 

  492. Mendez, M. F., McMurtray, A., Chen, A. K., Shapira, J. S., Mishkin, F., & Miller, B. L. (2006). Functional neuroimaging and presenting psychiatric features in frontotemporal dementia. Journal of Neurology, Neurosurgery & Psychiatry, 77(1), 4–7.

    Google Scholar 

  493. Shelley, B. P., Al-Khabouri, J., Hussein, S. S., & Raniga, S. B. (2007). Frontotemporal dementia in Oman: Cognitive behavioural profile and neuroimaging characteristics; a prospective hospital-based study. Journal of the Neurological Sciences, 260(1–2), 167–174.

    PubMed  Google Scholar 

  494. Whitwell, J. L., Josephs, K. A., Avula, R., et al. (2011). Altered functional connectivity in asymptomatic MAPT subjects: A comparison to bvFTD. Neurology, 77(9), 866–874.

    PubMed  Google Scholar 

  495. Sun, Y. W., Qin, L. D., Zhou, Y., et al. (2011). Abnormal functional connectivity in patients with vascular cognitive impairment, no dementia: A resting-state functional magnetic resonance imaging study. Behavioural Brain Research, 223(2), 388–394.

    PubMed  Google Scholar 

  496. Wilson, S. M., Dronkers, N. F., Ogar, J. M., et al. (2010). Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. The Journal of Neuroscience, 30(50), 16845–16854.

    PubMed  Google Scholar 

  497. Sauer, J., Ffytche, D. H., Ballard, C., Brown, R. G., & Howard, R. (2006). Differences between Alzheimer’s disease and dementia with Lewy bodies: An fMRI study of task-related brain activity. Brain, 129(Pt 7), 1780–1788.

    PubMed  Google Scholar 

  498. Li, C., Zheng, J., Wang, J., & Gui, L. (2011). Comparison between Alzheimer’s disease and subcortical vascular dementia: Attentional cortex study in functional magnetic resonance imaging. The Journal of International Medical Research, 39(4), 1413–1419.

    PubMed  Google Scholar 

  499. Gonzales, M. M., Tarumi, T., Tanaka, H., et al. (2010). Functional imaging of working memory and peripheral endothelial function in middle-aged adults. Brain and Cognition, 73(2), 146–151.

    PubMed  Google Scholar 

  500. Tracey, I., Hamberg, L. M., Guimaraes, A. R., et al. (1998). Increased cerebral blood volume in HIV-positive patients detected by functional MRI. Neurology, 50(6), 1821–1826.

    PubMed  Google Scholar 

  501. Kramer, J. H., Quitania, L., Dean, D., et al. (2007). Magnetic resonance imaging correlates of set shifting. Journal of the International Neuropsychological Society, 13(3), 386–392.

    PubMed  Google Scholar 

  502. Chang, L., Tomasi, D., Yakupov, R., et al. (2004). Adaptation of the attention network in human immunodeficiency virus brain injury. Annals of Neurology, 56(2), 259–272.

    PubMed  Google Scholar 

  503. Ernst, T., Chang, L., Jovicich, J., Ames, N., & Arnold, S. (2002). Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology, 59(9), 1343–1349.

    PubMed  Google Scholar 

  504. Victoroff, J., Ross, G. W., Benson, D. F., Verity, M. A., & Vinters, H. V. (1994). Posterior cortical atrophy. Neuropathologic correlations. Archives of Neurology, 51(3), 269–274.

    PubMed  Google Scholar 

  505. Erkinjuntti, T., Lee, D. H., Gao, F., et al. (1993). Temporal lobe atrophy on magnetic resonance imaging in the diagnosis of early Alzheimer’s disease. Archives of Neurology, 50(3), 305–310.

    PubMed  Google Scholar 

  506. Derflinger, S., Sorg, C., Gaser, C., et al. (2011). Grey-matter atrophy in Alzheimer’s disease is asymmetric but not lateralized. Journal of Alzheimer’s Disease, 25(2), 347–357.

    PubMed  Google Scholar 

  507. Chetelat, G., Villemagne, V. L., Bourgeat, P., et al. (2010). Relationship between atrophy and beta-amyloid deposition in Alzheimer disease. Annals of Neurology, 67(3), 317–324.

    PubMed  Google Scholar 

  508. Lehmann, M., Rohrer, J. D., Clarkson, M. J., et al. (2010). Reduced cortical thickness in the posterior cingulate gyrus is characteristic of both typical and atypical Alzheimer’s disease. Journal of Alzheimer’s Disease, 20(2), 587–598.

    PubMed  Google Scholar 

  509. Whitwell, J. L., Jack, C. R., Jr., Przybelski, S. A., et al. (2011). Temporoparietal atrophy: A marker of AD pathology independent of clinical diagnosis. Neurobiology of Aging, 32(9), 1531–1541.

    PubMed  Google Scholar 

  510. Thompson, P. M., Moussai, J., Zohoori, S., et al. (1998). Cortical variability and asymmetry in normal aging and Alzheimer’s disease. Cerebral Cortex, 8(6), 492–509.

    PubMed  Google Scholar 

  511. Kidron, D., Black, S. E., Stanchev, P., et al. (1997). Quantitative MR volumetry in Alzheimer’s disease. Topographic markers and the effects of sex and education. Neurology, 49(6), 1504–1512.

    PubMed  Google Scholar 

  512. Scheltens, P., Launer, L. J., Barkhof, F., Weinstein, H. C., & Jonker, C. (1997). The diagnostic value of magnetic resonance imaging and technetium 99m-HMPAO single-photon-emission computed tomography for the diagnosis of Alzheimer disease in a community-dwelling elderly population. Alzheimer Disease and Associated Disorders, 11(2), 63–70.

    PubMed  Google Scholar 

  513. Foundas, A. L., Leonard, C. M., Mahoney, S. M., Agee, O. F., & Heilman, K. M. (1997). Atrophy of the hippocampus, parietal cortex, and insula in Alzheimer’s disease: A volumetric magnetic resonance imaging study. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 10(2), 81–89.

    PubMed  Google Scholar 

  514. Foundas, A. L., Eure, K. F., & Seltzer, B. (1996). Conventional MRI volumetric measures of parietal and insular cortex in Alzheimer’s disease. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 20(7), 1131–1144.

    Google Scholar 

  515. Faulstich, M. E. (1991). Brain imaging in dementia of the Alzheimer type. The International Journal of Neuroscience, 57(1–2), 39–49.

    PubMed  Google Scholar 

  516. Baudic, S., Barba, G. D., Thibaudet, M. C., Smagghe, A., Remy, P., & Traykov, L. (2006). Executive function deficits in early Alzheimer’s disease and their relations with episodic memory. Archives of Clinical Neuropsychology, 21(1), 15–21.

    PubMed  Google Scholar 

  517. Duke, L. M., & Kaszniak, A. W. (2000). Executive control functions in degenerative dementias: A comparative review. Neuropsychology Review, 10(2), 75–99.

    PubMed  Google Scholar 

  518. Tabert, M. H., Manly, J. J., Liu, X., et al. (2006). Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Archives of General Psychiatry, 63(8), 916–924.

    PubMed  Google Scholar 

  519. Albert, M., Blacker, D., Moss, M. B., Tanzi, R., & McArdle, J. J. (2007). Longitudinal change in cognitive performance among individuals with mild cognitive impairment. Neuropsychology, 21(2), 158–169.

    PubMed  Google Scholar 

  520. Huntley, J. D., & Howard, R. J. (2010). Working memory in early Alzheimer’s disease: A neuropsychological review. International Journal of Geriatric Psychiatry, 25(2), 121–132.

    PubMed  Google Scholar 

  521. Machulda, M. M., Senjem, M. L., Weigand, S. D., et al. (2009). Functional magnetic resonance imaging changes in amnestic and nonamnestic mild cognitive impairment during encoding and recognition tasks. Journal of the International Neuropsychological Society, 15(3), 372–382.

    PubMed  Google Scholar 

  522. Rosano, C., Aizenstein, H. J., Cochran, J. L., et al. (2005). Event-related functional magnetic resonance imaging investigation of executive control in very old individuals with mild cognitive impairment. Biological Psychiatry, 57(7), 761–767.

    PubMed  Google Scholar 

  523. Peters, F., Collette, F., Degueldre, C., Sterpenich, V., Majerus, S., & Salmon, E. (2009). The neural correlates of verbal short-term memory in Alzheimer’s disease: An fMRI study. Brain, 132(Pt 7), 1833–1846.

    PubMed  Google Scholar 

  524. Yetkin, F. Z., Rosenberg, R. N., Weiner, M. F., Purdy, P. D., & Cullum, C. M. (2006). FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease. European Radiology, 16(1), 193–206.

    PubMed  Google Scholar 

  525. Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: An fMRI study. Human Brain Mapping, 26(4), 231–239.

    PubMed  Google Scholar 

  526. Murphy, C., Cerf-Ducastel, B., Calhoun-Haney, R., Gilbert, P. E., & Ferdon, S. (2005). ERP, fMRI and functional connectivity studies of brain response to odor in normal aging and Alzheimer’s disease. Chemical Senses, 30(Suppl 1), i170–i171.

    PubMed  Google Scholar 

  527. Elgh, E., Larsson, A., Eriksson, S., & Nyberg, L. (2003). Altered prefrontal brain activity in persons at risk for Alzheimer’s disease: An fMRI study. International Psychogeriatrics, 15(2), 121–133.

    PubMed  Google Scholar 

  528. Rombouts, S. A., van Swieten, J. C., Pijnenburg, Y. A., Goekoop, R., Barkhof, F., & Scheltens, P. (2003). Loss of frontal fMRI activation in early frontotemporal dementia compared to early AD. Neurology, 60(12), 1904–1908.

    PubMed  Google Scholar 

  529. Ardekani, B. A., Choi, S. J., Hossein-Zadeh, G. A., et al. (2002). Functional magnetic resonance imaging of brain activity in the visual oddball task. Brain Research, 14(3), 347–356.

    PubMed  Google Scholar 

  530. Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115–116.

    PubMed  Google Scholar 

  531. Brass, M., Zysset, S., & von Cramon, D. Y. (2001). The inhibition of imitative response tendencies. NeuroImage, 14(6), 1416–1423.

    PubMed  Google Scholar 

  532. Lee, T. M., Liu, H. L., Feng, C. M., et al. (2001). Neural correlates of response inhibition for behavioral regulation in humans assessed by functional magnetic resonance imaging. Neuroscience Letters, 309(2), 109–112.

    PubMed  Google Scholar 

  533. Rubia, K., Russell, T., Overmeyer, S., et al. (2001). Mapping motor inhibition: Conjunctive brain activations across different versions of go/no-go and stop tasks. NeuroImage, 13(2), 250–261.

    PubMed  Google Scholar 

  534. de Fockert, J., Rees, G., Frith, C., & Lavie, N. (2004). Neural correlates of attentional capture in visual search. Journal of Cognitive Neuroscience, 16(5), 751–759.

    PubMed  Google Scholar 

  535. Mayer, A. R., Dorflinger, J. M., Rao, S. M., & Seidenberg, M. (2004). Neural networks underlying endogenous and exogenous visual-spatial orienting. NeuroImage, 23(2), 534–541.

    PubMed  Google Scholar 

  536. Vaidya, C. J., Bunge, S. A., Dudukovic, N. M., Zalecki, C. A., Elliott, G. R., & Gabrieli, J. D. (2005). Altered neural substrates of cognitive control in childhood ADHD: Evidence from functional magnetic resonance imaging. The American Journal of Psychiatry, 162(9), 1605–1613.

    PubMed  Google Scholar 

  537. Floden, D., & Stuss, D. T. (2006). Inhibitory control is slowed in patients with right superior medial frontal damage. Journal of Cognitive Neuroscience, 18(11), 1843–1849.

    PubMed  Google Scholar 

  538. Leroux, G., Joliot, M., Dubal, S., Mazoyer, B., Tzourio-Mazoyer, N., & Houde, O. (2006). Cognitive inhibition of number/length interference in a Piaget-like task in young adults: Evidence from ERPs and fMRI. Human Brain Mapping, 27(6), 498–509.

    PubMed  Google Scholar 

  539. Li, C. S., Huang, C., Constable, R. T., & Sinha, R. (2006). Imaging response inhibition in a stop-signal task: Neural correlates independent of signal monitoring and post-response processing. The Journal of Neuroscience, 26(1), 186–192.

    PubMed  Google Scholar 

  540. Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. (2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. The Journal of Neuroscience, 27(14), 3743–3752.

    PubMed  Google Scholar 

  541. Boehler, C. N., Appelbaum, L. G., Krebs, R. M., Hopf, J. M., & Woldorff, M. G. (2010). Pinning down response inhibition in the brain–conjunction analyses of the Stop-signal task. NeuroImage, 52(4), 1621–1632.

    PubMed  Google Scholar 

  542. Kadota, H., Sekiguchi, H., Takeuchi, S., Miyazaki, M., Kohno, Y., & Nakajima, Y. (2010). The role of the dorsolateral prefrontal cortex in the inhibition of stereotyped responses. Experimental Brain Research. Experimentelle Hirnforschung., 203(3), 593–600.

    Google Scholar 

  543. Kenner, N. M., Mumford, J. A., Hommer, R. E., Skup, M., Leibenluft, E., & Poldrack, R. A. (2010). Inhibitory motor control in response stopping and response switching. The Journal of Neuroscience, 30(25), 8512–8518.

    PubMed  Google Scholar 

  544. Li, C. S., Morgan, P. T., Matuskey, D., et al. (2010). Biological markers of the effects of intravenous methylphenidate on improving inhibitory control in cocaine-dependent patients. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14455–14459.

    PubMed  Google Scholar 

  545. Passarotti, A. M., Sweeney, J. A., & Pavuluri, M. N. (2010). Neural correlates of response inhibition in pediatric bipolar disorder and attention deficit hyperactivity disorder. Psychiatry Research, 181(1), 36–43.

    PubMed  Google Scholar 

  546. Sharp, D. J., Bonnelle, V., De Boissezon, X., et al. (2010). Distinct frontal systems for response inhibition, attentional capture, and error processing. Proceedings of the National Academy of Sciences of the United States of America, 107(13), 6106–6111.

    PubMed  Google Scholar 

  547. Berkman, E. T., Falk, E. B., & Lieberman, M. D. (2011). In the trenches of real-world self-control: Neural correlates of breaking the link between craving and smoking. Psychological Science, 22(4), 498–506.

    PubMed  Google Scholar 

  548. Bobb, D. S., Jr., Adinoff, B., Laken, S. J., et al. (2012). Neural correlates of successful response inhibition in unmedicated patients with late-life depression. The American Journal of Geriatric Psychiatry, 20(12), 1057–1069.

    PubMed  Google Scholar 

  549. Graf, H., Abler, B., Freudenmann, R., et al. (2011). Neural correlates of error monitoring modulated by atomoxetine in healthy volunteers. Biological Psychiatry, 69(9), 890–897.

    PubMed  Google Scholar 

  550. Greening, S. G., Finger, E. C., & Mitchell, D. G. (2011). Parsing decision making processes in prefrontal cortex: Response inhibition, overcoming learned avoidance, and reversal learning. NeuroImage, 54(2), 1432–1441.

    PubMed  Google Scholar 

  551. Kornysheva, K., von Anshelm-Schiffer, A. M., & Schubotz, R. I. (2011). Inhibitory stimulation of the ventral premotor cortex temporarily interferes with musical beat rate preference. Human Brain Mapping, 32(8), 1300–1310.

    PubMed  Google Scholar 

  552. Lenartowicz, A., Verbruggen, F., Logan, G. D., & Poldrack, R. A. (2011). Inhibition-related activation in the right inferior frontal gyrus in the absence of inhibitory cues. Journal of Cognitive Neuroscience, 23(11), 3388–3399.

    PubMed  Google Scholar 

  553. Mulligan, R. C., Knopik, V. S., Sweet, L. H., Fischer, M., Seidenberg, M., & Rao, S. M. (2011). Neural correlates of inhibitory control in adult attention deficit/hyperactivity disorder: Evidence from the Milwaukee longitudinal sample. Psychiatry Research, 194(2), 119–129.

    PubMed  Google Scholar 

  554. van der Meer, L., Groenewold, N. A., Nolen, W. A., Pijnenborg, M., & Aleman, A. (2011). Inhibit yourself and understand the other: Neural basis of distinct processes underlying Theory of Mind. NeuroImage, 56(4), 2364–2374.

    PubMed  Google Scholar 

  555. Chikazoe, J. (2010). Localizing performance of go/no-go tasks to prefrontal cortical subregions. Current Opinion in Psychiatry, 23(3), 267–272.

    PubMed  Google Scholar 

  556. Fassbender, C., Hester, R., Murphy, K., Foxe, J. J., Foxe, D. M., & Garavan, H. (2009). Prefrontal and midline interactions mediating behavioural control. The European Journal of Neuroscience, 29(1), 181–187.

    PubMed  Google Scholar 

  557. Simmonds, D. J., Pekar, J. J., & Mostofsky, S. H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46(1), 224–232.

    PubMed  Google Scholar 

  558. Hughes, M. E., Fulham, W. R., Johnston, P. J., & Michie, P. T. (2012). Stop-signal response inhibition in schizophrenia: Behavioural, event-related potential and functional neuroimaging data. Biological Psychology, 89(1), 220–231.

    PubMed  Google Scholar 

  559. Wildgruber, D., Kischka, U., Ackermann, H., Klose, U., & Grodd, W. (1999). Dynamic pattern of brain activation during sequencing of word strings evaluated by fMRI. Brain Research, 7(3), 285–294.

    PubMed  Google Scholar 

  560. Lepage, M., Beaudoin, G., Boulet, C., et al. (1999). Frontal cortex and the programming of repetitive tapping movements in man: Lesion effects and functional neuroimaging. Brain Research, 8(1), 17–25.

    PubMed  Google Scholar 

  561. Ferstl, E. C., & von Cramon, D. Y. (2002). What does the frontomedian cortex contribute to language processing: Coherence or theory of mind? NeuroImage, 17(3), 1599–1612.

    PubMed  Google Scholar 

  562. Zysset, S., Huber, O., Ferstl, E., & von Cramon, D. Y. (2002). The anterior frontomedian cortex and evaluative judgment: An fMRI study. NeuroImage, 15(4), 983–991.

    PubMed  Google Scholar 

  563. Bohland, J. W., & Guenther, F. H. (2006). An fMRI investigation of syllable sequence production. NeuroImage, 32(2), 821–841.

    PubMed  Google Scholar 

  564. Buch, E. R., Mars, R. B., Boorman, E. D., & Rushworth, M. F. (2010). A network centered on ventral premotor cortex exerts both facilitatory and inhibitory control over primary motor cortex during action reprogramming. The Journal of Neuroscience, 30(4), 1395–1401.

    PubMed  Google Scholar 

  565. Connolly, J. D., Goodale, M. A., Goltz, H. C., & Munoz, D. P. (2005). fMRI activation in the human frontal eye field is correlated with saccadic reaction time. Journal of Neurophysiology, 94(1), 605–611.

    PubMed  Google Scholar 

  566. Milea, D., Lobel, E., Lehericy, S., et al. (2007). Prefrontal cortex is involved in internal decision of forthcoming saccades. 18(12), 1221–1224.

    Google Scholar 

  567. Gallivan, J. P., McLean, D. A., Valyear, K. F., Pettypiece, C. E., & Culham, J. C. (2011). Decoding action intentions from preparatory brain activity in human parieto-frontal networks. The Journal of Neuroscience, 31(26), 9599–9610.

    PubMed  Google Scholar 

  568. Duque, J., Labruna, L., Verset, S., Olivier, E., & Ivry, R. B. (2012). Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. The Journal of Neuroscience, 32(3), 806–816.

    PubMed  Google Scholar 

  569. Jacobson, S. C., Blanchard, M., Connolly, C. C., Cannon, M., & Garavan, H. (2011). An fMRI investigation of a novel analogue to the Trail-Making Test. Brain and Cognition, 77(1), 60–70.

    PubMed  Google Scholar 

  570. Wheeler, M. E., & Buckner, R. L. (2003). Functional dissociation among components of remembering: Control, perceived oldness, and content. The Journal of Neuroscience, 23(9), 3869–3880.

    PubMed  Google Scholar 

  571. Nagahama, Y., Okada, T., Katsumi, Y., et al. (1999). Transient neural activity in the medial superior frontal gyrus and precuneus time locked with attention shift between object features. NeuroImage, 10(2), 193–199.

    PubMed  Google Scholar 

  572. Omori, M., Yamada, H., Murata, T., et al. (1999). Neuronal substrates participating in attentional set-shifting of rules for visually guided motor selection: A functional magnetic resonance imaging investigation. Neuroscience Research, 33(4), 317–323.

    PubMed  Google Scholar 

  573. Graham, S., Phua, E., Soon, C. S., et al. (2009). Role of medial cortical, hippocampal and striatal interactions during cognitive set-shifting. NeuroImage, 45(4), 1359–1367.

    PubMed  Google Scholar 

  574. Van Horn, J. D., Berman, K. F., & Weinberger, D. R. (1996). Functional lateralization of the prefrontal cortex during traditional frontal lobe tasks. Biological Psychiatry, 39(6), 389–399.

    PubMed  Google Scholar 

  575. Konishi, S., Hirose, S., Jimura, K., et al. (2010). Medial prefrontal activity during shifting under novel situations. Neuroscience Letters, 484(3), 182–186.

    PubMed  Google Scholar 

  576. Specht, K., Lie, C. H., Shah, N. J., & Fink, G. R. (2009). Disentangling the prefrontal network for rule selection by means of a non-verbal variant of the Wisconsin Card Sorting Test. Human Brain Mapping, 30(5), 1734–1743.

    PubMed  Google Scholar 

  577. Konishi, S., Morimoto, H., Jimura, K., et al. (2008). Differential superior prefrontal activity on initial versus subsequent shifts in naive subjects. NeuroImage, 41(2), 575–580.

    PubMed  Google Scholar 

  578. Vernaleken, I., Buchholz, H. G., Kumakura, Y., et al. (2007). ‘Prefrontal’ cognitive performance of healthy subjects positively correlates with cerebral FDOPA influx: An exploratory [18F]-fluoro-L-DOPA-PET investigation. Human Brain Mapping, 28(10), 931–939.

    PubMed  Google Scholar 

  579. Sumitani, S., Tanaka, T., Tayoshi, S., et al. (2006). Activation of the prefrontal cortex during the Wisconsin Card Sorting Test as measured by multichannel near-infrared spectroscopy. Neuropsychobiology, 53(2), 70–76.

    PubMed  Google Scholar 

  580. Frangou, S., Haldane, M., Roddy, D., & Kumari, V. (2005). Evidence for deficit in tasks of ventral, but not dorsal, prefrontal executive function as an endophenotypic marker for bipolar disorder. Biological Psychiatry, 58(10), 838–839.

    PubMed  Google Scholar 

  581. Gonzalez-Hernandez, J. A., Pita-Alcorta, C., Cedeno, I., et al. (2002). Wisconsin Card Sorting Test synchronizes the prefrontal, temporal and posterior association cortex in different frequency ranges and extensions. Human Brain Mapping, 17(1), 37–47.

    PubMed  Google Scholar 

  582. Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin Card Sorting revisited: Distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. The Journal of Neuroscience, 21(19), 7733–7741.

    PubMed  Google Scholar 

  583. Jamadar, S., Hughes, M., Fulham, W. R., Michie, P. T., & Karayanidis, F. (2010). The spatial and temporal dynamics of anticipatory preparation and response inhibition in task-switching. NeuroImage, 51(1), 432–449.

    PubMed  Google Scholar 

  584. Friston, K. J., Frith, C. D., Turner, R., & Frackowiak, R. S. (1995). Characterizing evoked hemodynamics with fMRI. NeuroImage, 2(2), 157–165.

    PubMed  Google Scholar 

  585. Sturm, W., & Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. NeuroImage, 14(1 Pt 2), S76–S84.

    PubMed  Google Scholar 

  586. Lewin, J. S., Friedman, L., Wu, D., et al. (1996). Cortical localization of human sustained attention: Detection with functional MR using a visual vigilance paradigm. Journal of Computer Assisted Tomography, 20(5), 695–701.

    PubMed  Google Scholar 

  587. Hager, F., Volz, H. P., Gaser, C., Mentzel, H. J., Kaiser, W. A., & Sauer, H. (1998). Challenging the anterior attentional system with a continuous performance task: A functional magnetic resonance imaging approach. European Archives of Psychiatry and Clinical Neuroscience, 248(4), 161–170.

    PubMed  Google Scholar 

  588. Butti, M., Pastori, A., Merzagora, A., et al. (2006). Combining near infrared spectroscopy and functional MRI during continuous performance test in healthy subjects. Conference Proceedings: IEEE Engineering in Medicine and Biology Society, 1, 1944–1947.

    Google Scholar 

  589. Tana MG, Montin E, Cerutti S, Bianchi AM. (2010). Exploring cortical attentional system by using fMRI during a Continuous Perfomance Test. Computational Intelligence and Neuroscience, 329213.

    Google Scholar 

  590. Kubler, A., Dixon, V., & Garavan, H. (2006). Automaticity and reestablishment of executive control-an fMRI study. Journal of Cognitive Neuroscience, 18(8), 1331–1342.

    PubMed  Google Scholar 

  591. Cubillo, A., Halari, R., Smith, A., Taylor, E., & Rubia, K. (2012). A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with Attention Deficit Hyperactivity Disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 48(2), 194–215.

    PubMed  Google Scholar 

  592. Epstein, J. N., Delbello, M. P., Adler, C. M., et al. (2009). Differential patterns of brain activation over time in adolescents with and without attention deficit hyperactivity disorder (ADHD) during performance of a sustained attention task. Neuropediatrics, 40(1), 1–5.

    PubMed  Google Scholar 

  593. Rubia, K., Smith, A. B., Halari, R., et al. (2009). Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. The American Journal of Psychiatry, 166(1), 83–94.

    PubMed  Google Scholar 

  594. Greene, C. M., Braet, W., Johnson, K. A., & Bellgrove, M. A. (2008). Imaging the genetics of executive function. Biological Psychology, 79(1), 30–42.

    PubMed  Google Scholar 

  595. Christakou, A., Murphy, C. M., Chantiluke, K., et al. (2012). Disorder-specific functional abnormalities during sustained attention in youth with Attention Deficit Hyperactivity Disorder (ADHD) and with Autism. Molecular Psychiatry, 18(2), 236–244.

    PubMed  Google Scholar 

  596. Sunshine, J. L., Lewin, J. S., Wu, D. H., et al. (1997). Functional MR to localize sustained visual attention activation in patients with attention deficit hyperactivity disorder: A pilot study. AJNR. American Journal of Neuroradiology, 18(4), 633–637.

    PubMed  Google Scholar 

  597. Kleinhans, N. M., Johnson, L. C., Richards, T., et al. (2009). Reduced neural habituation in the amygdala and social impairments in autism spectrum disorders. The American Journal of Psychiatry, 166(4), 467–475.

    PubMed  Google Scholar 

  598. Kennedy, D. P., & Courchesne, E. (2008). The intrinsic functional organization of the brain is altered in autism. NeuroImage, 39(4), 1877–1885.

    PubMed  Google Scholar 

  599. Schneider, M. R., Adler, C. M., Whitsel, R., et al. (2012). The effects of ziprasidone on prefrontal and amygdalar activation in manic youth with bipolar disorder. Israel Journal of Psychiatry and Related Sciences, 49(2), 112–120.

    PubMed  Google Scholar 

  600. Fleck, D. E., Eliassen, J. C., Durling, M., et al. (2012). Functional MRI of sustained attention in bipolar mania. Molecular Psychiatry, 17(3), 325–336.

    PubMed  Google Scholar 

  601. Cerullo, M. A., Adler, C. M., Lamy, M., et al. (2009). Differential brain activation during response inhibition in bipolar and attention-deficit hyperactivity disorders. Early Intervention in Psychiatry, 3(3), 189–197.

    PubMed  Google Scholar 

  602. Brooks, J. O., 3rd, Wang, P. W., Strong, C., et al. (2006). Preliminary evidence of differential relations between prefrontal cortex metabolism and sustained attention in depressed adults with bipolar disorder and healthy controls. Bipolar Disorders, 8(3), 248–254.

    PubMed  Google Scholar 

  603. Strakowski, S. M., Adler, C. M., Holland, S. K., Mills, N., & DelBello, M. P. (2004). A preliminary FMRI study of sustained attention in euthymic, unmedicated bipolar disorder. Neuropsychopharmacology, 29(9), 1734–1740.

    PubMed  Google Scholar 

  604. Monks, P. J., Thompson, J. M., Bullmore, E. T., et al. (2004). A functional MRI study of working memory task in euthymic bipolar disorder: Evidence for task-specific dysfunction. Bipolar Disorders, 6(6), 550–564.

    PubMed  Google Scholar 

  605. Esslinger, C., Gruppe, H., Danos, P., et al. (2007). Influence of vigilance and learning on prefrontal activation in schizophrenia. Neuropsychobiology, 55(3–4), 194–202.

    PubMed  Google Scholar 

  606. Hugdahl, K., Rund, B. R., Lund, A., et al. (2004). Brain activation measured with fMRI during a mental arithmetic task in schizophrenia and major depression. The American Journal of Psychiatry, 161(2), 286–293.

    PubMed  Google Scholar 

  607. Liao, H., Wang, L., Zhou, B., et al. (2012). A resting-state functional magnetic resonance imaging study on the first-degree relatives of persons with schizophrenia. Brain Imaging and Behavior, 6(3), 397–403.

    PubMed  Google Scholar 

  608. Seidman, L. J., Thermenos, H. W., Poldrack, R. A., et al. (2006). Altered brain activation in dorsolateral prefrontal cortex in adolescents and young adults at genetic risk for schizophrenia: An fMRI study of working memory. Schizophrenia Research, 85(1–3), 58–72.

    PubMed  Google Scholar 

  609. Aasen, I., Kumari, V., & Sharma, T. (2005). Effects of rivastigmine on sustained attention in schizophrenia: An FMRI study. Journal of Clinical Psychopharmacology, 25(4), 311–317.

    PubMed  Google Scholar 

  610. Diwadkar, V. A., Segel, J., Pruitt, P., et al. (2011). Hypo-activation in the executive core of the sustained attention network in adolescent offspring of schizophrenia patients mediated by premorbid functional deficits. Psychiatry Research, 192(2), 91–99.

    PubMed  Google Scholar 

  611. Eyler, L. T., Olsen, R. K., Jeste, D. V., & Brown, G. G. (2004). Abnormal brain response of chronic schizophrenia patients despite normal performance during a visual vigilance task. Psychiatry Research, 130(3), 245–257.

    PubMed  Google Scholar 

  612. Ojeda, N., Ortuno, F., Arbizu, J., et al. (2002). Functional neuroanatomy of sustained attention in schizophrenia: Contribution of parietal cortices. Human Brain Mapping, 17(2), 116–130.

    PubMed  Google Scholar 

  613. Cohen, R. M., Nordahl, T. E., Semple, W. E., Andreason, P., & Pickar, D. (1998). Abnormalities in the distributed network of sustained attention predict neuroleptic treatment response in schizophrenia. Neuropsychopharmacology, 19(1), 36–47.

    PubMed  Google Scholar 

  614. Cohen, R. M., Semple, W. E., Gross, M., & Nordahl, T. E. (1988). From syndrome to illness: Delineating the pathophysiology of schizophrenia with PET. Schizophrenia Bulletin, 14(2), 169–176.

    PubMed  Google Scholar 

  615. Wong, C. G., & Stevens, M. C. (2012). The effects of stimulant medication on working memory functional connectivity in attention-deficit/hyperactivity disorder. Biological Psychiatry, 71(5), 458–466.

    PubMed  Google Scholar 

  616. Posner, J., Maia, T. V., Fair, D., Peterson, B. S., Sonuga-Barke, E. J., & Nagel, B. J. (2011). The attenuation of dysfunctional emotional processing with stimulant medication: An fMRI study of adolescents with ADHD. Psychiatry Research, 193(3), 151–160.

    PubMed  Google Scholar 

  617. Rubia, K., Halari, R., Mohammad, A. M., Taylor, E., & Brammer, M. (2011). Methylphenidate normalizes frontocingulate underactivation during error processing in attention-deficit/hyperactivity disorder. Biological Psychiatry, 70(3), 255–262.

    PubMed  Google Scholar 

  618. Diamond, A., & Ondo, W. G. (2011). Resolution of severe obsessive—Compulsive disorder after a small unilateral nondominant frontoparietal infarct. The International Journal of Neuroscience, 121(7), 405–407.

    PubMed  Google Scholar 

  619. Pavuluri, M. N., Passarotti, A. M., Parnes, S. A., Fitzgerald, J. M., & Sweeney, J. A. (2010). A pharmacological functional magnetic resonance imaging study probing the interface of cognitive and emotional brain systems in pediatric bipolar disorder. Journal of Child and Adolescent Psychopharmacology, 20(5), 395–406.

    PubMed  Google Scholar 

  620. Kumari, V., Antonova, E., Fannon, D., et al. (2010). Beyond dopamine: Functional MRI predictors of responsiveness to cognitive behaviour therapy for psychosis. Frontiers in Behavioral Neuroscience, 4, 4.

    PubMed  Google Scholar 

  621. Uchida, H., Rajji, T. K., Mulsant, B. H., et al. (2009). D2 receptor blockade by risperidone correlates with attention deficits in late-life schizophrenia. Journal of Clinical Psychopharmacology, 29(6), 571–575.

    PubMed  Google Scholar 

  622. Ertugrul, A., Volkan-Salanci, B., Basar, K., et al. (2009). The effect of clozapine on regional cerebral blood flow and brain metabolite ratios in schizophrenia: Relationship with treatment response. Psychiatry Research, 174(2), 121–129.

    PubMed  Google Scholar 

  623. Hong, L. E., Schroeder, M., Ross, T. J., et al. (2011). Nicotine enhances but does not normalize visual sustained attention and the associated brain network in schizophrenia. Schizophrenia Bulletin, 37(2), 416–425.

    PubMed  Google Scholar 

  624. Bhattacharyya, S., Fusar-Poli, P., Borgwardt, S., et al. (2009). Modulation of mediotemporal and ventrostriatal function in humans by Delta9-tetrahydrocannabinol: A neural basis for the effects of Cannabis sativa on learning and psychosis. Archives of General Psychiatry, 66(4), 442–451.

    PubMed  Google Scholar 

  625. Keedy, S. K., Rosen, C., Khine, T., Rajarethinam, R., Janicak, P. G., & Sweeney, J. A. (2009). An fMRI study of visual attention and sensorimotor function before and after antipsychotic treatment in first-episode schizophrenia. Psychiatry Research, 172(1), 16–23.

    PubMed  Google Scholar 

  626. Bonnelle, V., Leech, R., Kinnunen, K. M., et al. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. The Journal of Neuroscience, 31(38), 13442–13451.

    PubMed  Google Scholar 

  627. Kramer, M. E., Chiu, C. Y., Walz, N. C., et al. (2008). Long-term neural processing of attention following early childhood traumatic brain injury: fMRI and neurobehavioral outcomes. Journal of the International Neuropsychological Society, 14(3), 424–435.

    PubMed  Google Scholar 

  628. Chen, C. J., Wu, C. H., Liao, Y. P., et al. (2012). Working memory in patients with mild traumatic brain injury: Functional MR imaging analysis. Radiology, 264(3), 844–851.

    PubMed  Google Scholar 

  629. Kim, J., Whyte, J., Patel, S., et al. (2012). A perfusion fMRI study of the neural correlates of sustained-attention and working-memory deficits in chronic traumatic brain injury. Neurorehabilitation and Neural Repair, 26(7), 870–880.

    PubMed  Google Scholar 

  630. Kim, J., Whyte, J., Patel, S., et al. (2012). Methylphenidate modulates sustained attention and cortical activation in survivors of traumatic brain injury: A perfusion fMRI study. Psychopharmacology, 222(1), 47–57.

    PubMed  Google Scholar 

  631. Konrad, C., Geburek, A. J., Rist, F., et al. (2010). Long-term cognitive and emotional consequences of mild traumatic brain injury. Psychological Medicine, 22, 1–15.

    Google Scholar 

  632. Huolman, S., Hamalainen, P., Vorobyev, V., et al. (2011). The effects of rivastigmine on processing speed and brain activation in patients with multiple sclerosis and subjective cognitive fatigue. Multiple Sclerosis (Houndmills, Basingstoke, England), 17(11), 1351–1361.

    Google Scholar 

  633. Loitfelder, M., Fazekas, F., Petrovic, K., et al. (2011). Reorganization in cognitive networks with progression of multiple sclerosis: Insights from fMRI. Neurology, 76(6), 526–533.

    PubMed  Google Scholar 

  634. Lazeron, R. H., de Sonneville, L. M., Scheltens, P., Polman, C. H., & Barkhof, F. (2006). Cognitive slowing in multiple sclerosis is strongly associated with brain volume reduction. Multiple Sclerosis (Houndmills, Basingstoke, England), 12(6), 760–768.

    Google Scholar 

  635. Mainero, C., Caramia, F., Pozzilli, C., et al. (2004). fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. NeuroImage, 21(3), 858–867.

    PubMed  Google Scholar 

  636. Hillary, F. G., Chiaravalloti, N. D., Ricker, J. H., et al. (2003). An investigation of working memory rehearsal in multiple sclerosis using fMRI. Journal of Clinical and Experimental Neuropsychology, 25(7), 965–978.

    PubMed  Google Scholar 

  637. DeLuca, J., Genova, H. M., Hillary, F. G., & Wylie, G. (2008). Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. Journal of the Neurological Sciences, 270(1–2), 28–39.

    PubMed  Google Scholar 

  638. Mendez, M. F., Ottowitz, W., Brown, C. V., Cummings, J. L., Perryman, K. M., & Mandelkern, M. A. (1999). Dementia with leukoaraiosis: Clinical differentiation by temporoparietal hypometabolism on (18)FDG-PET imaging. Dementia and Geriatric Cognitive Disorders, 10(6), 518–525.

    PubMed  Google Scholar 

  639. Riekkinen, M., Laakso, M. P., & Jakala, P. (1999). Clonidine impairs sustained attention and memory in Alzheimer’s disease. Neuroscience, 92(3), 975–982.

    PubMed  Google Scholar 

  640. Dennis, N. A., Daselaar, S., & Cabeza, R. (2007). Effects of aging on transient and sustained successful memory encoding activity. Neurobiology of Aging, 28(11), 1749–1758.

    PubMed  Google Scholar 

  641. Staffen, W., Mair, A., Zauner, H., et al. (2002). Cognitive function and fMRI in patients with multiple sclerosis: Evidence for compensatory cortical activation during an attention task. Brain, 125(Pt 6), 1275–1282.

    PubMed  Google Scholar 

  642. Schlosser, R., Hutchinson, M., Joseffer, S., et al. (1998). Functional magnetic resonance imaging of human brain activity in a verbal fluency task. Journal of Neurology, Neurosurgery & Psychiatry, 64(4), 492–498.

    Google Scholar 

  643. Rauch, S. L., Whalen, P. J., Curran, T., McInerney, S., Heckers, S., & Savage, C. R. (1998). Thalamic deactivation during early implicit sequence learning: A functional MRI study. 9(5), 865–870.

    Google Scholar 

  644. Allison, J. D., Meador, K. J., Loring, D. W., Figueroa, R. E., & Wright, J. C. (2000). Functional MRI cerebral activation and deactivation during finger movement. Neurology, 54(1), 135–142.

    PubMed  Google Scholar 

  645. Habib, R. (2001). On the relation between conceptual priming, neural priming, and novelty assessment. Scandinavian Journal of Psychology, 42(3), 187–195.

    PubMed  Google Scholar 

  646. Nirkko, A. C., Ozdoba, C., Redmond, S. M., et al. (2001). Different ipsilateral representations for distal and proximal movements in the sensorimotor cortex: Activation and deactivation patterns. NeuroImage, 13(5), 825–835.

    PubMed  Google Scholar 

  647. Born, A. P., Law, I., Lund, T. E., et al. (2002). Cortical deactivation induced by visual stimulation in human slow-wave sleep. NeuroImage, 17(3), 1325–1335.

    PubMed  Google Scholar 

  648. Henson, R. N., Hornberger, M., & Rugg, M. D. (2005). Further dissociating the processes involved in recognition memory: An FMRI study. Journal of Cognitive Neuroscience, 17(7), 1058–1073.

    PubMed  Google Scholar 

  649. Deary, I. J., Simonotto, E., Meyer, M., et al. (2004). The functional anatomy of inspection time: An event-related fMRI study. NeuroImage, 22(4), 1466–1479.

    PubMed  Google Scholar 

  650. Tomasi, D., Ernst, T., Caparelli, E. C., & Chang, L. (2006). Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 Tesla. Human Brain Mapping, 27(8), 694–705.

    PubMed  Google Scholar 

  651. Shulman, G. L., Astafiev, S. V., McAvoy, M. P., d’Avossa, G., & Corbetta, M. (2007). Right TPJ deactivation during visual search: Functional significance and support for a filter hypothesis. Cerebral Cortex (New York, N.Y.: 1991), 17(11), 2625–2633.

    Google Scholar 

  652. Azulay, H., Striem, E., & Amedi, A. (2009). Negative BOLD in sensory cortices during verbal memory: A component in generating internal representations? Brain Topography, 21(3–4), 221–231.

    PubMed  Google Scholar 

  653. Fassbender, C., Zhang, H., Buzy, W. M., et al. (2009). A lack of default network suppression is linked to increased distractibility in ADHD. Brain Research, 1273, 114–128.

    PubMed  Google Scholar 

  654. Heinemann, L., Kleinschmidt, A., & Muller, N. G. (2009). Exploring BOLD changes during spatial attention in non-stimulated visual cortex. PLoS One, 4(5), e5560.

    PubMed  Google Scholar 

  655. Mayer, J. S., Roebroeck, A., Maurer, K., & Linden, D. E. (2010). Specialization in the default mode: Task-induced brain deactivations dissociate between visual working memory and attention. Human Brain Mapping, 31(1), 126–139.

    PubMed  Google Scholar 

  656. Gilbert, S. J., Bird, G., Frith, C. D., & Burgess, P. W. (2012). Does “task difficulty” explain “task-induced deactivation?”. Frontiers in Psychology, 3, 125.

    PubMed  Google Scholar 

  657. Sumowski, J. F., Wylie, G. R., Leavitt, V. M., Chiaravalloti, N. D., & Deluca, J. (2012). Default network activity is a sensitive and specific biomarker of memory in multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 19(2), 199–208.

    Google Scholar 

  658. Biswal, B. B., Van Kylen, J., & Hyde, J. S. (1997). Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR in Biomedicine, 10(4–5), 165–170.

    PubMed  Google Scholar 

  659. Bandettini, P. A., Wong, E. C., Jesmanowicz, A., Hinks, R. S., & Hyde, J. S. (1994). Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: A comparative study at 1.5 T. NMR in Biomedicine, 7(1–2), 12–20.

    PubMed  Google Scholar 

  660. Restom, K., Bangen, K. J., Bondi, M. W., Perthen, J. E., & Liu, T. T. (2007). Cerebral blood flow and BOLD responses to a memory encoding task: A comparison between healthy young and elderly adults. NeuroImage, 37(2), 430–439.

    PubMed  Google Scholar 

  661. Rombouts, S. A., Scheltens, P., Kuijer, J. P., & Barkhof, F. (2007). Whole brain analysis of T2* weighted baseline FMRI signal in dementia. Human Brain Mapping, 28(12), 1313–1317.

    PubMed  Google Scholar 

  662. Fleisher, A. S., Sherzai, A., Taylor, C., Langbaum, J. B., Chen, K., & Buxton, R. B. (2009). Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. NeuroImage, 47(4), 1678–1690.

    PubMed  Google Scholar 

  663. Paakki, J. J., Rahko, J., Long, X., et al. (2010). Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Research, 1321, 169–179.

    PubMed  Google Scholar 

  664. Sanz-Arigita, E. J., Schoonheim, M. M., Damoiseaux, J. S., et al. (2010). Loss of ‘small-world’ networks in Alzheimer’s disease: Graph analysis of FMRI resting-state functional connectivity. PLoS One, 5(11), e13788.

    PubMed  Google Scholar 

  665. Gour, N., Ranjeva, J. P., Ceccaldi, M., et al. (2011). Basal functional connectivity within the anterior temporal network is associated with performance on declarative memory tasks. NeuroImage, 58(2), 687–697.

    PubMed  Google Scholar 

  666. Bangen, K. J., Restom, K., Liu, T. T., et al. (2012). Assessment of Alzheimer’s disease risk with functional magnetic resonance imaging: An arterial spin labeling study. Journal of Alzheimer’s Disease, 31(Suppl 3), S59–S74.

    PubMed  Google Scholar 

  667. Xi, Q., Zhao, X. H., Wang, P. J., Guo, Q. H., Yan, C. G., & He, Y. (2012). Functional MRI study of mild Alzheimer’s disease using amplitude of low frequency fluctuation analysis. Chinese Medical Journal, 125(5), 858–862.

    PubMed  Google Scholar 

  668. Rami, L., Sala-Llonch, R., Sole-Padulles, C., et al. (2012). Distinct functional activity of the precuneus and posterior cingulate cortex during encoding in the preclinical stage of Alzheimer’s disease. Journal of Alzheimer’s Disease, 31(3), 517–526.

    PubMed  Google Scholar 

  669. Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: A brief history of an evolving idea. NeuroImage, 37(4), 1083–1090. discussion 1097–1089.

    PubMed  Google Scholar 

  670. Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, E. J. (2009). Default-mode brain dysfunction in mental disorders: A systematic review. Neuroscience and Biobehavioral Reviews, 33(3), 279–296.

    PubMed  Google Scholar 

  671. Taylor, V. A., Grant, J., Daneault, V., et al. (2011). Impact of mindfulness on the neural responses to emotional pictures in experienced and beginner meditators. NeuroImage, 57(4), 1524–1533.

    PubMed  Google Scholar 

  672. Boly, M., Phillips, C., Tshibanda, L., et al. (2008). Intrinsic brain activity in altered states of consciousness: How conscious is the default mode of brain function? Annals of the New York Academy of Sciences, 1129, 119–129.

    PubMed  Google Scholar 

  673. Boly, M., Tshibanda, L., Vanhaudenhuyse, A., et al. (2009). Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Human Brain Mapping, 30(8), 2393–2400.

    PubMed  Google Scholar 

  674. van den Heuvel, M., Mandl, R., & Hulshoff, P. H. (2008). Normalized cut group clustering of resting-state FMRI data. PLoS One, 3(4), e2001.

    PubMed  Google Scholar 

  675. Kochan, N. A., Valenzuela, M., Slavin, M. J., McCraw, S., Sachdev, P. S., & Breakspear, M. (2011). Impact of load-related neural processes on feature binding in visuospatial working memory. PLoS One, 6(8), e23960.

    PubMed  Google Scholar 

  676. He, B. J., Zempel, J. M., Snyder, A. Z., & Raichle, M. E. (2010). The temporal structures and functional significance of scale-free brain activity. Neuron, 66(3), 353–369.

    PubMed  Google Scholar 

  677. Yan, C., Liu, D., He, Y., et al. (2009). Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PLoS One, 4(5), e5743.

    PubMed  Google Scholar 

  678. Abraham, A., & von Cramon, D. Y. (2009). Reality = relevance? Insights from spontaneous modulations of the brain’s default network when telling apart reality from fiction. PLoS One, 4(3), e4741.

    PubMed  Google Scholar 

  679. Shehzad, Z., Kelly, A. M., Reiss, P. T., et al. (2009). The resting brain: Unconstrained yet reliable. Cerebral Cortex, 19(10), 2209–2229.

    PubMed  Google Scholar 

  680. Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39(1), 527–537.

    PubMed  Google Scholar 

  681. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.

    PubMed  Google Scholar 

  682. Zhang, S., & Li, C. S. (2012). Functional connectivity mapping of the human precuneus by resting state fMRI. NeuroImage, 59(4), 3548–3562.

    PubMed  Google Scholar 

  683. Sweet, L. H., Mulligan, R. C., Finnerty, C. E., et al. (2010). Effects of nicotine withdrawal on verbal working memory and associated brain response. Psychiatry Research, 183(1), 69–74.

    PubMed  Google Scholar 

  684. Chang, L., Wong, V., Nakama, H., et al. (2008). Greater than age-related changes in brain diffusion of HIV patients after 1 year. Journal of Neuroimmune Pharmacology, 3(4), 265–274.

    PubMed  Google Scholar 

  685. Marklund, P., Fransson, P., Cabeza, R., Larsson, A., Ingvar, M., & Nyberg, L. (2007). Unity and diversity of tonic and phasic executive control components in episodic and working memory. NeuroImage, 36(4), 1361–1373.

    PubMed  Google Scholar 

  686. Davis, S. W., Kragel, J. E., Madden, D. J., & Cabeza, R. (2012). The architecture of cross-hemispheric communication in the aging brain: Linking behavior to functional and structural connectivity. Cerebral Cortex, 22(1), 232–242.

    PubMed  Google Scholar 

  687. St Jacques, P. L., Rubin, D. C., & Cabeza, R. (2012). Age-related effects on the neural correlates of autobiographical memory retrieval. Neurobiology of Aging, 33(7), 1298–1310.

    PubMed  Google Scholar 

  688. Dennis, N. A., Hayes, S. M., Prince, S. E., Madden, D. J., Huettel, S. A., & Cabeza, R. (2008). Effects of aging on the neural correlates of successful item and source memory encoding. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(4), 791–808.

    PubMed  Google Scholar 

  689. Dennis, N. A., Kim, H., & Cabeza, R. (2008). Age-related differences in brain activity during true and false memory retrieval. Journal of Cognitive Neuroscience, 20(8), 1390–1402.

    PubMed  Google Scholar 

  690. Daselaar, S. M., Rice, H. J., Greenberg, D. L., Cabeza, R., LaBar, K. S., & Rubin, D. C. (2008). The spatiotemporal dynamics of autobiographical memory: Neural correlates of recall, emotional intensity, and reliving. Cerebral Cortex, 18(1), 217–229.

    PubMed  Google Scholar 

  691. Marklund, P., Fransson, P., Cabeza, R., Petersson, K. M., Ingvar, M., & Nyberg, L. (2007). Sustained and transient neural modulations in prefrontal cortex related to declarative long-term memory, working memory, and attention. Cortex, 43(1), 22–37.

    PubMed  Google Scholar 

  692. Cabeza, R., Daselaar, S. M., Dolcos, F., Prince, S. E., Budde, M., & Nyberg, L. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex, 14(4), 364–375.

    PubMed  Google Scholar 

  693. Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17(3), 1394–1402.

    PubMed  Google Scholar 

  694. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85–100.

    PubMed  Google Scholar 

  695. Kohl, A. D., Wylie, G. R., Genova, H. M., Hillary, F. G., & Deluca, J. (2009). The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. Brain Injury, 23(5), 420–432.

    PubMed  Google Scholar 

  696. DeLuca, J., Genova, H. M., Capili, E. J., & Wylie, G. R. (2009). Functional neuroimaging of fatigue. Physical Medicine and Rehabilitation Clinics of North America, 20(2), 325–337.

    PubMed  Google Scholar 

  697. Lange, G., Steffener, J., Cook, D. B., et al. (2005). Objective evidence of cognitive complaints in chronic fatigue syndrome: A BOLD fMRI study of verbal working memory. NeuroImage, 26(2), 513–524.

    PubMed  Google Scholar 

  698. Paul, R. H., Haque, O., Gunstad, J., et al. (2005). Subcortical hyperintensities impact cognitive function among a select subset of healthy elderly. Archives of Clinical Neuropsychology, 20(6), 697–704.

    PubMed  Google Scholar 

  699. Sweet, L. H., Paul, R. H., Cohen, R. A., et al. (2003). Neuroimaging correlates of dementia rating scale performance at baseline and 12-month follow-up among patients with vascular dementia. Journal of Geriatric Psychiatry and Neurology, 16(4), 240–244.

    PubMed  Google Scholar 

  700. Cohen, R. A., Paul, R. H., Ott, B. R., et al. (2002). The relationship of subcortical MRI hyperintensities and brain volume to cognitive function in vascular dementia. Journal of the International Neuropsychological Society, 8(6), 743–752.

    PubMed  Google Scholar 

  701. Moser, D. J., Cohen, R. A., Paul, R. H., et al. (2001). Executive function and magnetic resonance imaging subcortical hyperintensities in vascular dementia. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 14(2), 89–92.

    PubMed  Google Scholar 

  702. Cohen, R. A., Poppas, A., Forman, D. E., et al. (2009). Vascular and cognitive functions associated with cardiovascular disease in the elderly. Journal of Clinical and Experimental Neuropsychology, 31(1), 96–110.

    PubMed  Google Scholar 

  703. Hoth, K. F., Tate, D. F., Poppas, A., et al. (2007). Endothelial function and white matter hyperintensities in older adults with cardiovascular disease. Stroke, 38(2), 308–312.

    PubMed  Google Scholar 

  704. Tate, D. F., Jefferson, A. L., Brickman, A. M., et al. (2008). Regional white matter signal abnormalities and cognitive correlates among geriatric patients with treated cardiovascular disease. Brain Imaging and Behavior, 2(3), 200–206.

    PubMed  Google Scholar 

  705. Mike, A., Glanz, B. I., Hildenbrand, P., et al. (2011). Identification and clinical impact of multiple sclerosis cortical lesions as assessed by routine 3T MR imaging. AJNR. American Journal of Neuroradiology, 32(3), 515–521.

    PubMed  Google Scholar 

  706. Thurnher, M. M., Thurnher, S. A., Fleischmann, D., et al. (1997). Comparison of T2-weighted and fluid-attenuated inversion-recovery fast spin-echo MR sequences in intracerebral AIDS-associated disease. AJNR. American Journal of Neuroradiology, 18(9), 1601–1609.

    PubMed  Google Scholar 

  707. Dineen, R. A., Vilisaar, J., Hlinka, J., et al. (2009). Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain, 132(Pt 1), 239–249.

    PubMed  Google Scholar 

  708. Gongvatana, A., Cohen, R. A., Correia, S., et al. (2011). Clinical contributors to cerebral white matter integrity in HIV-infected individuals. Journal of Neurovirology, 17(5), 477–486.

    PubMed  Google Scholar 

  709. Tate, D. F., Sampat, M., Harezlak, J., et al. (2011). Regional areas and widths of the midsagittal corpus callosum among HIV-infected patients on stable antiretroviral therapies. Journal of Neurovirology, 17(4), 368–379.

    PubMed  Google Scholar 

  710. Hughes, E. J., Bond, J., Svrckova, P., et al. (2012). Regional changes in thalamic shape and volume with increasing age. NeuroImage, 63(3), 1134–1142.

    PubMed  Google Scholar 

  711. Ciaraffa, F., Castelli, G., Parati, E. A., Bartolomeo, P., & Bizzi, A. (2012). Visual neglect as a disconnection syndrome? Neurocase: A confirmatory case report.

    Google Scholar 

  712. He, D., Wu, Q., Chen, X., Zhao, D., Gong, Q., & Zhou, H. (2011). Cognitive impairment and whole brain diffusion in patients with neuromyelitis optica after acute relapse. Brain and Cognition, 77(1), 80–88.

    PubMed  Google Scholar 

  713. Liston, C., Malter Cohen, M., Teslovich, T., Levenson, D., & Casey, B. J. (2011). Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: Pathway to disease or pathological end point? Biological Psychiatry, 69(12), 1168–1177.

    PubMed  Google Scholar 

  714. Deprez, S., Amant, F., Yigit, R., et al. (2011). Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Human Brain Mapping, 32(3), 480–493.

    PubMed  Google Scholar 

  715. Camchong, J., MacDonald, A. W., 3rd, Bell, C., Mueller, B. A., & Lim, K. O. (2011). Altered functional and anatomical connectivity in schizophrenia. Schizophrenia Bulletin, 37(3), 640–650.

    PubMed  Google Scholar 

  716. Matsui, H., Nishinaka, K., Oda, M., et al. (2007). Wisconsin Card Sorting Test in Parkinson’s disease: Diffusion tensor imaging. Acta Neurologica Scandinavica, 116(2), 108–112.

    PubMed  Google Scholar 

  717. Grieve, S. M., Williams, L. M., Paul, R. H., Clark, C. R., & Gordon, E. (2007). Cognitive aging, executive function, and fractional anisotropy: A diffusion tensor MR imaging study. AJNR. American Journal of Neuroradiology, 28(2), 226–235.

    PubMed  Google Scholar 

  718. Huppert, T. J., Hoge, R. D., Dale, A. M., Franceschini, M. A., & Boas, D. A. (2006). Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging. Journal of Biomedical Optics, 11(6), 064018.

    PubMed  Google Scholar 

  719. Huppert, T. J., Hoge, R. D., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2006). A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. NeuroImage, 29(2), 368–382.

    PubMed  Google Scholar 

  720. Hoge, R. D., Franceschini, M. A., Covolan, R. J., Huppert, T., Mandeville, J. B., & Boas, D. A. (2005). Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI. NeuroImage, 25(3), 701–707.

    PubMed  Google Scholar 

  721. Hendrikse, J., van der Zwan, A., Ramos, L. M., et al. (2005). Altered flow territories after extracranial-intracranial bypass surgery. Neurosurgery, 57(3), 486–494. discussion 486–494.

    PubMed  Google Scholar 

  722. Hendrikse, J., van der Grond, J., Lu, H., van Zijl, P. C., & Golay, X. (2004). Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke, 35(4), 882–887.

    PubMed  Google Scholar 

  723. Lythgoe, M. F., Thomas, D. L., Calamante, F., et al. (2000). Acute changes in MRI diffusion, perfusion, T(1), and T(2) in a rat model of oligemia produced by partial occlusion of the middle cerebral artery. Magnetic Resonance in Medicine, 44(5), 706–712.

    PubMed  Google Scholar 

  724. Zaharchuk, G., Mandeville, J. B., Bogdanov, A. A., Jr., Weissleder, R., Rosen, B. R., & Marota, J. J. (1999). Cerebrovascular dynamics of autoregulation and hypoperfusion. An MRI study of CBF and changes in total and microvascular cerebral blood volume during hemorrhagic hypotension. Stroke, 30(10), 2197–2204. discussion 2204–2195.

    PubMed  Google Scholar 

  725. Glodzik, L., Rusinek, H., Brys, M., et al. (2011). Framingham cardiovascular risk profile correlates with impaired hippocampal and cortical vasoreactivity to hypercapnia. Journal of Cerebral Blood Flow and Metabolism, 31(2), 671–679.

    PubMed  Google Scholar 

  726. Cantin, S., Villien, M., Moreaud, O., et al. (2011). Impaired cerebral vasoreactivity to CO2 in Alzheimer’s disease using BOLD fMRI. NeuroImage, 58(2), 579–587.

    PubMed  Google Scholar 

  727. Mak, H. K., Chan, Q., Zhang, Z., et al. (2012). Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer’s disease and cognitively normal elderly adults at 3-Tesla. Journal of Alzheimer’s Disease, 31(1), 33–44.

    PubMed  Google Scholar 

  728. Yoshiura, T., Hiwatashi, A., Yamashita, K., et al. (2009). Simultaneous measurement of arterial transit time, arterial blood volume, and cerebral blood flow using arterial spin-labeling in patients with Alzheimer disease. AJNR. American Journal of Neuroradiology, 30(7), 1388–1393.

    PubMed  Google Scholar 

  729. Kim, S. M., Kim, M. J., Rhee, H. Y., et al. (2012). Regional cerebral perfusion in patients with Alzheimer’s disease and mild cognitive impairment: Effect of APOE epsilon4 allele. Neuroradiology, 55(1), 25–34.

    PubMed  Google Scholar 

  730. Chen, Y., Wolk, D. A., Reddin, J. S., et al. (2011). Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology, 77(22), 1977–1985.

    PubMed  Google Scholar 

  731. Alexopoulos, P., Sorg, C., Forschler, A., et al. (2012). Perfusion abnormalities in mild cognitive impairment and mild dementia in Alzheimer’s disease measured by pulsed arterial spin labeling MRI. European Archives of Psychiatry and Clinical Neuroscience, 262(1), 69–77.

    PubMed  Google Scholar 

  732. Liu, A. A., Voss, H. U., Dyke, J. P., Heier, L. A., & Schiff, N. D. (2011). Arterial spin labeling and altered cerebral blood flow patterns in the minimally conscious state. Neurology, 77(16), 1518–1523.

    PubMed  Google Scholar 

  733. Hayward, N. M., Immonen, R., Tuunanen, P. I., Ndode-Ekane, X. E., Grohn, O., & Pitkanen, A. (2010). Association of chronic vascular changes with functional outcome after traumatic brain injury in rats. Journal of Neurotrauma, 27(12), 2203–2219.

    PubMed  Google Scholar 

  734. Foley, L. M., Fellows-Mayle, W., Hitchens, T. K., et al. (2009). Age-related peridural hyperemia in craniosynostotic rabbits. Childs Nervous System, 25(7), 861–866.

    Google Scholar 

  735. Kim, J., Whyte, J., Patel, S., et al. (2010). Resting cerebral blood flow alterations in chronic traumatic brain injury: An arterial spin labeling perfusion FMRI study. Journal of Neurotrauma, 27(8), 1399–1411.

    PubMed  Google Scholar 

  736. Marquand, A. F., O’Daly, O. G., De Simoni, S., et al. (2012). Dissociable effects of methylphenidate, atomoxetine and placebo on regional cerebral blood flow in healthy volunteers at rest: A multi-class pattern recognition approach. NeuroImage, 60(2), 1015–1024.

    PubMed  Google Scholar 

  737. Wasan, A. D., Loggia, M. L., Chen, L. Q., Napadow, V., Kong, J., & Gollub, R. L. (2011). Neural correlates of chronic low back pain measured by arterial spin labeling. Anesthesiology, 115(2), 364–374.

    PubMed  Google Scholar 

  738. Demeter, E., Hernandez-Garcia, L., Sarter, M., & Lustig, C. (2011). Challenges to attention: A continuous arterial spin labeling (ASL) study of the effects of distraction on sustained attention. NeuroImage, 54(2), 1518–1529.

    PubMed  Google Scholar 

  739. Lim, J., Wu, W. C., Wang, J., Detre, J. A., Dinges, D. F., & Rao, H. (2010). Imaging brain fatigue from sustained mental workload: An ASL perfusion study of the time-on-task effect. NeuroImage, 49(4), 3426–3435.

    PubMed  Google Scholar 

  740. Kim, J., Whyte, J., Wang, J., Rao, H., Tang, K. Z., & Detre, J. A. (2006). Continuous ASL perfusion fMRI investigation of higher cognition: Quantification of tonic CBF changes during sustained attention and working memory tasks. NeuroImage, 31(1), 376–385.

    PubMed  Google Scholar 

  741. Mohtasib, R. S., Lumley, G., Goodwin, J. A., Emsley, H. C., Sluming, V., & Parkes, L. M. (2012). Calibrated fMRI during a cognitive Stroop task reveals reduced metabolic response with increasing age. NeuroImage, 59(2), 1143–1151.

    PubMed  Google Scholar 

  742. Zeidan, F., Martucci, K. T., Kraft, R. A., Gordon, N. S., McHaffie, J. G., & Coghill, R. C. (2011). Brain mechanisms supporting the modulation of pain by mindfulness meditation. The Journal of Neuroscience, 31(14), 5540–5548.

    PubMed  Google Scholar 

  743. Pfefferbaum, A., Chanraud, S., Pitel, A. L., et al. (2011). Cerebral blood flow in posterior cortical nodes of the default mode network decreases with task engagement but remains higher than in most brain regions. Cerebral Cortex, 21(1), 233–244.

    PubMed  Google Scholar 

  744. Chao, L. L., Buckley, S. T., Kornak, J., et al. (2010). ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Disease and Associated Disorders, 24(1), 19–27.

    PubMed  Google Scholar 

  745. Majos, C., Bruna, J., Julia-Sape, M., et al. (2011). Proton MR spectroscopy provides relevant prognostic information in high-grade astrocytomas. AJNR. American Journal of Neuroradiology, 32(1), 74–80.

    PubMed  Google Scholar 

  746. Majos, C., Alonso, J., Aguilera, C., et al. (2003). Utility of proton MR spectroscopy in the diagnosis of radiologically atypical intracranial meningiomas. Neuroradiology, 45(3), 129–136.

    PubMed  Google Scholar 

  747. Sanghvi, D. A. (2009). Recent advances in imaging of brain tumors. Indian Journal of Cancer, 46(2), 82–87.

    PubMed  Google Scholar 

  748. Antuono, P. G., Jones, J. L., Wang, Y., & Li, S. J. (2001). Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with (1)H-MRS at 0.5 T. Neurology, 56(6), 737–742.

    PubMed  Google Scholar 

  749. Azevedo, D., Tatsch, M., Hototian, S. R., Bazzarella, M. C., Castro, C. C., & Bottino, C. M. (2008). Proton spectroscopy in Alzheimer’s disease and cognitive impairment no dementia: A community-based study. Dementia and Geriatric Cognitive Disorders, 25(6), 491–500.

    PubMed  Google Scholar 

  750. Chen, S. Q., Cai, Q., Shen, Y. Y., et al. (2012). Age-related changes in brain metabolites and cognitive function in APP/PS1 transgenic mice. Behavioural Brain Research, 235(1), 1–6.

    PubMed  Google Scholar 

  751. den Heijer, T., Sijens, P. E., Prins, N. D., et al. (2006). MR spectroscopy of brain white matter in the prediction of dementia. Neurology, 66(4), 540–544.

    Google Scholar 

  752. Griffith, H. R., den Hollander, J. A., Okonkwo, O. C., O’Brien, T., Watts, R. L., & Marson, D. C. (2008). Brain metabolism differs in Alzheimer’s disease and Parkinson’s disease dementia. Alzheimers Dement, 4(6), 421–427.

    PubMed  Google Scholar 

  753. Kantarci, K., Petersen, R. C., Boeve, B. F., et al. (2004). 1H MR spectroscopy in common dementias. Neurology, 63(8), 1393–1398.

    PubMed  Google Scholar 

  754. Woo, C. W., Lee, B. S., Kim, S. T., & Kim, K. S. (2010). Correlation between lactate and neuronal cell damage in the rat brain after focal ischemia: An in vivo 1H magnetic resonance spectroscopic (1H-MRS) study. Acta Radiologica, 51(3), 344–350.

    PubMed  Google Scholar 

  755. Glodzik-Sobanska, L., Li, J., Mosconi, L., et al. (2007). Prefrontal N-acetylaspartate and poststroke recovery: A longitudinal proton spectroscopy study. AJNR. American Journal of Neuroradiology, 28(3), 470–474.

    PubMed  Google Scholar 

  756. Ross, A. J., Sachdev, P. S., Wen, W., Valenzuela, M. J., & Brodaty, H. (2005). 1H MRS in stroke patients with and without cognitive impairment. Neurobiology of Aging, 26(6), 873–882.

    PubMed  Google Scholar 

  757. Saunders, D. E. (2000). MR spectroscopy in stroke. British Medical Bulletin, 56(2), 334–345.

    PubMed  Google Scholar 

  758. Ernst, T., Jiang, C. S., Nakama, H., Buchthal, S., & Chang, L. (2010). Lower brain glutamate is associated with cognitive deficits in HIV patients: A new mechanism for HIV-associated neurocognitive disorder. Journal of Magnetic Resonance Imaging, 32(5), 1045–1053.

    PubMed  Google Scholar 

  759. Paul, R. H., Yiannoutsos, C. T., Miller, E. N., et al. (Summer 2007). Proton MRS and neuropsychological correlates in AIDS dementia complex: Evidence of subcortical specificity. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(3), 283–292.

    Google Scholar 

  760. Sacktor, N., Skolasky, R. L., Ernst, T., et al. (2005). A multicenter study of two magnetic resonance spectroscopy techniques in individuals with HIV dementia. Journal of Magnetic Resonance Imaging, 21(4), 325–333.

    PubMed  Google Scholar 

  761. Chang, L., Lee, P. L., Yiannoutsos, C. T., et al. (2004). A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. NeuroImage, 23(4), 1336–1347.

    PubMed  Google Scholar 

  762. Yiannoutsos, C. T., Ernst, T., Chang, L., et al. (2004). Regional patterns of brain metabolites in AIDS dementia complex. NeuroImage, 23(3), 928–935.

    PubMed  Google Scholar 

  763. Ernst, T., & Chang, L. (2004). Effect of aging on brain metabolism in antiretroviral-naive HIV patients. AIDS, 18(Suppl 1), S61–S67.

    PubMed  Google Scholar 

  764. Chang, L., Ernst, T., Witt, M. D., Ames, N., Gaiefsky, M., & Miller, E. (2002). Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-naive HIV patients. NeuroImage, 17(3), 1638–1648.

    PubMed  Google Scholar 

  765. Cohen, R. A., Harezlak, J., Gongvatana, A., et al. (2010). Cerebral metabolite abnormalities in human immunodeficiency virus are associated with cortical and subcortical volumes. Journal of Neurovirology, 16(6), 435–444.

    PubMed  Google Scholar 

  766. Paul, R. H., Ernst, T., Brickman, A. M., et al. (2008). Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV. Journal of International Neuropsychological Society, 14(5), 725–733.

    Google Scholar 

  767. Tracey, I., Dunn, J. F., Parkes, H. G., & Radda, G. K. (1996). An in vivo and in vitro H-magnetic resonance spectroscopy study of mdx mouse brain: Abnormal development or neural necrosis? Journal of Neurological Sciences, 141(1–2), 13–18.

    Google Scholar 

  768. Tracey, I., Lane, J., Chang, I., Navia, B., Lackner, A., & Gonzalez, R. G. (1997). 1H magnetic resonance spectroscopy reveals neuronal injury in a simian immunodeficiency virus macaque model. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 15(1), 21–27.

    PubMed  Google Scholar 

  769. Vielhaber, S., Kudin, A. P., Kudina, T. A., et al. (2003). Hippocampal N-acetyl aspartate levels do not mirror neuronal cell densities in creatine-supplemented epileptic rats. The European Journal of Neuroscience, 18(8), 2292–2300.

    PubMed  Google Scholar 

  770. Sudharshan, N., Hanstock, C., Hui, B., Pyra, T., Johnston, W., & Kalra, S. (2011). Degeneration of the mid-cingulate cortex in amyotrophic lateral sclerosis detected in vivo with MR spectroscopy. AJNR. American Journal of Neuroradiology, 32(2), 403–407.

    PubMed  Google Scholar 

  771. Bjartmar, C., Kidd, G., Mork, S., Rudick, R., & Trapp, B. D. (2000). Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Annals of Neurology, 48(6), 893–901.

    PubMed  Google Scholar 

  772. Koul, D., Shen, R., Kim, Y. W., et al. (2010). Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma. Neuro-Oncology, 12(6), 559–569.

    PubMed  Google Scholar 

  773. McKnight, T. R., Lamborn, K. R., Love, T. D., et al. (2007). Correlation of magnetic resonance spectroscopic and growth characteristics within grades II and III gliomas. Journal of Neurosurgery, 106(4), 660–666.

    PubMed  Google Scholar 

  774. Liu, W., Le, A., Hancock, C., et al. (2012). Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 8983–8988.

    PubMed  Google Scholar 

  775. Rainaldi, G., Romano, R., Indovina, P., et al. (2008). Metabolomics using 1H-NMR of apoptosis and Necrosis in HL60 leukemia cells: Differences between the two types of cell death and independence from the stimulus of apoptosis used. Radiation Research, 169(2), 170–180.

    PubMed  Google Scholar 

  776. Bajaj, J. S., Gillevet, P. M., Patel, N. R., et al. (2012). A longitudinal systems biology analysis of lactulose withdrawal in hepatic encephalopathy. Metabolic Brain Disease, 27(2), 205–215.

    PubMed  Google Scholar 

  777. Bokemeyer, M., Ding, X. Q., Goldbecker, A., et al. (2011). Evidence for neuroinflammation and neuroprotection in HCV infection-associated encephalopathy. Gut, 60(3), 370–377.

    PubMed  Google Scholar 

  778. Kirov, I. I., Patil, V., Babb, J. S., Rusinek, H., Herbert, J., & Gonen, O. (2009). MR spectroscopy indicates diffuse multiple sclerosis activity during remission. Journal of Neurology, Neurosurgery, and Psychiatry, 80(12), 1330–1336.

    PubMed  Google Scholar 

  779. Katz-Brull, R., Lenkinski, R. E., Du Pasquier, R. A., & Koralnik, I. J. (2004). Elevation of myoinositol is associated with disease containment in progressive multifocal leukoencephalopathy. Neurology, 63(5), 897–900.

    PubMed  Google Scholar 

  780. Ernst, T., Chang, L., & Arnold, S. (2003). Increased glial metabolites predict increased working memory network activation in HIV brain injury. NeuroImage, 19(4), 1686–1693.

    PubMed  Google Scholar 

  781. Bitsch, A., Bruhn, H., Vougioukas, V., et al. (1999). Inflammatory CNS demyelination: Histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR. American Journal of Neuroradiology, 20(9), 1619–1627.

    PubMed  Google Scholar 

  782. Pascucci, B., Lemma, T., Iorio, E., et al. (2012). An altered redox balance mediates the hypersensitivity of Cockayne syndrome primary fibroblasts to oxidative stress. Aging Cell, 11(3), 520–529.

    PubMed  Google Scholar 

  783. Kim, J. S., Kim, E. J., Kim, H. J., Yang, J. Y., Hwang, G. S., & Kim, C. W. (2011). Proteomic and metabolomic analysis of H2O2-induced premature senescent human mesenchymal stem cells. Experimental Gerontology, 46(6), 500–510.

    PubMed  Google Scholar 

  784. Schifitto, G., Yiannoutsos, C. T., Ernst, T., et al. (2009). Selegiline and oxidative stress in HIV-associated cognitive impairment. Neurology, 73(23), 1975–1981.

    PubMed  Google Scholar 

  785. Garvey, L. J., Pavese, N., Ramlackhansingh, A., et al. (2012). Acute HCV/HIV coinfection is associated with cognitive dysfunction and cerebral metabolite disturbance, but not increased microglial cell activation. PLoS One, 7(7), e38980.

    PubMed  Google Scholar 

  786. Lin, K., Taylor, M. J., Heaton, R., et al. (2011). Effects of traumatic brain injury on cognitive functioning and cerebral metabolites in HIV-infected individuals. Journal of Clinical and Experimental Neuropsychology, 33(3), 326–334.

    PubMed  Google Scholar 

  787. Mohamed, M. A., Barker, P. B., Skolasky, R. L., et al. (2010). Brain metabolism and cognitive impairment in HIV infection: A 3-T magnetic resonance spectroscopy study. Magnetic Resonance Imaging, 28(9), 1251–1257.

    PubMed  Google Scholar 

  788. Mohamed, M. A., Lentz, M. R., Lee, V., et al. (2010). Factor analysis of proton MR spectroscopic imaging data in HIV infection: Metabolite-derived factors help identify infection and dementia. Radiology, 254(2), 577–586.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, R.A. (2014). Neuroimaging of Attention. In: The Neuropsychology of Attention. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72639-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72639-7_26

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-72638-0

  • Online ISBN: 978-0-387-72639-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics